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Abstract. We consider the robustness of small-field inflation in the presence of scalar field inhomo-

geneities. Previous numerical work has shown that if the scalar potential is flat only over a narrow in-

terval, such as in commonly considered inflection-point models, even small-amplitude inhomogeneities

present at the would-be onset of inflation at τ = τi can disrupt the accelerated expansion. In this

paper, we parametrise and evolve the inhomogeneities from an earlier time τIC at which the initial

data were imprinted, and show that for a broad range of inflationary and pre-inflationary models,

inflection-point inflation withstands initial inhomogeneities. We consider three classes of perturbative

pre-inflationary solutions (corresponding to energetic domination by the scalar field kinetic term, a

relativistic fluid, and isotropic negative curvature), and two classes of exact solutions to Einstein’s

equations with large inhomogeneities (corresponding to a stiff fluid with cylindrical symmetry, and

anisotropic negative curvature). We derive a stability condition that depends on the Hubble scales

H(τi) and H(τIC), and a few properties of the pre-inflationary cosmology. For initial data imprinted

at the Planck scale, the absence of an inhomogeneous initial data problem for inflection-point inflation

leads to a novel, lower limit on the tensor-to-scalar ratio.
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1 Introduction

Two striking features of the Cosmic Microwave Background (CMB) radiation are its average smooth-

ness and the non-trivial correlations of its small anisotropies on scales significantly larger than the

Hubble radius when it decoupled from electrons. The approximate scale-invariance of the underly-

ing primordial perturbations cannot be explained by causal dynamics in the standard hot big bang

model, and would be a surprising outcome from any quantum gravitational initial state. The success

of the theory of inflation [1–3] springs from its ability to explain these observations within a simple

theoretical framework that permits detailed observational tests.

Inflation drives the universe towards a locally highly homogeneous state, and small quantum

fluctuations, stretched beyond the Hubble radius by inflation, provide the candidate seeds for large-

scale structure in the universe [4–8]. The generic predictions of inflation are in excellent agreement

with all current observations [9]; however, much remains to be understood about how and why inflation

happened, and what might have prevented it.
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A puzzling aspect about inflation is the question of how it got started: while the enormous

expansion during this era smooths any pre-existing inhomogeneities, sufficiently large initial inhomo-

geneities can prevent the energy density from becoming dominated by the potential energy, and cause

the expansion to remain decelerating. In the simplest estimates, the onset of the accelerated phase

requires a homogeneous patch extending several (or even many) Hubble radii, which arguably suggests

fine-tuning of the pre-inflationary initial state. This is the problem of inhomogeneous initial data for

inflation.

The question of the robustness of inflation is important as it affects the naturalness of the

inflationary framework. For ardent critics of inflation, the inhomogeneous initial data problem is in-

terpreted as a serious challenge to the entire inflationary paradigm (see e.g. [10]). However, research

by several groups over the past few decades have shown that the simplest formulation of the initial

data problem can be misleading [11–44], and inflation is less sensitive to inhomogeneities than one

might naively expect. Perhaps most importantly, numerical simulations of general relativity coupled

to a scalar field with a flat inflationary potential have shown that even initial configurations dominated

by inhomogeneities typically lead to inflation [15, 16, 21, 24–26, 34, 39, 41], at least as long as the

amplitude of the inhomogeneities of the scalar field, δφ, is smaller than the width of the inflationary

region of the potential, ∆φ. For large-field models with ∆φ > 1,1 this solves the problem of inhomo-

geneous initial data without requiring any smoothness of the initial patch [39]. Moreover, if chaotic

inflation is realised, a single smooth Planck sized domain can result in inflation and lead to an eternal

process of self-reproduction [45].

For models with ∆φ < 1, the solution to the inhomogeneous initial data problem is less immediate.

It can be avoided in models with non-trivial topology [37, 46–48], and ameliorated in inflationary

potentials with extended plateau regions [39, 41] (which can be achieved, for example through a

non-trivial kinetic terms [43, 49]). Moreover, if the universe went through phases of both high-scale

and low-scale inflation, or got stuck in a false metastable vacuum before the final period of inflation,

the inhomogeneities present at the onset of the final phase of inflation are expected to be small

(cf. e.g. [36, 42]).

Nevertheless, for commonly considered small-field models with ∆φ� 1, the initial data problem

can still appear quite severe. Examples of such models include low-scale potentials that are flat

only near an inflection point. Inflection-point models are becoming increasingly popular as they are

automatically consistent with observational upper limits on the tensor-to-scalar ratio, and appear to

admit comparatively simple ultraviolet completions into a string theory (see e.g. [50–55], or [56] for

a recent review). Recently, reference [41], numerically studied the impact of inhomogeneities present

at the potential onset of inflation in small-field inflection-point models (see also [39, 44]), and found

that even highly sub-dominant gradient energy densities of the scalar field can spoil inflation. At face

value, these results may be taken to suggest that the simplest inflection-point models suffer severely

from the inhomogeneity problem. In this paper, we show that such a conclusion would be premature.

The conformal time τIC at which the initial data were imprinted (e.g. when four-dimensional

general relativity first gave an appropriate description of the dynamics) may in general have far

preceded the onset of inflation at conformal time τi. During the pre-inflationary era between τIC and

τi, the comoving Hubble radius grew, and the most dangerous modes for disrupting inflation had

wavelengths far longer than the Hubble radius at τIC. The power spectrum of inhomogeneities at

1Throughout this paper, we set the reduced Planck mass to one: MPl = 1/
√

8πG = 2.4× 1018 GeV = 1.
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τIC is not in general expected to be scale-invariant, but should go to zero as the wavelength goes to

infinity.

In this paper, we parametrise the spectrum of inhomogeneities at τIC and show that the initial

data problem depends on four properties of the scenario: i) the energy scales HIC = H(τIC) and

Hi = H(τi), ii) the amount of expansion between τIC and τi, iii) the spectral index of the initial

inhomogeneities on super-horizon scales, and iv) the narrowing of the plateau region as the energy

scale of inflation is lowered. We then exemplify our results analytically by considering pre-inflationary

epochs dominated by either scalar-field kinetic energy, a general relativistic fluid with equation-of-state

w, or negative curvature (which may be isotropic or anisotropic). Using these models, we assess the

severity of the inhomogeneous initial data problem.

We find qualitatively different scenarios depending on whether the expansion is decelerating

(e.g. as for fluid domination), or displays constant comoving Hubble parameter, ℋ =Ha, (as for

negative isotropic curvature domination), and, in the former case, if the fall-off of the initial power

spectrum on large scales is ‘steep’ or ‘moderate’. This leads us to three main results:

• If the pre-inflationary expansion is decelerating and the initial data are imprinted at the Planck

scale, so that HIC = 1, the inhomogeneous initial data problem only ever becomes relevant

for very low energy models. For ‘moderate’ initial power spectra, we derive a lower limit on

the tensor-to-scalar ratio r, above which one should not expect an initial data problem. This

limit implies that a large fraction of interesting inflection-point models are robust against in-

homogeneities, with the detailed bound depending on a combination of parameters of the pre-

inflationary cosmology. For example, if the pre-inflationary epoch is radiation dominated and

the inhomogeneities at τIC have δφ ∼ O(1) on the horizon scale and a spectral index of nIC = 3

on larger scales, we find the limit: r > 2.5 × 10−22. For ‘steep’ initial spectra, no models are

expected to have a problem with inhomogeneities.

• If the initial data are imprinted at energies much below the Planck scale with a ‘moderate’

power-spectrum, the inhomogeneous initial data problem becomes more severe. We show that

this leads to a lower bound on the initial energy scale, HIC & 4×10−8, for models robust against

initial inhomogeneities. By contrast, models with ‘steep’ initial power spectra can be robust

against inhomogeneities for smaller HIC.

• If the pre-inflationary dynamics is dominated by isotropic negative curvature so that the co-

moving Hubble expansion rate is constant, there is no inhomogeneous initial data problem for

HIC & 4× 10−8, independently of Hi.

We conclude that even the simplest inflection-point models with narrow inflationary plateaux

do not in general exhibit an inhomogeneous initial data problem. While our results are derived for a

particular class of small-field inflection-point models (that directly generalise those considered in [41]),

we expect similar arguments to hold also for other small-field scenarios. Moreover, our main results

in §4 apply to pre-inflationary cosmologies in which the expansion is on average non-accelerating and

the superhorizon scalar field inhomogeneities are not significantly sourced. We expect these conditions

to be satisfied by many interesting classes of both perturbative and non-perturbative pre-inflationary

cosmologies.

This paper is organised as follows: In §2, we introduce the family of inflection-point models that

we consider, review how inflationary models can fail due to inhomogeneities. We also parametrise
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their initial spectrum at τIC. In §3, we discuss the pre-inflationary era and derive some simple but

illuminating analytic results for the evolution of perturbative inhomogeneities during inflation. We

also briefly discuss the cases of positive and anisotropic negative curvature. In §4, we analyse the

severity of the problem of initial inhomogeneities, and draw together the main results of this paper.

We conclude by discussing possible future directions in §5. In Appendix A, we provide details of the

perturbative calculations in §3, and in Appendix B we discuss solutions with cylindrical symmetry

and anisotropic negative curvature in more detail.

2 The initial data problem for inflection-point inflation

In this section, we briefly review the class of inflationary models we consider and the wavelength-

dependence of ‘dangerous’ inhomogeneities. We also discuss and parametrise the initial spectrum of

inhomogeneities, which will feature in our bounds derived in §4.

2.1 Inflection-point inflation

In order to investigate the dependence of the inhomogeneous initial data problem on the energy scale

Hi, we construct a one-parameter family of models with various values for the inflationary potential,

V0. These models directly generalise the ‘typical small-field model’ of reference [41].

The initial data problem is expected to be most severe in models with very narrow inflationary

plateaux, ∆φ � 1. In homogeneous cosmology, the minimum required width of the inflationary

plateau shrinks as V0 is decreased: the lower the energy scale, the narrower the plateau, cf. Figure 1.

In this section, we briefly review the relevant properties of inflection-point potentials and show why

modes with k ≈ ℋi = aiHi are the most dangerous for inhibiting inflation.

The models we consider have an inflection point at φ = 0 and for 0 < φ . µ are described by,

V (φ) = V0

(
1−

(
φ

µ

)4
)

. (2.1)

For µ < 1, this potential supports small-field, slow-roll inflation. Clearly, equation (2.1) captures the

plateau region adjacent to the inflection point, and should be joined on either side by suitable smooth

extensions. In §4, we consider both sharply rising and flat extensions of the potential to negative

values, however, we note that the former class are likely to suffer from the (homogeneous) ‘overshoot

problem’, as discussed in e.g. [57, 58] (see also [52, 54] for a discussion in the context of a multi-field

string theory embedding of inflection-point inflation). We will not address the overshoot problem

here, but note that it motivates focussing on rather flat extensions of the plateau. In this section, we

assume that the average value of the field is close to the inflection point when H = Hi, with a small

kinetic energy, so that the relevant part of the potential is captured by equation (2.1).

The properties of this family of inflection-point models are well-known and reviewed in e.g. [59].

If slow-roll inflation begins at 0 < φmin � µ, the number of e-folds of inflation is well-approximated

by,

N =

∫ φmax

φmin

1√
2εV

dφ ≈ 1

8

µ4

φ2
min

, (2.2)

where εV = 1
2(V ′2/V 2). The spectral index of the curvature perturbations, evaluated around φmin, is

given by,

ns − 1 = − 3

N
, (2.3)
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Figure 1. Examples of inflection-point potentials. Most of the inflationary expansion occurs when the field is

in a narrow interval of length ∆φ ∼ O(µ2), here marked in orange.

so that observational compatibility requires N ≈ 100 e-folds of inflationary expansion, independently

of the energy scale of inflation. Assuming that inflation ends soon after the moment when |ηV | =

|V ′′/V | = 1, the distance traversed by the field during inflation is approximately given by,

φmax − φmin ≈ O(µ2) . (2.4)

Clearly, models with small field excursions have µ < O(1).

Finally, the amplitude of the curvature perturbations generated from quantum fluctuations during

inflation scales like,

As ∼ N3V0

µ4
. (2.5)

Imposing the observationally inferred normalisation of the CMB anisotropies then leads to a one-

parameter family of models.

Starting from an observational compatible reference model with V0 = Vref and the inflationary

field-displacement ∆φ = ∆φref , it follows from equations (2.4) and (2.5) that other observationally

compatible models in this family have field displacements ∆φ and energy scales V given by the scaling

relation, (
∆φ

∆φref

)2

=
V0

Vref
=

(
Hi

Href

)2

. (2.6)

We use the ‘typical small-field model’ of [41] for our reference parameters:2

µref = 0.12 , Vref = 7.3× 10−20 ,

Href = 1.6× 10−10 , ∆φref = 5.0× 10−3 ,
(2.7)

where we have used the field excursion during all but the last e-fold of inflation as our measure of ∆φ.

For these parameters, the tensor-to-scalar ratio is r = 2.6× 10−12.

2These numerical values differ from those of [41] which sets the Planck mass, as opposed to the reduced Planck mass,

to unity.
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Small-field models satisfy ∆φ < 1. For this class of inflection-point models, this translates into

the limits Hi < 3.2× 10−8 corresponding to r < 10−7.

2.2 Dangerous inhomogeneities

Some inhomogeneities are more dangerous to inflation than others. Inflation is destabilised if, in some

part of space, the scalar field fluctuates towards the minimum and pre-maturely ends inflation in

that region, with gradients dragging the field in the rest of spacetime down towards the minimum.

However, gradients also have a stabilising effect [39, 41], as we now review.

For a potentially destabilising fluctuation to become energetically favourable, the energy gain

from the potential energy, ∆V , must overcome the gradient energy, 1
2a2

(∇φ)2, that will (at least

initially) attempt to pull the scalar field fluctuation back towards the plateau. Clearly then, for

a fixed k-independent amplitude of scalar field inhomogeneities, low-k modes are more dangerous

than high-k modes. Inhomogeneities with k < ℋi can locally be viewed as renormalisations of the

homogeneous cosmology, and do not cause the entire universe to collapse [39]. Thus, the modes most

dangerous for inflation have k ≈ ℋi = Hiai. As we will discuss quantitatively below, reference [41]

found numerically that the probability of destabilisation decreased markedly for wavelengths a factor

of two smaller than the Hubble radius. These results are consistent with earlier work [39].

For non scale-invariant inhomogeneities, the long-wavelength modes remain the most dangerous

as long as the potential energy gain is dominated by linear or quadratic terms. If the potential energy

gain becomes dominated by cubic or higher order terms, it is possible for short-wavelength modes to

become dangerous: in the cubic case, this only happens for rather steep spectra of inhomogeneities at

τi, corresponding to a spectral index of & 5.

The sub-horizon evolution of high-k inhomogeneities mitigates the risk they pose for inflation:

perturbative inhomogeneities decay like δφk ∼ 1/a (as we show in §3.2), and non-perturbatively large

inhomogeneities can trigger gravitational collapse into black holes promptly after horizon entry [60].

The black holes are not expected to disrupt inflation [41]. For these reasons, we here focus on the

limited range of ‘dangerous modes’ that have wave numbers in a small interval around ℋi, cf. Figure

2. This drastically simplifies the problem of inhomogeneous initial data.

Inflation is robust against the effects of sufficiently small inhomogeneities. The exact limit on their

amplitude depends on the width of the inflationary plateau, the steepness of the potential beyond it,

the admixture of wavelengths of the modes, and the criterion for robustness. We here adopt the criteria

that a model is safe from inhomogeneities if it yields 60 or more e-folds of inflation. Extrapolating

the numerical results of reference [41],3 we express the corresponding bound on the total amplitude of

scalar field inhomogeneities with k ≈ ℋi as a fraction f , of the width ∆φref :

|δφk≈ℋi
| < f ∆φref . (2.8)

Here ∆φref is as in equation (2.7). We consider two values for the fraction f : if the scalar potential is

flat for negative values of the potential, f = 1.6, while if it raises sharply beyond the plateau, f = 0.17.

The latter type of potential suffers from the overshoot problem already for homogeneous cosmology

[58], and the reduction of f is directly related to this problem; inhomogeneities can pick up excess

kinetic energy by fluctuating to negative values. We expect that potentials without an overshoot

problem give f > 0.17.

3We are grateful to Eugene Lim, Josu Aurrekoetxea, Katy Clough, and Raphael Flauger for discussions on this point.
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Figure 2. Evolution of the comoving Hubble radius, ℋ−1, in a pre-inflationary epoch of decelerated expansion

driven by scalar field kinetic energy and radiation (solid) and during inflation (dashed). Here a(τIC) = 1. The

perturbations most dangerous for inflation (shaded blue) have k−1 � ℋ−1
IC .

These values for f are obtained from numerical simulations in which all inhomogeneities were

concentrated in a superposition of three modes with comoving wavelengths ℋ−1
i . Reference [41] also

found that if, in addition, modes with half the wavelength were included, the corresponding values

were increased to f = 2.6 and f = 0.21 for extended flat and steep potentials, respectively. This

suggests that f is a k-dependent function, consistent with the argument that long wavelength modes

are the most dangerous. Due to the scarcity of numerical data, we will not attempt to model f(k)

here. Moreover, we will not consider other sources of inhomogeneity, e.g. those in tensor modes, that

only indirectly impact the stability of inflation [44].

Using the scaling equation (2.6), the condition for stability (2.8) can be extended to other energy

scales in our class of inflection-point models:

|δφk≈ℋi
| < f∆φ = f∆φref

(
Hi

Href

)
. (2.9)

In §4 we use this inequality to derive a bound on Hi and HIC from the absence of an inhomoge-

neous initial data problem.

2.3 Parametrisation of the initial inhomogeneities

Presumably, inhomogeneities present at τIC were fashioned by quantum gravitational dynamics, about

which little is known.4 In lieu of a complete theory of the initial data, we here merely parametrise the

statistical distribution of initial inhomogeneities, and briefly highlight the most relevant properties of

their spectrum.

4In the context of string theory – the leading candidate theory of quantum gravity – the question of inflationary initial

data is likely to involve the properties of the effective theories at energies below the compactification scale, and the state

of the universe at energies at or above the string scale. While substantial, yet partial, progress have been made on the

former issue, the latter still remains a significant challenge (see e.g. [56] for a review).
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We assume that the inhomogeneities present at τIC are classical and statistically homogeneous,

isotropic and Gaussian. We define the power spectrum of inhomogeneities at τIC by,

〈δφk(τIC)δφk′(τIC)〉 =
2π2

k3
δ(3)(k + k′)Pδφ(τIC)(k) . (2.10)

In general, Pδφ(τIC)(k) can be a complicated function, however, we expect the power spectrum to be

suppressed on wavelengths greater than the largest dynamically relevant length scale. In particular,

as the wavelength of the modes goes to infinity (and k → 0), we expect Pδφ(τIC)(k) → 0. For modes

with k < ℋIC, it may be appropriate to describe the power-spectrum by a simple power-law,5

Pδφ(τIC)(k | k < ℋIC) = A

(
k

ℋIC

)nIC−1

, (2.11)

in terms of which the assumption of Pδφ(τIC)(0) = 0 gives nIC > 1. Reasonably, this is consistent

with a finite total power in modes with k < ℋIC. Here A sets the amplitude of inhomogeneities with

k = ℋIC. The energy density contribution from these modes is ρδφ(τIC)|k=ℋIC
= H2A, which is clearly

substantial for A = 1.

The spectral index of the initial inhomogeneities is an important parameter in our analysis,

and the condition nIC > 1 can be motivated by several additional arguments. Obviously, were we

to assume that classical cosmology with decelerating expansion would hold up until the singularity

at τ = 0, no causal mechanism could generate perturbations with comoving wavelengths � ℋ−1
IC ,

and there would be no power in modes with k � ℋIC. Moreover, quantum fluctuations can lead to

suppressed perturbations on scales larger than the Hubble radius, as we now show.

Neglecting gravitational back-reaction around a homogeneous FRW background with constant

εH, a massless scalar field perturbation ϕk = δφk/a satisfies the linear-order equation,

dϕk
dτ2

+
(
k2 − c

τ2

)
ϕk = 0 . (2.12)

Here, we have used that ℋ = 1
εH−1

1
τ , and introduced the constant,

c =
2− εH

(εH − 1)2
, (2.13)

for εH 6= 1. In the case where the background geometry is de Sitter spacetime, we have c = 2 and the

solutions to equation (2.12) include the familiar Bunch-Davies wavefunction,

ϕk =
eikτ√

2k

(kτ − i)
kτ

. (2.14)

In this case, long-wavelength modes have a power spectrum,

Pϕ =
k3

2π2
|ϕk|2 ∼

1

τ2
, (2.15)

independently of k (for sufficiently small k) so that the power spectrum of φ is scale-invariant: Pδφ ∼
H2 [61]. This is no longer the case in a more general FRW background with constant εH > 1.

5If the dynamics responsible for the initial inhomogeneities includes multiple length scales, the power-law parametri-

sation should be appropriate for wavelengths larger than the largest dynamical scale, which may be longer than ℋ−1
IC .

We do not discuss this modified scenario here, but our analysis can be straightforwardly applied also to this scenario.
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Specialising to the case in which the energy density is dominated by a relativistic fluid with equation-

of-state parameter 0 < w < 1, we have 3/2 < εH < 3 and consequently −1
4 < c < 2. The solution to

equation (2.12) is now given by a combination of Bessel functions,

ϕk(τ) = c1

√
τJν(kτ) + c2

√
τYν(kτ) , (2.16)

with

ν = 1
2

√
1 + 4c =

1

2

|3− εH |
|εH − 1|

. (2.17)

The slowest fall-off in the long-wavelength limit k � τ is obtained from the ‘Bunch-Davies-like’

solutions that scale as,

ϕk(τ) ∼ 1

kντν−1/2
. (2.18)

The spectral index for the perturbations of φ is then given by,

nIC − 1 = 3− 2ν = 3− |3− εH |
|εH − 1|

> 0 . (2.19)

In the entire range 0 < w < 1, we have nIC > 1 and thus a suppression of the power in modes with

wavelength far longer than the Hubble radius. For example, a radiation-dominated period corresponds

to nIC = 3.

We note in closing that since the appropriate theory of inflationary initial data is unknown,

arguments about its properties are necessarily heuristic. In this section we have pointed out that scale

invariance of the inhomogeneities is certainly not guaranteed, and should perhaps not be expected.

3 The pre-inflationary epoch

On general grounds, there is no reason to expect that the time τIC should coincide with the onset of

inflation at τi. This means that inflation was preceded by a pre-inflationary era of non-accelerated

expansion.6 Since inflation by construction is very efficient at erasing any traces of the pre-inflationary

state, not much is known about this epoch.

Our main results in §4 depend only on a few properties of the pre-inflationary era, and apply to

both small and large inhomogeneities. For concreteness and to be able to make analytic progress, in

this section we parametrise the pre-inflationary spacetime by a homogeneous and isotropic Friedmann-

Robertson-Walker (FRW) metric, and treat the inhomogeneities as linear-order perturbations. This

approach has some obvious limitations, but also several benefits. While the full problem of determining

how inhomogeneities affect the duration of inflation is clearly non-linear, the pre-inflationary evolution

of small perturbations with δφ ≈ ∆φ� 1 can still be well-described by perturbation theory. For small-

field models with a very narrow plateau region, such small perturbations may suffice to destabilise

inflation (at which point the perturbative treatment ceases to be valid).

Moreover, as noted in §2.2, the most dangerous modes for inflation had wavelengths far larger

than the Hubble radius during most of the pre-inflationary era. These modes are governed by a coarse-

grained effective theory obtained by integrating out short-wavelength inhomogeneities. This results

in a prescription similar to the ‘stochastic inflation’ framework [62] (see also [63]), and includes a

6More exotically, it is possible that the pre-inflationary era involved a contracting phase. We will not discuss this

scenario here.
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small sourcing induced by short-wavelength inhomogeneities. Our bounds derived in §4 applies to pre-

inflationary cosmologies in which this sourcing is negligible. In all models that we study analytically

in this section, the superhorizon modes are constant.

This section is organised as follows: in §3.1, we review the salient features of homogeneous pre-

inflationary cosmology, and in §3.2 we discuss the evolution of perturbative inhomogeneities in the

three classes of pre-inflationary scenarios that we consider. In §3.3 and §3.4 we respectively review

the cases of positive and anisotropic negative curvature. More details of the perturbative calculations

are deferred to Appendix A, and some special, non-linear solutions are further discussed in Appendix

B.

3.1 Homogeneous pre-inflationary cosmology

In this section, we discuss the homogeneous limit of the pre-inflationary cosmology and derive simple

expressions for the duration of the pre-inflationary era and the growth of the comoving Hubble radius.

The Friedmann-Robertson-Walker (FRW) metric is given by,

ds2 = a2(τ)
(
−dτ2 + γijdx

idxj
)
, (3.1)

with the spatial components,

γij =
δij(

1 + K
4 (x2 + y2 + z2)

)2 . (3.2)

We set a(τIC) = 1 so the (isotropic) curvature parameter K is in general not an integer. We here

consider three-dimensional spaces that are flat or open with K = 0 or K < 0, and discuss the case of

positive curvature in §3.3. A useful parameter is,

εH = −
dH
dt

H2
= 1− ℋτ

ℋ 2
, (3.3)

which, in the pre-inflationary era of non-accelerated expansion, satisfies εH ≥ 1. Here, and subse-

quently, we denote derivatives with respect to conformal time with the sub-script τ .

We consider universes containing a homogeneous inflaton field, φ̄, with potential V (φ̄) and a

perfect, isentropic fluid with energy density ρf (τ) and pressure pf = wρf . In the homogeneous limit,

the Einstein equations are given by,

3(ℋ 2 + K ) =
1

2
φ̄2
τ + a2V (φ̄) + a2ρf , (3.4)

−(2ℋτ + ℋ 2 + K ) =
1

2
φ̄2
τ − a2V (φ̄) + a2pf . (3.5)

The Klein-Gordon equation and momentum conservation equation for the fluid are given by,

φ̄ττ + 2ℋ φ̄τ + a2V ′(φ̄) = 0 , (ρf )τ + 3ℋ (ρf + pf ) = 0 . (3.6)

We derive analytic results for three classes of cosmological backgrounds:

i) Kinetic energy domination : 1
2a2
φ̄2
τ � max

(
V (φ̄), ρf ,−3K

a2

)
ii) Fluid domination : ρf � max

(
1

2a2
φ̄2
τ , V (φ̄),−3K

a2

)
iii) Curvature domination : −3K

a2
� max

(
1

2a2
φ̄2
τ , V (φ̄), ρf

)
.

(3.7)
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During kinetic energy domination (considered also in [64, 65]), εH = 3, and the energy density

decreases as ρ = ρ(τIC)/a6. During fluid domination (considered recently in [66]),7 εH = 3
2(1 +w) and

ρ(τ) = ρ(τIC)/a3(1+w). For isotropic curvature domination (considered e.g. in [67]), εH = 1 and the

isotropic curvature contribution decays like −K/a2. In general, the energy density at τIC may receive

contributions from multiple sources. The different decay rates of the energy density then often lead

to a separation of the pre-inflationary era into distinct epochs during which one source dominates.

The total amount of expansion during a pre-inflationary era lasting from τIC (when H = HIC)

to τi (when H = Hi) is given by,

a(τi)

a(τIC)
=

(
HIC

Hi

) 2
3(1+w)

, (3.8)

where w = 1 corresponds to kinetic energy domination like an ‘ultra-stiff’ fluid, and w = −1/3 also

corresponds to curvature domination. For w > −1/3, the comoving Hubble radius, ℋ−1, grows during

the pre-inflationary era by,

ℋ−1
i

ℋ−1
IC

=

(
HIC

Hi

) 1+3w
3(1+w)

. (3.9)

This is a substantial growth for natural values of the parameters: for example, a radiation-dominated

pre-inflationary era lasting from the Planck scale (HIC = 1) to the energy-scale of our reference

model (cf. equation (2.7)) generates an expansion and growth of the comoving Hubble radius of

a(τi)/a(τIC) = ℋ−1
i /ℋ−1

IC = exp(11.3) = 8.0 × 104. Moreover, the energy scale of inflation may be

much lower than that of the reference model. Successful primordial nucleosynthesis and thermalisation

of the neutrinos requires a hot big bang cosmology with T & 4 MeV [68], which in the extreme

case of instant reheating immediately following the end of inflation is consistent with Hi ≈ 10−42

(corresponding to r ≈ 10−76). In this case a radiation-dominated pre-inflationary era from the Planck

scale would generate 48 e-folds of expansion.

In the kinetic-energy dominated era, the homogeneous inflaton satisfies the equation φ̄′′ = 0,

where prime denotes a derivative with respect to the number of e-foldings: X ′ = dX/dN = dX/(ℋdτ).

The speed of the field is then constant, with φ̄′ = ±
√

6. In the other scenarios of equation (3.7), the

additional Hubble friction from the fluid or the curvature term leads to the equation of motion,

φ̄′′ +
3

2
(1− w)φ̄′ = 0 , (3.10)

and a rapid slow-down of the background scalar field.8

The growth of the co-moving Hubble radius, cf. equation (3.9), is not unique to homogeneous

FRW universes. In §3.4 we show that similar results hold also for universes dominated by negative,

anisotropic spatial curvature.

3.2 Perturbative pre-inflationary inhomogeneities

It is instructive to examine the pre-inflationary evolution of small inhomogeneities in the three classes

of cosmologies of equation 3.7. To do so, we consider the linear scalar perturbations in conformal-

7In highly inhomogeneous universes dominated by scalar field gradient energy with wavelengths smaller than the

Hubble radius (defined by spatial averaging), the average energy density decreases approximately like radiation, w = 1/3

[39].
8This effect ameliorates the overshoot problem for small-field inflation.
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Newtonian gauge. The line element is given by,

ds2 = a2(τ)
(
−(1 + 2Φ)dτ2 + (1− 2Ψ)γijdx

idxj
)
. (3.11)

The benefit of this gauge is that the potentials Φ, Ψ agree with the gauge invariant Bardeen potentials

and the scalar field perturbation δφ(τ,x) = φ(τ,x)− φ̄(τ) directly corresponds to the gauge invariant

scalar field perturbation [69]. We assume that gravitational waves can be neglected. Inhomogeneous

gravitational waves do not by themselves shorten the duration of inflation, and pre-inflationary cos-

mologies involving both tensor and scalar inhomogeneities was recently studied in [44]. In the absence

of anisotropic stress, the i 6= j components of the Einstein equation gives,

Φ = Ψ , (3.12)

and we will henceforth only use the Newtonian potential, Φ. The remaining Einstein equations are

then given by (for reviews, see e.g. [69, 70]),

∇2Φ− 3ℋΦτ − 3(ℋ 2 −K )Φ =
1

2

(
a2V ′(φ̄)δφ+ φ̄τδφτ − Φφ̄2

τ + a2δρf
)
, (3.13)

∂i (ℋΦ + Φτ ) =
1

2

(
φ̄τ∂iδφ− a2(1 + w)ρ̄fvi

)
, (3.14)

Φττ + 3ℋΦτ + (2ℋτ + ℋ 2 −K )Φ =
1

2

(
−Φφ̄2

τ + φ̄τδφτ − a2V ′(φ̄)δφ+ a2wδρf
)
. (3.15)

Here vi = ∂iv for the fluid’s velocity potential v. The leading-order Klein-Gordon equation for the

field perturbation is given by,

δφττ + 2ℋ δφτ −∇2δφ− 4Φτ φ̄τ + 2a2ΦV ′(φ̄) + a2Vφφ(φ̄)δφ = 0 . (3.16)

We now state the results of this perturbative analysis; more details can be found in Appendix

A. For all three classes of pre-inflationary cosmologies of equation (3.7), we find that the amplitude

of scalar field inhomogeneities stays constant on super-horizon scales, and undergo pressure-damped

oscillatory decay on sub-horizon scales. In all three cases the amplitude of the scalar field inhomo-

geneities evolve like,

δφk ∼

{
constant k � ℋ ,

e−N k � ℋ .
(3.17)

In Appendix B.1, we review how the result of [71] implies that equation (3.17) also holds in the

case of large, non-linear inhomogeneities with cylindrical symmetry.

3.3 Positive curvatures

Inflation cannot occur in regions that collapse before inflation can commence. Such regions behave

rather like local closed universes. Closed universes are those with compact space sections. In the FRW

case this requires positive 3-curvature but in the most general closed universes (for example those of

Bianchi type IX) the curvature can change sign with time and is mostly negative during any period

of chaotic ‘mixmaster’ dynamics: it only becomes positive when the dynamics are close to isotropy.

The fate of critically overdense regions in the pre-inflationary period mirrors that of the fate of closed

universes. The most overdense regions may collapse to form primordial black holes after they enter

– 12 –



the horizon [60], and then evaporate primarily into massless and relativistic particles by the Hawking

effect. However, in any period of expansion that is dominated by the kinetic energy of a scalar field

the corresponding Jeans length equals the horizon size and there is little scope for overdensities to

collapse into black holes before they can be supported by pressure. Therefore the most pronounced

overdensities will be filtered out by gravitational collapse. They can collapse before inflation can begin

and leave the remaining lower-density regions to undergo inflation. Thus, in an inhomogeneous chaotic

inflationary scenario, only the lower density regions that avoid premature gravitational collapse will

be able to inflate and become candidate regions to contain our visible universe.

Another scenario might ensue if overdense regions collapse and bounce through a sequences of

growing oscillations because of entropy increase [79]. These oscillating regions will approach flatness

asymptotically unless a strong energy condition violating matter source, like a potential-dominated

scalar field, comes to dominate. In that case the oscillations will cease and be replaced by unending

inflationary expansion [80]. However, studies of the fate of anisotropic closed universes have shown

that the sequence of growing oscillations demanded by the Second Law of thermodynamics becomes

increasingly anisotropic [81, 82].

The issue of whether a closed region could envelop an open region in inflationary universes which

are still very close to the critical density at late times was first posed by Zeldovich and Grishchuk [83]

in the setting of a spherically symmetric model with S3 spatial topology. This raises the question of

the conditions for closed universes to collapse. It is difficult to answer in general because (unlike, for

the singularity theorems) it involves properties of the general Einstein equations rather than simply

of the geodesic equations. The general fate of closed universes is addressed by the closed-universe

recollapse conjecture [84, 85]. It depends upon the spatial topology of the universe. Only spaces

with S3 or S2 × S1 (and products thereof) can possess maximal hypersurfaces and hence have an

expansion maximum and so collapse. These results were recently confirmed in reference [40]. This

is a necessary condition but it is far from sufficient because various conditions must also apply to

the matter content. Surprisingly, closed FRW universes can avoid recollapse even when ρ > 0 and

ρ + 3P > 0 because they can experience finite-time infinities in the acceleration of the scale factor

before a maximum is reached, [85] (so called ‘sudden’ singularities [86]). This can be avoided by

imposing a matter regularity condition, like |P | < Cρ, with C > 0 constant or by continuity of dP/dρ.

Similar unusual behaviours for higher time-derivatives of the scale factor are also possible for scalar

fields with fractional power-law potentials [87].9

3.4 Anisotropic spatial curvature

In our discussion of a possible phase of curvature-dominated expansion prior to inflation in §3.2, we

focussed on the simple case of isotropic negative spatial curvature, which is a familiar ingredient in the

Friedman equation for FRW universes with hyperbolic space sections. However, if we are interested in

the effects of significant levels of inhomogeneity we need to take into account the effects of anisotropy

as well. Cosmological anisotropies can be due to simple anisotropies in the expansion rate, with

no anisotropy in the spatial curvature, and these are typified by the Kasner-like behaviour. They

contribute an anisotropy energy density, σ2, to the Friedman equation that falls off as a−6, where a

is the mean expansion scale factor. For these cosmological models the 3-curvature is of constant sign.

9A proof for collapse of closed Bianchi type IX universes was given by Lin and Wald [88] and other cases with S3 and

S2 × S1 topologies in refs. [84, 85].
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For a massless scalar field, φ in a Kasner metric,

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2, (3.18)

we have

φ(t) = φ0 +

√
2

3
ln(t), ρ =

φ̇2

2
=
f2

2t2
,

3∑
i=1

pi = 1 =
3∑
i=1

p2
i + f2, 0 ≤ f2 ≤ 2/3 . (3.19)

When the constant f2 = 0 this is the vacuum Kasner metric; when f2 = 2/3, it becomes the isotropic

FRW universe [89].10

We will show in Appendix B.2 that a period of evolution dominated by anisotropic 3-curvature

produce a mean scale factor evolution a ∝ t1/(1+2Σ) where Σ = σ/Θ is the constant shear (σ) to volume

Hubble rate (Θ). Notice that the anisotropy falls very slowly (σ ∝ 1/t), compared to the situation

in Kasner models with isotropic 3-curvature. When Σ = 0 we reduce to the isotropic curvature

dominated analysis of pre-inflation in §3.2. As the 3-curvature anisotropy increases and Σ → 1 the

average expansion dynamics that control the onset of inflation mimic a perfect fluid universe with an

energy density

p/ρ ≡ w =
(4Σ− 1)

3

with −1/3 ≤ w ≤ 1/3. The case with non-zero anisotropic curvature, anywhere in the allowed range

of values (0 < Σ ≤ 1) corresponds to the effect of a fluid with an equation of state running between

that of the massless scalar field itself (Σ = 1) and that of the isotropic curvature. This reduces it to

the analysis of fluid dominated pre-inflation in §3.2.

4 The severity of the problem of inhomogeneous initial data

In this section, we translate the numerical stability bound (equation (2.9)) into a condition on the pre-

inflationary cosmology and the inflationary model. In §4.1, we show that this leads to a novel lower

bound on the tensor-to-scalar ratio, r, in decelerating cosmologies with inhomogeneities imprinted

when HIC = 1. In §4.3 we assess the severity of the problem for HIC � 1, and in §4.4 we consider the

special case of pre-inflationary universes dominated by negative curvature.

4.1 The stability condition

Inflation fails if any mode is large enough to trigger destabilisation, so that the probability of a

successful period of inflation is given by,

P (inflationary success) =
∏
|k|≥ℋi

P (|δφk| < δφmax(k)) , (4.1)

where δφmax denotes the minimum amplitude of inhomogeneities that spoil inflation, and where k

runs over the discrete set of Fourier modes within the horizon. In §2.2 we reviewed why modes with

k < ℋi can be neglected, and also why modes with k ≈ ℋi are expected to more dangerous for

inflation than those with shorter wavelengths. For concreteness, we take as our definition of a ‘stable’

10The ranges of the pi are not disjoint: −1/3 ≤ p1 ≤ 1/3, 0 ≤ p2 ≤ 2/3, 1/3 ≤ p3 ≤ 1.The metric has two free

parameters, f and one of the pi.

– 14 –



model to be one in which, with 95% probability, the total amplitude of field fluctuations in the range

Dk ≡ [ℋi,
√

3ℋi] do not disrupt inflation according to the condition (2.9):

P (δφDk
< f∆φ) ≥ 0.95 . (4.2)

The upper limit of Dk is chosen to match the ‘N = 1’ simulations of reference [41]. Equation (4.2)

neglects the possible failures due to higher-k modes, but as long as these are rarer than the failure

due to the k = ℋi modes, this will result in a small correction to the overall survival probability for

inflation. Moreover, equation (4.2) is the probability of inflationary success of each Hubble-sized patch

at τi, but if the pre-inflationary universe involves a large number of such patches (as is expected in

flat and open cosmologies), inflation can succeed globally despite a low probability of success of each

patch. This makes the condition (4.2) a conservative one.

In §2.3 we parametrised the inhomogeneities at τIC as Gaussian fluctuations, consistent with the

assumptions of references [39, 41]. In the continuous-k approximation, the variance of the dangerous

modes with k ∈ Dk is given by,

σ2(τi)
∣∣∣
Dk

=

∫
Dk

d ln k Pδφ(τi)(k) . (4.3)

We now restrict our discussion to pre-inflationary cosmologies with decelerated expansion. The

power spectrum of field inhomogeneities at τi is given by,

Pδφ(τi)(k) = Pδφ(τIC)(k)

(
ℋi

k

)q
, (4.4)

where the last factor captures the subhorizon evolution of the inhomogeneities. In the perturbative

regime, q = 1
2 for kinetic-energy domination and q = 2

1+3w for fluid domination, cf. equations (A.4) and

(A.10). In this section, we focus on a narrow range of modes with k ≈ ℋi and neglect this additional

damping.11 Moreover, in equation (4.4), we have assumed that the scalar field inhomogeneities do not

evolve substantially on superhorizon scales (consistent with our findings in §3). The variance is then

given by,

σ2(τi)
∣∣∣
Dk

= Ab

(
ℋi

ℋIC

)nIC−1

= Ab

(
Hi ai

HIC aIC

)nIC−1

, (4.5)

where we have defined,

b =

√
3
nIC−1 − 1

nIC − 1
. (4.6)

As nIC → 1, b→ ln
√

3; unless the spectrum is very steep, b tends not to be very large. The amplitude

A is defined in equation (2.11), and we recall that A = 1 (which we will use as a ‘generic’ value in our

estimates below) corresponds to δφ ∼ O(1) for modes with k = ℋIC.

Equation (4.5) depends on the energy scale of inflation and the amount of expansion between

τIC and τi. To make analytic progress, we parametrise the decreasing energy density by a single-fluid

equation-of-state parameter w, which we take to be constant during the pre-inflationary epoch. We

11As we will discuss in §4.4, in the case of negative isotropic curvature-dominated pre-inflationary cosmologies, this

subhorizon damping will become important.
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note that this parametrisation includes, but is not limited to, the examples of decelerating cosmologies

discussed in §3.2. At τi, the scalar potential has just begun to dominate the energy density so that,12

ai

aIC
=

(
ρIC

ρi

) 1
3(1+w)

=

(
HIC

Hi

) 2
3(1+w)

. (4.7)

The variance of the scalar field inhomogeneities then simplifies to,

σ2(τi)
∣∣∣
Dk

= Ab

(
Hi

HIC

)p
, (4.8)

where,

p = (nIC − 1)
1 + 3w

3(1 + w)
. (4.9)

Assuming that the amplitude δφ2
Dk

is the square of a Gaussian with variance σ2 = σ2(τi)|Dk
,

then with 95% probability, |δφℋi
| < 2.0σ.13 Combined with the stability condition (4.2), this gives,

2.0σ(τi)
∣∣
Dk

< f∆φ . (4.10)

We take equation (4.10) as our condition for when a model is said to have no problem with initial

inhomogeneities. Using equations (2.6) and (4.8), this leads to our main inequality:(
HIC

Hi

)2−p
<
f2∆φ2

ref

4Ab

(
HIC

Href

)2

. (4.11)

Equation (4.11) captures the competition between the two relevant effects: the lower the energy

scale of inflation, the larger is the ratio ℋIC/ℋi, but also, the narrower is the inflationary plateau.

This competition leads to two qualitatively different regimes depending on whether the power spectra

are ‘steep’ with p ≥ 2, or ‘moderate’ with 0 < p < 2. We now discuss the implication of equation

(4.11) for each of these possible cases.

4.2 A lower bound on r

For spectra with p > 2, equation (4.11) implies an upper bound on the inflationary energy scale,

logHi <
1

p− 2
log

(
f2∆φ2

ref

4AbH2
ref

Hp
IC

)
. (4.12)

Taking ∆φref and Href as in equation (2.7), setting f = 1.6 as discussed around equation (2.8), and

taking A = HIC = 1, and, for concreteness, b = 1 (neglecting its parameter dependence), we find,

logHi <
1

p− 2
log
(
6.2× 1014

)
. (4.13)

Since the right-hand-side is non-negative (for p > 2), but logHi < 0 in any inflationary model, this

inequality does not constrain Hi. For p = 2, the dependence on the inflationary energy immediately

cancels between the two competing effects, and Hi is again unconstrained. In other words, regardless

of the energy scale of inflation, there is no problem with inhomogeneous initial data if their spectrum

is steep and imprinted at the Planck scale.

12In highly inhomogeneous cosmologies, the energy density and Hubble parameter can be defined through spatial

averaging, cf. [39, 41].
13If n independent Gaussian modes contribute to the amplitude, then δφ2

Dk
∼ σ2χ2

n so that σ2 = 1
n
σ2(τi)|Dk

. This

leads to marginally stronger bounds that we will not consider here.
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Figure 3. A lower bound on r: models with δφ < f∆φ do not have a problem with inhomogeneous initial data

imprinted at the Planck scale. The black curve corresponds to inflection-point potentials with a flat extension

to negative field values (f = 1.6); the grey curve corresponds to sharply rising potentials (f = 0.17). Dotted

horizontal lines, from top down, correspond to the boundary of the small-field region and the ‘typical’ model

of reference [41]. Shaded regions on top correspond to current observational constraint from BICEP2/Planck,

r < 0.07 (dark blue) and possible future constraint from CMB Stage-4 experiment with σ(r) ≈ 5×10−4 (lighter

blue). Vertical red lines correspond to w = 1/3 and, from left to right, nIC = 2, 3, 4.

For spectra with a ‘moderate’ fall-off, equation (4.11) implies an interesting lower limit on Hi:

logHi > −
1

2− p
log

(
f2∆φ2

ref

4AbH2
ref

Hp
IC

)
. (4.14)

We may express this as a bound on r by using,

log10 r = log10 Pt − log10 Ps = 8.0 + 2 log10Hi , (4.15)

where we have used the normalisation of the primordial power spectrum, Ps = 2.2 × 10−9, and

Pt = 2
π2H

2
i . This gives,

log10 r > 8.0− 2

2− p
log10

(
f2

4Ab

∆φ2
ref

H2
ref

Hp
IC

)
. (4.16)

Again taking ∆φref and Href as in equation (2.7) and setting A = HIC = b = 1 and f = 1.6, we find

the limit,

log10 r > 8.0− 29.6

2− p
. (4.17)
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Equation (4.17) is plotted in Figure 3. Models with tensor-to-scalar ratios above this limit have no

problem with inhomogeneous initial data. We note that this includes rather vast regions of parameter

space. For example, equation (4.17) implies that initial inhomogeneities with nIC = 3 that pass

through a radiation dominated pre-inflationary era from the Planck scale are not problematic for

inflationary models with,

r
∣∣
p=1

> 2.5× 10−22 . (4.18)

For potentials raising steeply for negative values, f = 0.17 as discussed following equation (2.8), and

the constraint (4.17) becomes more severe: log10 r > 8.0− 25.7
2−p so that r|p=1 > 2.0× 10−18.

The weakness of these lower bounds indicates that the inhomogeneous initial data problem is not

in general severe even for small-field inflection-point models. It should be noted that the current Planck

constraint (or even a hypothetical stronger, future constraint from ground-based CMB experiments)

does not significantly impact the inhomogeneous initial data problem, contrary to the assertions of

[10].

For our ‘typical’ reference model of equation (2.7), the bound (4.11) can be written as a constraint

on p:

p >
log
(
f2∆φ2ref

4Ab

)
logHref

= 0.49 , (4.19)

where in the last step we have specialised to A = b = 1 and f = 1.6. Consequently, for a radiation

dominated pre-inflationary era, the reference model is safe from δφk=ℋIC
(τIC) ∼ 1 inhomogeneities if

nIC ≥ 2.0.

4.3 Initial data imprinted below the Planck scale

The energy density at the initial time τIC is bounded from above by the Planck density, but Hi <

HIC � 1 is a general possibility. If the initial inhomogeneities were imprinted at energies much below

the Planck scale, the pre-inflationary phase is shortened, and the initial data problem can become

more severe.

Using equation (4.11), we see that avoiding the inhomogeneous initial data problem requires an

initial Hubble rate satisfying,

HIC >

(
4AbH2

ref

f2∆φ2
ref

)1/p
1

H
(2−p)/p
i

, (4.20)

Figure 4 shows the bound on HIC for the parameters A = b = 1, f = 1.6 and ∆φref and Href as in

equation (2.7). For moderate spectra with p < 2, we find that for HIC < 4.0× 10−8, the entire family

of small-field models are susceptible to disruption from inhomogeneities. Models with steep initial

spectra (p > 2) are more robust. For our reference small-field model and a pre-inflationary epoch

with p = 1 (e.g. given by a radiation domination and inhomogeneities with nIC = 3), the initial data

problem is absent as long as HIC > 1.0× 10−5.

4.4 Isotropic negative-curvature domination

In the case that the pre-inflationary universe is dominated by isotropic negative curvature, we have

that εH = 1 and the comoving Hubble radius is constant. The ‘dangerous’ modes are then within the

horizon during the entire pre-inflationary epoch. Using the perturbative damping of equation (A.16),
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Figure 4. The bounds on HIC above which initial inhomogeneities with unit amplitude fail to disrupt infla-

tion.The vertical red line corresponds to the reference model.

and taking σ2(τIC)
∣∣
Dk

= Ab with b as in equation (4.6), equation (4.10) gives,

HIC >
2
√
Ab

f∆φref
Href . (4.21)

This inequality is the same as that obtained for a decelerating pre-inflationary epoch with p = 2, and

is clearly independent of Hi. Taking A = b = 1, f = 1.6, and using (2.7), we again find the bound,

HIC > 4.0× 10−8 . (4.22)

Initial inhomogeneities imprinted above this energy scale are not expected to disrupt inflation.

5 Conclusions

We have studied the inhomogeneous initial data problem in small-field inflection-point models for

inflation. These models only require the potential to be flat over a very limited field range ∆φ � 1,

and are sensitive to disruption from scalar-field inhomogeneities with an amplitude δφ ∼ O(∆φ)

[39, 41, 44]. The problem of inhomogeneities is expected to be worse for this class of models than

those with extended field ranges.

We have emphasised that the time at which the initial data were imprinted, τIC, may have

greatly preceded the time τi of the would-be onset of inflation, and that the most dangerous modes

for disrupting inflation had wavelengths far bigger than the horizon at τIC. By parametrising the ini-

tial inhomogeneities at τIC, and the pre-inflationary evolution, we have used the numerically derived
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condition δφ
∣∣
k≈ℋi

≤ f∆φ to find those cosmological models that free from the disruptive inhomo-

geneous initial data problem. The resulting simple bound depends only on a few parameters of the

pre-inflationary cosmology, and the energy scale of inflation.

For inhomogeneities with δφ(τIC)
∣∣
k=ℋIC

∼ 1 imprinted at the Planck scale, we expressed this

bound as a lower limit on the tensor-to-scalar ratio, r. For many pre-inflationary cosmologies, this

limit is very weak, which indicates that inflection-point inflation do not in general possess a problem

with inhomogeneous initial data. In particular, these results give no credence to the envisioned doom of

the inflationary scenario, proposed in reference [10], through the unnaturalness of the inhomogeneous

initial data problem for small-field inflation.

Unless the initial spectrum of inhomogeneities falls off very steeply for super-horizon wavelengths

and the pre-inflationary expansion is decelerating, the initial data problem becomes more severe if HIC

is much below the Planck scale. We find that all models in this class fail for HIC . 4× 10−8.

Our analysis has a number of caveats. We have focussed on distributions of inhomogeneities

that decrease in amplitude on scales far larger than the horizon (i.e. nIC > 1), which is physically

well-motivated as we discussed in §2.3. For nIC ≤ 1 (over some large but finite range of scales, so that

the total power stays finite), the inhomogeneous initial data problem is expected to be more severe.

Such a scenario is conceivable if the primary source of the initial inhomogeneities is much larger the

initial Hubble radius.

Moreover, in §3.2 we reviewed the sub-horizon decay of scalar field inhomogeneities for small per-

turbations around a homogeneous background cosmology, and in Appendix B.1 we reviewed how sim-

ilar results hold for the special case of nonlinear cylindrically symmetric scalar field inhomogeneities.

For decelerating pre-inflationary backgrounds, modes that just enter the horizon at the onset of in-

flation are most dangerous, and the sub-horizon fall-off rate of small-wavelength inhomogeneities is

not very important. However, for isotropic negative curvature dominated cosmologies, the dangerous

modes are always inside the horizon. We expect that nonlinear evolution involving caustics, shock

waves and gravitational collapse leads to a more rapid decay of sub-horizon inhomogeneities, thereby

making inflation more robust than our estimates suggest.

Our estimates neglect the evolution of the scalar field inhomogeneities on super-horizon scales.

Since this is a very small effect in both the perturbative cosmologies and the non-linear, cylindrically

symmetric case, we expect our results to be rather broadly applicable. However, pre-inflationary

cosmologies in which δφk is boosted on superhorizon scales can lead to more stringent bounds than

those we derive.

Future numerical work could improve our bounds. The chance that modes with k � ℋi desta-

bilises inflection-point inflation was only briefly studied in [41] (see also [39]). A determination of

how the coefficient f in equation (2.9) grows with k could directly improve the determination of

the full destabilisation probability. Moreover, references [39] and [41] studied the impact of modes

with k ≥ ℋIC on inflation. A full simulation of the inhomogeneous pre-inflationary phase preced-

ing inflection-point inflation, including modes with ℋi ≤ k ≤ ℋIC, would provide an independent

test of the bounds derived in this paper. Finally, our work has focused exclusively on single-field

inflation, and it is possible that multi-field models of small-field inflation are more sensitive to initial

inhomogeneities, leading to interesting constraints on the combination of the number of fields and

the tensor-to-scalar ratio. Recent advances in constructing explicit inflationary models with many

interacting fields [72–75] could allow for this question to be investigated in detail.
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A Perturbative pre-inflationary inhomogeneities

In this appendix, we provide details of the derivation of the general evolution of scalar field inhomo-

geneities summarised by equation (3.17). We consider in turn each of the cases listed in equation

(3.7).

i) Kinetic-energy domination

In the limit where the scalar field’s kinetic energy dominates the total energy density (and K is

negligible), the equations for the metric perturbations, cf. (3.13)–(3.15), simplify to,

1

ℋ 2
∇2Φ− 3Φ′ =

√
6

2
δφ′ , Φ′′ + Φ′ =

√
6

2
δφ′ , (A.1)

where X ′ = dX/dN ≡ dX/d(ℋ τ) denotes a derivative with respect to the number of e-folds. Re-

expressed in flat-space Fourier modes,

Φk(τ) =
1

(2π)3/2

∫
d3xΦ(τ, x) e−ik·x , (A.2)

the solutions of equation (A.1) are given by the Bessel functions,

Φk(τ) = ℋ (τ)

(
c1 J1

(
k

2ℋ

)
+ c2 Y1

(
k

2ℋ

))
. (A.3)

For small arguments, k
2ℋ � 1, Φk(τ) has a constant and a decaying solution. Dropping the latter, we

note that both the Newtonian potential and the scalar field perturbation are constant for k
2ℋ � 1.

Upon ‘horizon entry’ at k = 2ℋ , the modes begin damped oscillations. In the large argument

expansion, Jν(x), Yν(x) ∼ 1/
√
x×cos (x− ϑ), with ϑ depending on ν and the type of Bessel function.

It then follows that the envelopes of the gravitational potential and the scalar field decay as,

Φk ∼
(
ℋ
k

)3/2

, δφk ∼ e−N ∼
(
ℋ
k

)1/2

. (A.4)

ii) Fluid domination

When the fluid dominates the energy density (and K is negligible), the gravitational potential Φ is

governed by the equation,

Φττ + 3(1 + w)ℋΦτ − w∇2Φ = 0 . (A.5)
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Since we are considering a perfect, isentropic fluid, δP = wδρ, and the sound-speed is given by

w = c2
s. Expressed in terms of the Fourier modes, Φk(τ), the solutions to equation (A.5) are the

Bessel functions,

Φk(τ) = ℋ ν

(
c1 Jν

(
2
√
w

1 + 3w

k

ℋ

)
+ c2 Yν

(
2
√
w

1 + 3w

k

ℋ

))
, (A.6)

for ν = 1
2(5 + 3w)/(1 + 3w). In the long wave-length limit, k/ℋ � 2

√
w

1+3w , these solutions are again

given by one constant and one decaying mode. By contrast, short wave-length ‘sound waves’ oscillate

and decrease in magnitude as,

Φk(τ) ∼
(
ℋ
k

)ν+ 1
2

. (A.7)

The exponent is minimised as w → 1, in which case the scaling agrees with the kinetic energy domi-

nated case: Φk ∼ (ℋ/k)3/2. For w = 1/3, Φk ∼ (ℋ/k)2. The scalar field perturbations are governed

by the Klein-Gordon equation, which in this limit is given by,

δφττ + 2ℋ δφτ −∇2δφ = 0 . (A.8)

The solutions for the Fourier modes can be expressed in terms of the Bessel functions,

δφk = ℋ−ν̃
(
c1Jν̃

(
2

1 + 3w

k

ℋ

)
+ c2Yν̃

(
2

1 + 3w

k

ℋ

))
, (A.9)

where ν̃ = 3
2
w−1
1+3w < 0. Again, for k2 � ℋ 2, there exists a constant solution for δφk(τ). For k � ℋ ,

δφk goes through damped oscillations and decays like,

δφk ∼ e−N ∼
(
ℋ
k

) 2
1+3w

. (A.10)

iii) Isotropic curvature domination

In the negative-curvature dominated universe, the comoving Hubble parameter is constant and given

by,

ℋ 2 = −K . (A.11)

The gravitational scalar perturbations are governed by the equation,

Φ′′ + 6Φ′ − 1

ℋ 2
∇2Φ + 8Φ = 0 . (A.12)

Since the three-dimensional hypersurfaces are open and negatively curved, we cannot expand the

solution in plane waves. Following [76, 77], we instead use the directly analogous expansion of Φ in

terms of eigenfunctions of the Laplace operator on negatively curved spaces, which are characterised

by their wave-number k satisfying ∇2Φk = −k2Φk for k2 ≥ −K. Expressed in terms of this basis of

functions, equation (A.12) becomes,

Φ′′k + 6Φ′k +

(
8 +

k2

ℋ 2

)
Φk = 0 . (A.13)

Since ℋ is constant during this era, the solutions are simply given by,

Φk = e−3N

(
c1e
−iN
√
k̃2−1 + c2e

iN
√
k̃2−1

)
, (A.14)
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where k̃2 = k2/ℋ 2 ≥ 1.

The scalar field perturbations are determined by equation (3.14),

1

2
φ̄′δφk = Φk + Φ′k . (A.15)

Since φ̄′ ∼ exp(−2N) (cf. equation (3.10) for w = −1/3), the scalar field perturbation oscillates with

an amplitude that decreases like,

δφk ∼ e−N ∼
H

HIC
, (A.16)

for all k.

Therefore, in all of the pre-inflationary cosmologies that we consider, the perturbative scalar field

inhomogeneities behave like,

δφk ∼

{
constant k � ℋ ,

e−N k � ℋ .
(A.17)

In pre-inflationary cosmologies with successive eras during which the cosmic energy density is domi-

nated by different sources, the super-horizon modes of Φk and δφk evolve only mildly during transition

periods (in direct analogy to the shift in superhorizon modes of Φ by 9/10 at matter-radiation equality

after inflation).

Large inhomogeneities are not captured by this analysis. In some special cases with large and

highly symmetric inhomogeneities, the perturbative results extend straightforwardly, as we exemplify

in Appendix B.1. More general non-linear inhomogeneities may undergo prompt gravitational collapse

after they enter the horizon, leading to a quicker decay of long-wavelength inhomogeneities than

equation (A.17) suggests.

B Non-linear pre-inflationary inhomogeneities

In this appendix, we bring together relevant results on the evolution of non-linear inhomogeneous

cosmologies that admit exact solutions to Einstein’s equations. In Appendix B.1, we show that

cylindrical scalar field inhomogeneities evolve much like small perturbations around the FRW solutions,

and in Appendix B.2 we provide further details on pre-inflationary universes with anisotropic, negative

spatial curvatures.

B.1 Large, cylindrical inhomogeneities

In this section we examine the fate of a special class of nonlinear inhomogeneities in the scalar field.

When the metric possesses cylindrical symmetry it is possible to solve the problem exactly, as first

discovered for the vacuum problem by Einstein and Rosen [78]. We take the metric to be,

ds2 = −e2(χ−ψ)(dτ2 − dr2) + a2(e2ψdz2 + e−2ψ(rdθ)2) , (B.1)

where the free functions are a2(τ, r), ψ(τ, r) and χ(τ, r). We ignore ψ as it contains the gravitational-

wave behaviour.

If we add a massless, homogeneous scalar field φ̄(τ), we recover the flat, kinetic-energy dominated

FRW universe as the special case ψ = 0, a2 = exp(2χ) = τ so that,

p = ρ =
1

2
e−2χφ̄2

τ = ρ(τIC)
(τIC

τ

)3
.
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The background value of the field grows like φ̄ ∼ ln(τ), consistent with equation (3.10).

The inhomogeneous exact solution for the metric (B.1) generalises this to give decoupled Bessel

equations for φ(r, t) and ψ(r, t) The solution for φ(r, t) is [71]:

φ(τ, r) = φ̄(τ) +
1

(2π)3/2

∫ ∞
−∞

dk eikrφk(τ) , (B.2)

where the Fourier modes are given by,

φk(τ) = c1J0(kτ) + c2Y0(kτ) . (B.3)

Qualitatively, the evolution is straightforward and identical to that of perturbative inhomo-

geneities. The ratio of the coordinate size of the inhomogeneity wavelength to the particle horizon

coordinate size is kτ . On large (superhorizon) scales, where kτ → 0, we have J0 → 1 and Y0 → ln(kτ),

so the evolution is Kasner-like (ψ ∝ ln(τ) ∝ φ) or FRW-like (ψ = 0) depending on whether c2/(2π)3/2

is bigger or less than the first (homogeneous) term on the right-hand side of equation (B.2). Super-

horizon inhomogeneities imprinted at τIC in general include a constant and a decaying mode, precisely

as we found in §3.2 for perturbative inhomogeneities.

When the inhomogeneity enters the horizon (which equals the Jeans length) the future evolution

is given by the small-scale kτ → ∞ limit of the Bessel functions. Due to its restrictive symmetries,

this solution does not admit bound regions and gravitational collapse. Moreover, the scalar field waves

propagate at the speed of light so there can be no shocks. Precisely as in the case of perturbative

inhomogeneities, the scalar field inhomogeneities are pressure-damped away through oscillatory decay:

φk(τ) ' 1√
kτ
× sin(kτ − ϑ). Thus, also in this case,

δφk ∼

{
constant k � ℋ ,

e−N k � ℋ .
(B.4)

Further details of the evolution of this exact solution and the cosmological case with radiation can be

found in [71].

B.2 Anisotropic spatial curvature

In §3.4 we reviewed how anisotropic negative curvature leads to an average expansion rate that mimics

that of a perfect fluid with an effective equation of state in the range −1/3 ≤ w ≤ 1/3. In this section,

we provide further details of this analysis.

Apart from anisotropies in the expansion rate (discussed in §3.4), there can also be anisotropies in

the 3-curvature. This is the most general form of anisotropy and is non-Newtonian, deriving from the

magnetic part of the Weyl curvature. Cosmological models with anisotropic 3-curvature can have very

complex evolution, with chaotic dynamics near the initial singularity and the sign of the 3-curvature

scalar can be time-dependent. Here we outline the new effects created by anisotropic 3-curvature.

The most general anisotropic Bianchi universes that contain the open Friedmann model as a

special subcase are those of type V IIh. The late-time asymptotes for the non-tilted type V IIh space-

times, with h 6= 0 and a matter content that obeys the strong energy condition (so no inflation), evolve

towards the vacuum plane-wave metric found by Doroshkevich et al and Lukash [90, 91] that is known

as the Lukash metric. These spacetimes describe the most general effects of spatially homogeneous
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perturbations on open FRW universes. When the strong energy condition is obeyed, then isotropic

expansion was found to be stable but not asymptotically stable at late times [84, 92, 93].

The line element of the Lukash metric takes the form

ds2 = −dt2 + t2dx2 + t2re2rx
[
(Ady +Bdz)2 + (Cdy +Adz)2

]
, (B.5)

where r is an arbitrary constant parameter in the range 0 < r < 1, A = cos v, B = f−1 sin v,

C = −f sin v and v = k(x+ ln t) [94–96]. Note that f , k and r are related by

k2

f2
(1− f2)2 = 4r(1− r) and r2 = hk2 , (B.6)

where h is the associated group parameter. For r = 1 and f2 = 1 the Lukash metric reduces to

the empty isotropic Milne universe, with scale factor a = t. More details can be found in ref. [97]

and other universes with anisotropic curvature can be seen, along with their effects on primordial

nucleosynthesis in [98].14

If we use the average scale factor (a) to define the volume expansion rate via the standard

relation Θ = 3ȧ/a, then the average volume expansion of the vacuum Lukash universe is described by

the following version of the Raychaudhuri equation

Θ̇ = −1
3Θ2 − 2σ2 , (B.7)

where σ2 = σabσ
ab/2 is the magnitude of the shear tensor.

The absence of matter means that the Lukash spacetime is Ricci flat. The curvature of the spatial

sections, however, is not zero. In particular, the 3-Ricci tensor (ℛab) is completely determined by its

scalar and its symmetric and trace-free parts, that is respectively by

ℛ = −2
3Θ2 + 2σ2 , (B.8)

Sab = −1
3Θσab + σc〈aσ

c
b〉 + Eab , (B.9)

where Sab = ℛ〈ab〉 = ℛ(ab) −ℛhab/3.15 The scalar ℛ is negative, which means that the model is

spatially open. The expression (B.8) is the generalised Friedmann equation.

The magnitude of the shear tensor associated with the Lukash solution is

σ2 = 1
2σαβσ

αβ =
(1− r)(1 + 2r)

3t2
. (B.10)

The mean Hubble volume expansion of the Lukash universe is determined by the scalar

Θ =
1 + 2r

t
. (B.11)

Hence, the average scale factor obeys the simple power law a ∝ t(1+2r)/3 with 0 < r < 1.

When measuring the average anisotropy of the expansion, it helps to introduce the following

dimensionless and expansion-normalised shear parameter

Σ ≡ 3σ2

Θ2
. (B.12)

14 If the spatial topology of type V IIh, or even type V , open universes is made compact then they are all constrained

to be isotropic [99].
15Angled brackets denote the symmetric and trace-free part of orthogonally projected tensors and the orthogonally

projected components of vectors.
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In the Lukash spacetime the scalars σ2 and Θ are given by (B.10) and (B.11) respectively. Using these

expressions we see that Σ is constant and

Σ =
1− r
1 + 2r

. (B.13)

Given that Σ > 0 and 0 < r < 1, we immediately deduce that 0 < Σ < 1, in accord with ℛ < 0, in

(B.8). Thus, although isotropy (Σ = 0) is not asymptotically stable (in the Lyapunov sense), it is stable

in the sense that any deviations from isotropy never diverge [84, 93, 94] and Σ tends to a constant

at large times. Note that when we set r → 1 the Σ-parameter approaches zero and the expansion

becomes isotropic (i.e. the Milne universe).

We can therefore also write the power-law evolution of the average scale factor as a ∝ t1/(1+2Σ).

Thus, in the absence of any shear anisotropy we have a ∝ t, as in the Milne universe. For maximum

shear anisotropy as r → 0, we obtain the familiar scale-factor evolution characteristic of the Kasner

vacuum or kinetic-dominated scalar field solution 3.2 (i.e. a ∝ t1/3).

The trace of the 3-Ricci tensor ℛαβ associated with the surfaces of constant time is

ℛ = −k
2(1− f2)2

2f2t2
− 6r2

t2
= −2r(1 + 2r)

t2
< 0. (B.14)

Spatial curvature anisotropies are described via the symmetric and trace-free tensor Sαβ. The

only non-zero components of Sαβ are

S11 = −4r(1− r)
3t2

, S22 =
k2(1− f2)(2 + f2)

3f2t2
, S33 = −k

2(1− f2)(1 + 2f2)

3f2t2
(B.15)

and

S23 = −kr(1− f
2)

ft2
. (B.16)

According to (B.14)-(B.16), the spatial curvature of the model vanishes at the maximum shear limit,

namely as r → 0, hence the approach to the Kasner expansion rate. When r → 1, only the isotropic

part of ℛαβ survives as k2(1− f2) = 0 as r → 0 or 1.
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