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How do cells grow? For plant cells which are bounded by a cell wall, all growth requires 1 

modification of the cell wall and its material properties to allow yielding to turgor 2 

pressure. Roughly 50 years ago it was hypothesised that decreases in apoplastic pH, 3 

stimulated by auxin activation of membrane-bound proton pumps, could be 4 

responsible for such modification (Fig. 1; Hager et al., 1971); this is the core of the 5 

Acid Growth Theory. Over the next 25 years, various experiments in various systems 6 

led to an expanded hypothesis whereby pH manipulation (buffers and fusicoccin (Fc)) 7 

could stimulate growth and a drop in pH could increase wall extension and activity of 8 

the wall modifying agent expansin. Over the last 25 years we have gained further 9 

insight into the molecular mechanisms underlying acid growth through the use of new 10 

tools. Within this review we will explore the historical view of acid growth, with a focus 11 

on the challenges and contradictions presented in the literature, present the most 12 

recent findings in the area and an updated model of acid growth. 13 

A brief historical review  14 

A signal for pH drop. In the early 1970s, auxin treatment was shown to stimulate 15 

proton extrusion into the apoplast as quickly as 20-30 minutes post-application (Rayle, 16 

1973) in temporal agreement with auxin-induced growth (~20 min; Rayle and Cleland, 17 

1972). Auxin-mediated growth could be reduced if a neutral or basic buffer was 18 

coincidentally applied (Hager et al., 1971) indicating that auxin likely acted upstream 19 

of acidification. Auxin treatment resulted in a pH drop to ~4.5 (Cleland, 1976) although 20 

it has been argued this may not represent an effective decrease (Kutschera, 1994). 21 

Measurements of pH in these studies were done on a bulk level, with segments of 22 

organs being floated in liquid and the pH of the liquid being measured. It is plausible 23 

that an effective decrease was achieved within specific tissues but this was masked 24 

by the bulk pH measurement technique. It is also possible that a drop in pH happens 25 

earlier than the 20-30 minutes recorded, again due to dilution in the bulk technique. A 26 

slight modification of this method (Cleland, 1976) involved a small amount of liquid 27 

surrounding segments and almost direct contact with the electrode; in this set-up lower 28 

pH drops could be observed upon auxin treatment when compared to the bulk method. 29 

Most experiments were conducted on coleoptiles (maize, oat) and epi- or hypocotyls 30 

(pea, soybean, sunflower) and involved abrasion or removal of the cuticle to allow 31 

chemical access; commonly several organ segments would be stacked to facilitate 32 

measurements of growth (Kutschera and Schopfer, 1985b). These experimental 33 
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necessities imposed several constraints on the interpretation of results: first, it was 34 

impossible to gain any tissue-level resolution; secondly, mechanical perturbation of 35 

the samples by fragment excision, peeling and abrasion raised concerns about 36 

whether growth was due to a normal response to the substance or exaggerated by the 37 

removal of the mechanically-constraining epidermis (Kutschera, 1994). It is still 38 

unclear which tissue within the organ segment was responding to auxin and whether 39 

all tissues responded the same way. There are several studies which add to the debate 40 

over whether the epidermis acts as the main target of auxin action (Diehl et al., 1940; 41 

Kutschera et al., 1987; Rayle et al., 1991; Cleland, 1991; Kutschera, 1992); a key role 42 

for the epidermis might prove problematic when it is often perturbed to allow solutions 43 

to enter the organ. The first experiments to address this question involved fine 44 

dissection of sunflower hypocotyls into tissues such as pith and cortex and examining 45 

their differential growth responses to auxin (Diehl et al., 1940).A review on the role of 46 

the epidermis in growth, so-called ‘tissue tension’, can be found in Peters and Tomos 47 

(1996) and in relation to auxin-induced growth please see Kutschera and Niklas  48 

(2007). The literature on tissue-related responses and growth merits careful 49 

consideration when approaching this subject; it is likely that the epidermis responds to 50 

auxin allowing growth whereas the inner tissues are primed for growth already, 51 

although this may be highly organ dependent 52 

Exploring pH. While auxin was known to stimulate growth, it was not until the 1970s 53 

that acid growth theory proposed that some of this effect might be through apoplast 54 

acidification; acid buffer treatments were able to stimulate growth in organ segments 55 

(Hager et al., 1971; Rayle, 1973). The growth response was almost immediate (Rayle 56 

and Cleland, 1970, 1980), confirming the placement of pH drop just before growth but 57 

after auxin. Growth increased proportionally with a decrease in pH from 6 to 2 (Tepfer 58 

and Cleland, 1979; Kutschera and Schopfer, 1985b). Acid buffers led to a transient 59 

rapid growth-response which levelled off (1980; McQueen-Mason et al., 1992). This is 60 

in contrast to auxin-induced growth which is more sustained (Rayle and Cleland, 1970). 61 

The application of Fc has always been one of the most effective ways to stimulate 62 

growth in vitro. Its application caused rapid acidification of the surrounding buffers 63 

(Cleland, 1976; Rayle and Cleland, 1980), proton excretion (Kutschera and Schopfer, 64 

1985a) and coincident rapid growth with an extremely fast rate (~5 minutes; Rayle and 65 

Cleland, 1980). The magnitude of response changed depending on the concentration 66 
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of Fc applied (Lado et al., 1973). Fc causes the irreversible activation of proton pumps, 67 

essentially turning the acid growth system on and leaving it on (Marre, 1979). It is 68 

possible that this irreversibility is responsible for the fast and large magnitude of 69 

response. This also implies that if pH is globally and permanently kept low the growth 70 

magnitude increases.  Combinatorial use of Fc and buffers has helped clarify some 71 

points. The application of neutral buffers abolished Fc-induced growth (Kutschera and 72 

Schopfer, 1985a). Low-pH buffers can mimic, and even surpass, the growth stimulated 73 

by Fc (Kutschera and Schopfer, 1985a,b). At pH 4, the value at which pH stabilises 74 

after Fc treatment, the addition of Fc to the acidic buffer stimulates no further growth 75 

(Kutschera and Schopfer, 1985a,b). This means that the growth-promoting action of 76 

Fc can be replaced by a concentration of protons in the apoplast corresponding to that 77 

measured when Fc is added (Kutschera and Schopfer, 1985a), an equivalence that 78 

does not hold true for auxin (Kutschera and Schopfer, 1985b).  79 

A mechanical response in the cell wall. The mechanical effect of acid growth on the 80 

cell wall has been investigated as long as acid growth has been. The first experiments, 81 

and most of those which followed, were conducted on thawed frozen epicotyls, 82 

hypocotyl or coleoptiles (Rayle et al., 1970; Tepfer and Cleland, 1979) or plasmolysed 83 

hypocotyls (Hager et al., 1971). When effectively dead organs were used for 84 

experiments, growth was simulated by applying an external weight (Hager et al., 1971) 85 

or utilisation of Instron-type extensometers (Rayle et al., 1970). In these instances, it 86 

became key to measure growth in intact living samples, alongside organ extension by 87 

mechanical weight (e.g. Rayle, 1973; Rayle and Cleland, 1980; Cleland, 1984; 88 

McQueen-Mason et al., 1992). Addition of low pH buffers caused sample extension 89 

under load as rapidly as 1-15 minutes post-treatment (Rayle et al., 1970) and 90 

extension was seen to increase proportionally with pH decrease (Hager et al., 1971). 91 

Upon auxin treatment, wall extensibility increased rapidly as well (Cleland, 1967; Rayle 92 

and Cleland, 1970; Rayle, 1973; Kutschera and Schopfer, 1986). In these studies, 93 

extensibility was often split into two parts, elastic and plastic extensibility (Cleland, 94 

1967; Rayle and Cleland, 1970). The plastic extensibility has been theorised to be that 95 

which is most relatable to growth (Cosgrove, 1993); however, these still exists some 96 

debate on whether plastic extensibility measured was really plastic or simply a 97 

viscoelastic deformation which was not given sufficient recovery time (Hohl and 98 
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Schopfer, 1992). In the end our understanding of wall mechanical measurements as 99 

they relate to growth are still in their infancy.  100 

The agent of change. While changes in pH and applications of auxin were known to 101 

stimulate organ extension, experiments involving heat-killing of organs or enzyme 102 

inhibitors such as copper led experimenters to hypothesise that enzymes were 103 

involved (Hager et al., 1971; Tepfer and Cleland, 1979). However, it was not until the 104 

discovery of expansin in cucumber that the strongest pH-responsive mechanistic 105 

player in the apoplast was revealed (McQueen-Mason et al., 1992; for a review of 106 

other proteins, see McQueen-Mason, 1997). The protein expansin was able to induce 107 

elongation in living and dead organ segments, in a pH dependant manner (McQueen-108 

Mason et al., 1992). The seminal expansin work also showed that expansin activity 109 

was correlated positionally along the cucumber hypocotyl with growth (McQueen-110 

Mason et al., 1992). Cucumber wall extract was able to stimulate elongation in other 111 

species of eudicots and monocots but was slightly less effective in grasses (McQueen-112 

Mason et al., 1992). Expansin application to apical meristems was able to induce 113 

outgrowth (Fleming et al., 1997) and more recently has been used to manipulate leaf 114 

shape (Pien et al., 2001). As far as mechanism of action, expansin has not been shown 115 

to have enzymatic activity but does appear to facilitate the loosening of the cell wall 116 

via xyloglucan slipping (Cosgrove, 2000). In the simplest case, expansins exist within 117 

the apoplastic space and wait for shifts in pH to regulate their activity; given the time 118 

scales of Fc and auxin action on pH and wall extension this is a plausible mechanism 119 

regulating short-term (without requirement for new material synthesis) cell growth. 120 

While expansin has been shown to be a prolific stimulator of growth, activated by 121 

acidification of the apoplast, it is likely that other wall components and modifiers are 122 

involved as well; the cell wall is a complex material. 123 

The need for RNA and protein synthesis. The protein synthesis inhibitor 124 

cycloheximide (CHX) has been shown to block auxin-induced growth (Cleland, 1970; 125 

Kutschera and Schopfer, 1985a), proton extrusion upon auxin treatment (Rayle et al., 126 

1970; Rayle, 1973; Cleland, 1976; Rayle and Cleland, 1980; Kutschera and Schopfer, 127 

1985a; Edelmann and Schopfer, 1989) and auxin-induced wall extensibility (Cleland, 128 

1970). CHX treatment could not block proton secretion upon Fc treatment (Cleland, 129 

1970; Kutschera and Schopfer, 1985a). The RNA synthesis inhibitor cordycepin was 130 

shown to have a similar effect on blocking auxin-induced growth (Edelmann and 131 
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Schopfer, 1989). These experiments strongly indicated that auxin-induced acid growth 132 

requires active transcription and translation although the molecular mechanisms 133 

behind this, and their links to proton-pump activation, were undiscoverable at the time. 134 

Recent findings on the role of protein synthesis are described in depth by Kutschera 135 

and Wang (2016) and references therein. Among these findings, one of the most 136 

notable is the observation of highly electron dense particles in the outer epidermal wall 137 

of intact growing maize coleoptiles; the particles disappear upon fragment excision but 138 

auxin application is able to restore their formation as well as promote fragment 139 

elongation, in contrast with Fc and acidic buffer which only affect elongation. However, 140 

auxin is not able to induce the formation of these particles in CHX is applied. Based 141 

on these data, the particles have been hypothesised to be auxin-dependent cell wall 142 

loosening complexes likely to be proteinaceous.  143 

The historical literature, of which a snapshot has been presented here, is plentiful but 144 

also rife with contradiction. The reasons behind these contradictions are equally 145 

opaque but may be due to: the manipulation and abrasion of organs, diverse species 146 

being utilised, variable concentrations of applied chemicals, the lack of molecular 147 

biological investigation, and the global nature of growth, pH and mechanical 148 

measurements – all of which were necessary concessions given the tools of the time. 149 

Next, we present recent findings which have helped to refine the acid growth theory, 150 

provided new tools of exploration, and yielded new experimental questions. 151 

New techniques and new data 152 

As is the case for several plant processes, most of the new insights into the acid growth 153 

theory come from the study of the angiosperm model species Arabidopsis thaliana. 154 

Despite resulting in a narrower perspective, the use of a single, well-characterised 155 

model brought along several advantages: new imaging and molecular biology 156 

techniques were developed and applied to this model more readily than to any other 157 

plant. These developments ultimately led to the elucidation of the signalling pathway 158 

going from auxin perception to the activation of the proton pumps which acidify the 159 

apoplast and promote growth as well as a better understanding of pH dynamics and 160 

cell wall mechanics.  161 

Investigating the transcriptional control behind acid growth.  Growth is a long-162 

term processes requiring transcriptional changes within growing cells. Auxin-mediated 163 
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transcriptional changes have been demonstrated to occur within minutes of auxin 164 

treatment and auxin-induced growth requires transcription and translation (McClure 165 

and Guilfoyle, 1987; Fendrych et al., 2016;  see previous section). The major 166 

mechanism of auxin perception in plants is the TRANSPORT INHIBITOR 167 

RESPONSE1/AUXIN SIGNALING F-BOX- AUXIN/INDOLE-3-ACETIC ACID 168 

(TIR1/AFB-AUX/IAA) nuclear co-receptor (Dharmasiri et al., 2005; Kepinski and 169 

Leyser, 2005). When the concentration of auxin is sufficiently high, the hormone 170 

bridges the interaction between the F-box TIR1/AFB proteins and the Aux/IAA 171 

transcriptional repressors leading to the degradation of Aux/IAA proteins (for a review, 172 

see Strader and Zhao, 2016). Functional TIR1/AFB-Aux/IAA signalling is required for 173 

auxin-driven apoplast acidification and growth, as shown by Aux/IAA inducible 174 

overexpressors (Leyser et al., 1996) which fail to respond to auxin and show 175 

agravitropism upon induction (Fendrych et al., 2016). The TIR1/AFB-Aux/IAA pathway 176 

induces apoplast acidification in Arabidopsis, in part via the SMALL AUXIN UP-RNA 177 

(SAUR) protein family (Spartz et al., 2014). Auxin stimulus promotes expression of this 178 

group of short-lived proteins, which in turn cause activation of the plasma membrane 179 

(PM) H+-ATPase, leading to a decrease in apoplastic pH (Spartz et al., 2014). More 180 

specifically, H+-ATPase activity is regulated by the phosphorylation of Thr residues in 181 

the proton pump C-terminal domain (Takahashi et al., 2012). SAURs promote Thr 182 

phosphorylation and simultaneously inhibit the activity of type 2C protein 183 

phosphatases (PP2Cs), thus maintaining the PM H+-ATPase in its phosphorylated – 184 

and active – state (Spartz et al., 2014). Perturbing this pathway has profound effects 185 

on growth. Stabilisation of SAUR19 by fusion to GFP results in auxin-independent 186 

elongation and apoplast acidification (Fendrych et al., 2016). A highly-expressing 187 

inducible inhibitor of auxin signalling (dominant negative axr3-1) was able to block 188 

auxin-mediated growth and pH drops in the hypocotyl (Fendrych et al., 2016); however, 189 

the native axr3-1 mutant could only partially supress auxin-induced growth and H+-190 

ATPase phosphorylation (Takahashi et al., 2012). These data may result from having 191 

more or less suppression of the signalling pathway.  192 

The transcriptional response to auxin also mediates the expression of cell wall 193 

remodelling agents. Laskowski et al. (2006) found that Arabidopsis roots treated with 194 

exogenous auxin showed induced expression of genes encoding expansins, pectin 195 

methylesterases (PMEs) and pectate lyases. Given the different effects which auxin 196 
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exerts on aerial organs compared with roots (Dunser and Kleine-Vehn, 2015), it 197 

remains to be tested if the regulatory effect of auxin on cell wall remodelling agent 198 

gene expression changes in a tissue-dependent manner. In addition, spatial and 199 

temporal analysis of cell wall modifying agent gene transcription will provide a wealth 200 

of data for comparison with auxin signalling and growth dynamics; an excellent 201 

example of temporal analysis during lateral root emergence provides strong evidence 202 

for auxin-mediated wall modification (Lewis et al., 2013). 203 

Changes in pH in muro.  The activation of PM H+-ATPases should lead to rapid 204 

apoplast acidification. One of the historical points of contention for acid growth centred 205 

on the absolute value of the apoplastic pH and where (on cellular and tissue levels) 206 

pH changes might act. Values obtained from whole organs, via contact solution pH, or 207 

from microelectrodes inside plant tissues have been treated as equivalent measures, 208 

resulting in seemingly contradictory data. The advent of fluorescent pH probes such 209 

as pHusion (Gjetting et al., 2012), pHluorin (Gao et al., 2004),  Pt-GFP (Geilfus et al., 210 

2014) and HPTS (Barbez et al., 2017) means that we now have the ability to observe 211 

changes in apoplastic pH without having to mechanically disturb the organ by peeling 212 

or abrasion. In addition, these sensors have changed the resolution at which pH is 213 

measured by allowing single-cell pH profiling. According to Yu et al. (2000), the great 214 

variation in pH values across different tissues, species and experiments, extending 215 

from 3.5 to 8.3, can ultimately be pinned down to the common misconception that the 216 

apoplast can be treated as a homogeneous space instead of an ensemble of 217 

compartments. For the same reason, values reproducibly cluster in different parts of 218 

the pH scale depending on the method of choice (Yu et al., 2000). Combined with high 219 

resolution microscopy, fluorescent probes are able to partially overcome this issue by 220 

mapping apoplastic pH to the single cell. Enhanced photostability of these sensors, 221 

alongside their fast and response to pH changes, also allow fine temporal resolution, 222 

ranging from a few minutes to several hours.  223 

In a recent study, elongation in the Arabidopsis hypocotyl was examined at the cellular 224 

level alongside changes in an apoplastically-targeted pHusion sensor (apo-pHusion; 225 

Gjetting et al., 2012). Fendrych et al. (2016) found that apoplastic acidification, 226 

elongation and auxin transcriptional response all happen about 20 minutes after auxin 227 

application in the etiolated Arabidopsis hypocotyl. Apolastic acidification upon auxin 228 

treatment, but not Fc treatment, was dependent on the auxin signal-perception 229 
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machinery (see section above). This was the first time that auxin perception, apoplast 230 

acidification and elongation were examined at this spatial scale. The power of the apo-231 

pHusion approach was especially evident when auxin-induced pH changes in the 232 

apoplast were examined in vivo on gravitropic responses (Fendrych et al., 2016).  233 

Even more recently, the pH indicator HPTS was used to elucidate the dynamics of 234 

growth, apoplastic acidification and auxin signalling in Arabidopsis root epidermal cells 235 

(Barbez et al., 2017). For the first time, all three factors were observed at a cellular 236 

resolution in an organ where the validity of the acid growth theory has historically been 237 

controversial. Apoplast acidification per se was shown to stimulate epidermal root cell 238 

elongation, but high auxin levels (both endogenous and exogenous) did not trigger 239 

apoplast acidification in the same way as was seen in the hypocotyl (Fendrych et al., 240 

2016). Instead, auxin induced a biphasic response starting with a rapid alkalinisation 241 

of the apoplast followed a few hours later by acidification. Given that no cell expansion 242 

ensued, the authors concluded that the initial rise in apoplastic pH must have an 243 

inhibitory effect on cell growth in roots. Following that, they went on to show that the 244 

receptor-like kinase FERONIA mediates alkalinisation and that this phenomenon, 245 

together with growth inhibition, is not observed in fer-4 mutants. Adding to the results 246 

of Fendrych et al. (2016) described above, functional auxin signal transduction was 247 

shown to be required for a normal root gravitropic response. Crucially, apoplast 248 

alkalinisation is a necessary intermediate step.  249 

FERONIA links to acid growth also at the level of cell wall modifications. Its ligand 250 

RALF4 is co-regulated with pectin modifying agents (Wolf and Höfte, 2014) among 251 

which are PMEs, most of which are known to have an alkaline pH optimum (Sénéchal 252 

et al., 2014).  Low pH is also known to activate the expansin family of cell wall 253 

remodelling agents (Cosgrove, 2015; see section above). The mechanism and kinetics 254 

of expansin action, however, remain unclear. Based on a recent model of cell wall 255 

architecture (Park and Cosgrove, 2012), their primary site of action has been 256 

hypothesised to be xyloglucan-rich biomechanical hotspots where cellulose 257 

microfibrils are in close contact (Wang et al., 2013).  Further characterisation of their 258 

action, including of their potential enzymatic activity, is required to strengthen our 259 

knowledge of the link between apoplast pH decrease and cell wall remodelling leading 260 

to mechanical changes.  261 
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We believe that further use of fluorescent pH sensors will shed even more light of the 262 

temporal and spatial dynamics of the acid growth theory, especially if a reliable 263 

calibration method can be achieved so that absolute values of pH are obtainable 264 

(Gjetting et al., 2012; Barbez et al., 2017). In addition, sub-muro imaging of pH 265 

dynamics may also prove informative but would likely require super-resolution 266 

microscopy. 267 

Measuring mechanical properties at a cellular level. The result of wall acidification, 268 

e.g. through expansin activity, is wall remodelling leading to cell expansion. Organ-269 

level mechanical studies have demonstrated that expansin activity leads to increased 270 

extensibility in living and dead organs (see section above). The introduction of micro-271 

indentation methods such as atomic force microscopy (AFM) has served as a means 272 

of testing the changes in cellular and subcellular mechanical properties brought about 273 

by auxin (Braybrook and Peaucelle, 2013; Milani et al., 2013; Braybrook, 2017). These 274 

techniques are applicable to living samples and allow the combination of genetic, 275 

biochemical and biomechanical observations. Recently AFM-based indentation has 276 

added new information to the relationship between auxin and wall mechanics and 277 

revealed a role for pectin: auxin was shown to trigger a decrease in cell wall rigidity 278 

dependent on pectin de-esterification prior to organ emergence in the Arabidopsis 279 

shoot meristem (Braybrook and Peaucelle, 2013). When the de-esterification of pectin 280 

was prevented, auxin was no longer able to drive primordium formation (Braybrook 281 

and Peaucelle, 2013), indicating that pectin biochemical changes are a necessary part 282 

of the cell wall remodelling events caused by auxin. De-methylated pectin can follow 283 

two paths: be degraded by polygalacturonases or cross-link and rigidify with calcium. 284 

While the former may be favoured in the shoot meristem the later seems most likely 285 

in the elongating coleoptile or hypocotyl given that acid-induced growth and wall 286 

extensibility was supressed by calcium addition (Tepfer and Cleland, 1979; Prat et al., 287 

1984).  288 

Early mechanical measurements on the whole organ level focused on plastic 289 

extensibility, or viscoelastic extensibility (see section above) and it is still unclear how 290 

modern elasticity measurements relate to these historical ones (Cosgrove, 2015). 291 

Current indentation-based methods measure elasticity at the cell and tissue level, but 292 

this property does not necessarily equal cell wall extensibility resulting in growth. There 293 

are several reasons for this, some of which are of technical nature while others are 294 
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largely dependent in our knowledge gaps about how cell wall architecture is achieved 295 

and changes over time to modulate growth (for a review, see Cosgrove, 2015).  As 296 

those gaps are filled, we anticipate that the role of other mechanical properties of the 297 

wall, such as viscoelasticity, will become clearer and require new methods for further 298 

investigation. 299 

Hocq et al. (2016) recently proposed an interesting model whereby pectin de-300 

esterification not only reduces cell wall rigidity, but also contributes to localised 301 

apoplast acidification and its downstream events. Indeed, it would make little sense to 302 

assume that the biochemical changes of pectin chains had no effect in the molecular 303 

environment of the apoplast. Interestingly, the major pectin in Arabidopsis, 304 

homogalacturonan, can spontaneously de-esterify in alkaline conditions driving pectin 305 

to either cross-link with calcium (if available) or towards degradation while likely 306 

lowering apoplastic pH. This provides more possible mechanisms by which the pectin-307 

pH loop might affect and be affected by acid growth. 308 

Measuring growth at a cellular level. The ultimate process of interest here is growth 309 

and growth kinematics has a long history, beginning at the organ level (Silk and 310 

Erickson, 1979). Organ-level kinematics still has uses today and can be very useful in 311 

the study of non-model species and their growth (Stahlberg et al., 2015; Solly et al., 312 

2016). High-resolution light imaging has been employed to track smaller and smaller 313 

surface landmarks, resulting in an almost cell-level resolution of growth (Fendrych et 314 

al., 2016; Bastien et al., 2016). Confocal-based imaging methods combined with stains 315 

or transgenic markers have allowed for the tracking of cell-level growth. Computational 316 

tools to analyse cell dimension changes such as length, width, volume, and surface 317 

area have allowed for a detailed quantitative analysis of cell-level growth to be 318 

achieved: ImageJ, CellSet, MorphoGraphx and PointTracker (Kuchen et al., 2012; 319 

Pound et al., 2012; Schneider et al., 2012; Barbier de Reuille et al., 2015); however, 320 

these methods are still limited by imaging depth, often being restricted to the epidermis. 321 

The application of these cell-level growth tracking methods alongside measuring 322 

transcriptional responses, pH dynamics, and cell wall mechanics will provide a more 323 

detailed picture of the mechanisms linking auxin and acid growth. 324 

The need for alternative species. The data behind the acid growth theory initially 325 

came from hypocotyls, epicotyls and coleoptiles of a variety of monocot and dicot 326 
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species, most commonly oat, pea and maize and beginning with sunflower (see 327 

sections above). Utilising plant molecular biological resources in the model dicot 328 

Arabidopsis thaliana has provided a depth of knowledge which would have been 329 

unattainable otherwise. However, new flowering plant models have provided crucial 330 

insight on the effects of auxin on growth and continuing to explore the diversity of acid-331 

growth mechanisms, both in species and organs, will be crucial to our understanding 332 

of auxin-mediated growth (Table 1). 333 

Tomato has been used to confirm the role of SAUR19 in auxin-mediated hypocotyl 334 

elongation (Spartz et al., 2017), while studies in Brachypodium revealed that increased 335 

elongation in response to constitutively high levels of endogenous auxin is not coupled 336 

to increased proton excretion in roots (Pacheco-Villalobos et al., 2016). The 337 

Brachypodium experimental results differ from those in Arabidopsis (Barbez et al., 338 

2017) which may indicate species specific differences or alternatively differences in 339 

spatial and temporal resolution; either of these possibilities support the need for further 340 

experimentation. Growth, in isolation, of the epidermis and mesophyll tissues from the 341 

Argentum pea leaf, increases with incubation in a low pH buffer (Stahlberg et al., 2015). 342 

Cultured tobacco cells displayed an increase in cell wall elasticity after one hour of 343 

auxin exposure, although the detailed dynamics were not studied with respect to 344 

growth and pH (Braybrook, 2017). 345 

The importance of stretching beyond angiosperm species to incorporate more ancient 346 

members of the plant kingdom cannot be stressed enough. Not only do the latter often 347 

show reduced genetic redundancy, but also help identify conserved genes and 348 

pathways underlying auxin-driven growth. The liverwort Marchantia polymorpha, for 349 

example, is being used as a model alongside Arabidopsis to elucidate the regulation 350 

of proton pumps by photosynthetic products (Okumura et al., 2012, 2016). The green 351 

alga Chara corallina has been exploited to expand on the previous finding that the 352 

inhibitory effect of auxin on maize roots is quenched by the application of the calcium 353 

chelator EGTA (Hasenstein and Evans, 1986; Proseus and Boyer, 2006), once again 354 

suggesting a role for pectin crosslinking in auxin-driven growth. 355 

Current view and outstanding questions 356 

So far, we have described the historical development of the acid growth theory and 357 

how recent tools could help settle some of its most controversial points. However, 358 
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several aspects of the theory remain contentious, starting from its validity being 359 

potentially restricted to certain organs only (Luthen and Bottger, 1993; Kutschera, 360 

2006). In contrast to the growth-promoting effects that it has on aerial organs, the 361 

application of auxin inhibits root elongation, potentially because of the tighter interplay 362 

of cell division and elongation that takes place in roots (Pacheco-Villalobos et al., 363 

2016).  364 

Part of the present controversy revolves around the long-standing problem of 365 

measuring apoplastic pH. Despite the advantages of fluorescent pH sensors, we still 366 

lack a reliable way to quantify absolute apoplastic pH. Methods to measure it are 367 

continuously being refined but their resolution is still too coarse (for instance, whole 368 

organ resolution in Villiers and Kwak, 2013) to be fully informative, while methods 369 

going down to cellular level are not reliable at the quantitative level because of 370 

problematic calibration and possible bleeding of signal from the endomembrane 371 

system into signal from the apoplast (Gjetting et al., 2012). Sub-apoplast imaging 372 

resolution has the potential to not only solve signal overlap but also provide useful 373 

information on local changes in pH, e.g. near sites of pectin delivery. Obtaining 374 

absolute pH values will be crucial to make a connection between auxin-driven apoplast 375 

acidification and the optimal conditions for cell wall modifying agents to operate.  376 

Auxin-induced apoplastic acidification is dependent on the activity of plasma 377 

membrane H+-ATPases (Takahashi et al., 2012), but these are by far not the only 378 

players involved. Mutants in the CAX gene family of tonoplast-localised Ca2+/H+ 379 

antiporters show a three-fold increase in apoplastic Ca2+ concentration together with 380 

altered cell wall mechanical properties (Conn et al., 2011), reduced expression of cell 381 

wall modifying agent transcripts (Conn et al., 2011), higher apoplastic pH (Cho et al., 382 

2012) and perturbed auxin transport (Cho et al., 2012). The vacuolar H+-383 

pyrophosphatase AVP1 has also been associated with alterations in auxin transport 384 

and changes in apoplastic pH (Li et al., 2005). The apoplastic pH was found to be 385 

lower in AVP1OX mutants and higher in avp1-1 mutants and was hypothesised to be 386 

associated with the recycling of the auxin efflux carrier PIN1 (Li et al., 2005). However, 387 

given the lack of auxin phenotypes of the AVP1 loss-of-function mutant fugu5 and the 388 

secondary T-DNA insertion present in avp1-1 in a different gene involved in auxin 389 

transport, the involvement of AVP1 in acid growth has been questioned (Schilling et 390 

al., 2016). These are only two examples of processes which have not been historically 391 
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associated with acid growth until recent times. We anticipate that, as other areas of 392 

plant molecular physiology advance alongside the field of acid growth and new and 393 

existing tools are refined, it will become easier to draw parallels between auxin 394 

perception and signalling, changes in apoplastic pH and growth responses. 395 

A revised model of acid-growth 396 

The historical and current data on acid growth leaves us with a model which is at once 397 

parsimonious yet provides new questions. At the core of the model, is a decrease in 398 

apoplastic pH, which leads to changes in the cell wall, resulting in growth. We propose 399 

that this change in pH may be mediated by auxin-induced changes in gene 400 

transcription which may affect the wall directly (increased wall-modifying agent gene 401 

transcription) or indirectly (changing H+-ATPase activity). As outlined in Figure 2 once 402 

auxin is perceived by a cell, through the TIR1/AFB AUX/IAA co-receptor, 403 

transcriptional changes occur very rapidly leading to the activation of plasma 404 

membrane H+-ATPases. Co-incidentally, the transcriptional response likely involves 405 

induction of wall modifying agent gene transcription (kinetics unknown at this time). 406 

These two mechanisms would lead to a decrease in apoplastic pH increasing the 407 

activity of wall modifying agents as well as an increase in the quantity of agents able 408 

to modify the cell wall architecture. 409 

We have proposed several positive feed-back points within the acid growth model that 410 

could allow for continuation of growth and even its increase over time (Fig. 2, pink 411 

lines). Firstly, changes in apoplastic pH would likely increase the diffusive mobility of 412 

apoplastic auxin into the cell where it would feed into transcriptional responses. 413 

Secondly, depending on the kinetics of induction the activation of wall modifying agent 414 

genes induced by auxin may provide an additional boost to the system since, thirdly, 415 

changes in wall structure and biochemistry may lead to decreases in pH themselves 416 

(e.g. pectin de-methylation, Hocq et al., 2016). These three potential interactions in 417 

the model could contribute to its robustness and dynamics in time. It should be 418 

mentioned that auxin enters and exists cells by active transport as well as diffusion, 419 

and it is possible that these mechanisms are so efficient that changes in diffusion 420 

cannot impact the absolute amount of auxin within a cell, limiting the effect of this feed-421 

back loop. 422 
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The model proposed here lends new questions to investigation. We still have only a 423 

basic understanding of the kinetics of auxin transcriptional response as it relates to 424 

acid growth and wall modification which needs more depth. Add to this kinetics a tissue 425 

and cell-type context and the task becomes challenging and exciting. With respect to 426 

wall modifying agent activities and their relation to pH again we have very basic 427 

knowledge about which pHs are optimal for which agents, how much each 428 

architectural change contributes to growth mechanics, and if changes in architecture 429 

might feed-back onto mobility of other agents. It is highly likely that there are other wall 430 

modifying agents to be considered (beyond expansins and PME/PMEIs) including but 431 

not limited to XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASEs and 432 

POLYGALACTURONASEs. It is also not yet understood how activities of these agents 433 

might alter pH and these dynamics are worth further study as well. In addition, the 434 

contributions of diffusive auxin uptake versus active auxin uptake in such a dynamic 435 

system require investigation. Lastly, something which has not been touched upon here 436 

at all, how does acid growth cease especially when positive feed-back loops might be 437 

involved?  438 

 Additions to the current model 439 

Modern reformulations are extending the original acid growth theory by the inclusion 440 

of other factors.  Dunser and Kleine-Vehn (2015) proposed a mechanism, which they 441 

baptised ‘the acid growth balloon theory’, whereby auxin-driven changes in vacuolar 442 

volume are the key player behind cell elongation, underlining the importance of ion 443 

transport in acid growth. As described in a previous section, Hocq et al. (2016) 444 

postulated that the de-esterification status of pectin itself changes apoplastic pH, 445 

closing the loop between the biochemistry of the cell wall and auxin. Finally, Okumura 446 

et al. (2016) showed that sugar activates plasma membrane H+-ATPases and 447 

hypothesise that this observation might be the result of sugar-induced activation of 448 

SAUR transcription. Further investigation is required to understand how processes 449 

associated with auxin-induced elongation are internally regulated. As correctly 450 

underlined by Niklas and Kutschera (2012), however, it is important to bear in mind 451 

that these systems do not work in isolation and that the insights derived from their 452 

study will become truly informative only when an integrative approach is adopted. In 453 

other words, as is often the case in plant development, the whole is more than just the 454 
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sum of its parts and this holds true for cells and tissues as well as for molecular 455 

pathways. 456 
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Figures 460 

 461 

 462 

Figure 1. The first model of acid growth. The mechanistic model proposed by Hager 463 

et al. (1971) for auxin-driven growth, adapted here from the original paper, postulated 464 

the direct action of auxin onto plasma membrane-localised proton pumps to activate 465 

them. In order for this to happen, auxin itself needed to be 'activated' by GTP or its 466 

precursor ITP. Once active, the proton pumps were hypothesised to hydrolyse 467 

available nucleotide triphosphates (NTPs) in order to power proton extrusion. NTP 468 

production relies on cellular respiration, which justified the need for aerobic conditions. 469 

The increase in apoplastic acidity caused the cell wall to become more extensible by 470 

the putative action of modifying agents found in the apoplast, resulting in cell 471 

elongation. Inactive auxin = yellow star. Active auxin = green star. Inactive proton 472 

pump = dark blue circle. Active proton pump = light blue circle. Hypothetical 473 

interactions are dashed lines. 474 
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 475 

Table 1. The study of the acid growth theory requires the inclusion of a broad 476 

range of species. The seminal paper by Hager et al. (1971) referring to auxin-induced 477 

elongation as 'acid growth' for the first time was based on experiments carried out on 478 

sunflower (Heliantus annuus). During the following 25 years, the set of species used 479 

to probe the growth-promoting effects of auxin were most commonly soybean, pea, 480 

oat and maize. The rapid rise of Arabidopsis as a model plant, bringing with it 481 

molecular knowledge and tools, narrowed the focus of several areas of plant research 482 

including that of auxin-driven growth. In the last couple of decades, however, the use 483 

of new and existing models has gathered momentum and now includes no longer only 484 

angiosperms but also representatives of more basal plant lineages (e.g. Marchantia 485 

polymorpha) as well as algae (e.g. Chara corallina). This table indicates some starting 486 

example papers, and the species and organs they utilised, for the reader. The 487 

references include classic and modern examples. 488 

  489 
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 490 

Figure 2. Revised model of auxin-driven cell growth. The revised model confirms 491 

parts of the old model and refutes others (see text). Solid black arrows indicate 492 

interactions which have been shown to happen, while dashed black arrows indicate 493 

interactions for which we only have partial evidence and which require further 494 

investigation. Pink dashed arrows connect the components of the positive feedback 495 

loop which are hypothesised to sustain auxin-driven growth over time. High levels of 496 

auxin, achieved either by diffusion or by polar transport (or both), trigger downstream 497 

transcriptional events leading to the activation of plasma e membrane proton pumps 498 

and consequent acidification of the apoplast. Auxin may also affect cell wall 499 

modifications by regulating the transcription of cell wall modifying agents. The change 500 

in apoplastic pH leads to cell wall modifications by enzyme activation and such 501 

modifications potentially feed back onto pH itself by changing the local biochemical 502 

environment. A more acidic pH is also going to change the protonation status of auxin 503 

and consequently its ability to cross the plasma membrane by diffusion, closing the 504 

loop. Auxin = green star. Inactive proton pump = dark blue circle. Active proton pump 505 

= light blue circle. Hypothetical interactions are dashed lines506 
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