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Abstract (166 words) 

The European offshore wind sector has been undergoing tremendous growth resulting in 

offshore wind farms having larger wind turbines that are located further away from the shore in 

harsh environmental conditions. To cater for the resulting higher loads, the current trend has 

been to continually increase the size of monopiles, which are the most popular foundation type. 

However, this is not viable long-term in terms of current installation technology.   

 

This paper presents the results of three dimensional finite element analyses investigating the 

improvement in the lateral capacity of a large diameter monopile in clay when used in 

combination with hybrid features and rock armour. Non-skirted reinforced concrete and steel 

footings, a skirted steel footing and steel fins were assessed under a combination of vertical, 

lateral and moment loads expected at an offshore wind farm location with a water depth of 30 

m.  

 

Findings, based on shear and bending moment developed in the monopile and mobilised soil 

resistance, indicated the skirted steel footing and fins to be the most effective in enhancing the 

monopile lateral capacity at serviceability.   

 

Keywords chosen from ICE Publishing list 

Geotechnical engineering; Offshore engineering; Piles & piling 

 

List of notation 

𝑐′ is the cohesion intercept 

𝐶𝑐 is the compression index 

𝐶𝑠 is the swelling index 

𝐶𝑝  is a constant used in computing the saturated permeability for clays 

𝐶𝑢  is a coefficient of uniformity 

𝑑  is the material cohesion for the Modified Drucker-Prager model 

𝑑10  is the grain diameter for which 10% of the sample is finer 

𝐷 is the outer pile diameter 

𝑒0  is the initial void ratio 

𝐸 is the undrained Young’s modulus of soil 

𝐸′ is the drained Young’s modulus of soil 

𝐸50
′  is the secant modulus corresponding to a stress level of 50% of the peak strength 

𝐸ref       is the reference Young’s modulus 

𝐸0 is the Young’s modulus of concrete 

𝐹 is the monopile shear force 

𝐹𝑐  is the cap yield surface for the Modified Drucker-Prager model 

𝐹𝑠  is the shear failure surface for the Modified Drucker-Prager model 
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ℎ𝑤  is the water depth 

𝐺𝑠  is the specific gravity 

𝐻 is the lateral load applied to the monopile 

𝐻𝑠𝑒𝑟𝑣  is the lateral pile capacity at serviceability 

𝑘𝑠𝑎𝑡  is the saturated permeability of clay 

𝐾0 is the coefficient of earth pressure at rest 

𝐿 is the embedded pile length 

𝐿𝑇 is the total pile length 

𝑀 is the monopile bending moment 

𝑀𝑎 is the overturning moment at mudline 

𝑀𝑝 is the plastic moment 

𝑀𝑦 is the yield moment 

𝑂𝐶𝑅 is the over-consolidation ratio 

𝑝 is the soil resistance against the pile 

𝑝′  is the mean effective stress 

𝑝𝑎  is a parameter that controls the volumetric plastic strain driven hardening/softening 

𝑝𝑏  is the mean pre-consolidation stress 

𝑝ℎ  is the mean equivalent hydrostatic stress 

𝑝ref  is the atmospheric pressure 

𝑃𝐼 is the plasticity index 

𝑅 is the cap eccentricity for the Modified Drucker-Prager model 

𝑠𝑢  is the undrained shear strength 

𝑡  is the deviatoric stress 

𝑡𝑓𝑖𝑛 is the fin thickness 

𝑡𝑝  is the pile wall thickness 

𝑉 is the axial load applied to the monopile 

𝑤𝐿  is the liquid limit 

𝑥  is the tortuosity parameter used in computing the saturated permeability for clays 

𝑦 is the lateral pile displacement 

𝑦𝑎  is the lateral displacement applied at the pile head 

𝑦𝑚 is the lateral pile displacement at mudline 

𝑧 is the depth below mudline 

𝛾𝑠𝑎𝑡  is the saturated unit weight of soil 

𝛾𝑤  is the unit weight of water 

𝜌𝑠  is the density of solid grains 

𝜃𝑚  is the pile head rotation at mudline 

𝜑′  is the angle of friction 

𝜑𝑐𝑠
′  is the critical state friction angle 

𝜑𝑝
′  is the peak friction angle 
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𝛿  is the pile-soil interface friction angle 

𝛼  is the radius of the transition surface 

𝛽  is the angle of friction for the Modified Drucker-Prager model 

𝜎𝑐
′  is the vertical pre-consolidation stress 

𝜎𝑥
′   is the effective lateral stress 

𝜇𝑤  is the dynamic viscosity of water 

𝜒  is a material parameter used in computing the saturated permeability for clays 

𝜈′  is the drained Poisson’s ratio 

𝜓  is the dilatancy angle 

εvol
p   is the volumetric plastic strain 
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1. Introduction 

 

The offshore wind sector in the European Union is undergoing phenomenal growth with 

forecasts indicating its installed capacity in the year 2020 to be 40 GW, representing an eight-

fold increase from its current capacity of 5 GW (EWEA 2013). Owing to their ease of fabrication 

and installation, monopiles are currently the most popular type of foundation for supporting 

offshore wind turbines in shallow to medium depth waters of up to 30 m. Monopiles are driven 

open-ended tubular steel piles, 4-6 m in diameter with an embedded length to diameter ratio of 

4-8. With offshore wind farms increasingly being located further away from the shore and wind 

turbines increasing in size, larger monopiles are being required to withstand the corresponding 

structural and environmental loads. However, they would be impractical to install using current 

offshore technology. Therefore, it is vital that an improvement in monopile lateral capacity is 

investigated using hybrid features that are feasible to construct and install. 

 

Centrifuge tests and three-dimensional (3D) finite element analyses (FEA) by Lehane et al. 

2014 indicated that, at prototype scale, a steel footing, 17.5 m in diameter and 2.625 m in 

thickness, when used in combination with a 3.33 m diameter monopile in sand, led to almost a 

doubling of the lateral pile capacity. Similarly, centrifuge tests by Stone et al. 2011 on a 0.95 m 

diameter pile combined with a steel footing, 5 m in diameter and 0.25 m in thickness, also 

reported an increase in the lateral pile capacity in sand. 1g model tests by Arshi et al. 2013 

indicated that the addition of skirts to 80 mm diameter steel footings increased the lateral pile 

capacity in sand by approximately 50% relative to the non-skirted footings. However, there were 

ambiguities in the reported results as skirt lengths were not specified. On the contrary, 

centrifuge tests and 3D FEA by Lehane et al. 2010 suggested that 15-20 m diameter footings, 

both non-skirted and skirted, were ineffective in increasing the lateral capacity of a 4 m diameter 

monopile in clay with a near surface undrained shear strength of 20 kPa.  

 

Bienen et al. 2012 showed through centrifuge tests in medium dense sand that the lateral 

capacity of a prototype pile, 2.4 m in diameter and 9.6 m in embedded length, was increased by 

40% when it was used in combination with steel fins, 3.2 m in length and 1.6 m in width. 1g 
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model tests and 3D FEA by Peng et al. 2010 indicated the optimum fin length for a short rigid 

pile in medium dense sand to be half the embedded pile length. Through 1g tests on flexible 

piles with embedded length to diameter ratio of 15, Nasr 2014 reported that in comparison to 

triangular fins, rectangular fins were more effective in increasing the lateral pile capacity in 

medium dense sand.  Bienen et al. 2012 and Nasr 2014 used 2 fins perpendicular to the 

direction of lateral loading whereas Peng et al. 2010 employed 4 equally spaced fins.  

 

Although they indicate promising results, with the exception of Lehane et al. 2010, all these 

studies have been undertaken in sand. However, geotechnical investigation reports for offshore 

wind farms in the Irish Sea and the United Kingdom sector of the North Sea indicate significant 

presence of clays within the seabed. In addition, a detailed study comparing the various hybrid 

options in clayey soils using realistic prototype dimensions applicable to monopiles whilst 

incorporating varied construction materials such as steel, reinforced concrete (RC) and rock, 

has yet to be undertaken.  

 

To plug this research gap, 3D soil-pore fluid coupled FEA was undertaken using 

Abaqus/Standard Version 6.12 (Dassault Systèmes 2012) to analyse the improvement in the 

lateral capacity of a 5 m diameter monopile in clay when used in combination with rock armour, 

non-skirted RC and steel footings, skirted steel footing and steel fins.   

 

2. Model geometry 

 

2.1 Monopile 

Based on statistics of installed monopiles (LORC 2011), the monopile was modelled to have an 

outer diameter, 𝐷, of 5 m, wall thickness, 𝑡𝑝, of 60 mm, total length, 𝐿𝑇, of 66 m and embedded 

length, 𝐿, of 30 m.  

 

2.2 Soil 

The soil block was cylindrical with a diameter of 100 m (20D) and a height of 50 m (1.67L). 

These dimensions were verified to be adequate in preventing artificial boundary effects on the 

behaviour of the hybrid monopile-soil system. The bottom of the soil was fixed against 
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translation in all directions whereas the lateral boundary was fixed against horizontal translation. 

Hydraulically, the top surface of the soil was a drained boundary whereas the lateral boundary 

and the base of the soil were impermeable. 

 

2.3 Hybrid features 

The footing diameter and fin length were based on previous research on hybrid monopiles, in 

which the former was between 3.75 and 5.3𝐷 (Lehane et al. 2010, Lehane et al. 2014, Stone et 

al. 2011) and the latter was considered optimum at 0.5𝐿 (Peng et al. 2010). However, to 

facilitate the installation of the finned monopile in practice, the fin width adopted was between 

20-40% smaller than used in past research (Peng et al. 2010, Bienen et al. 2012). The 

thickness of the footings, skirt and fins was dictated by constructability whereas the skirt length 

was based on available field data for suction caissons (Houlsby et al. 2005).  

2.3.1 RC footing 

The circular RC footing was an annulus that was 1 m thick with an outer diameter of 20 m (4𝐷) 

through which there was a 5 m diameter opening for the pile. A sectional view of this footing is 

shown in Figure 1a. Assuming the footing would be grouted to the monopile, the pile-footing 

interface was governed by tangential and normal contact constraints. A conservative value of 

0.1 was used for the coefficient of friction between wet steel and concrete (Gorst et al. 2003). 

To control cracking in the footing, 32 mm diameter steel reinforcing bars were used. The area of 

reinforcement provided was 0.21% of the cross-sectional area of the footing, which conformed 

to the minimum tensile reinforcement requirements of Eurocode 2 (BSI 2004). 

2.3.2 Steel footing 

The circular steel footing was 0.15 m thick with a diameter of 20 m (4𝐷) through which there 

was a 5 m diameter opening for the pile. Since the footing would be welded to the monopile, its 

translation and rotation were constrained to the monopile segment. A cross-sectional view is 

shown in Figure 1b.  

2.3.3 Skirted steel footing 

Illustrated in Figure 1c, its dimensions were the same as the steel footing except that it had a 

skirt, 5 m in length and 0.06 m in thickness.  
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2.3.4 Steel fins 

The monopile geometry was altered to provide it with 4 rectangular fins, each having length of 

15 m (0.5𝐿), width of 2 m (0.4𝐷) and thickness, 𝑡fin, of 0.06 m. Although the unidirectional lateral 

load used in these analyses only required 2 fins that were perpendicular to the direction of 

loading, 4 equally spaced fins were used in the model to cater for the multi-directional loading 

scenario that would exist at an offshore wind farm location. Its sectional view is shown in Figure 

1d.  

 

With the exception of reinforcing bars for which 2-noded linear truss elements (T3D2) were 

employed, 8-noded linear elements were used for the rest of the components. Quadratic 

elements were not used as they brought about a negligible increase in accuracy at a 

considerable computational cost (Haiderali 2015). The monopile, skirted and non-skirted steel 

footings, and fins were constructed of reduced integration continuum shell elements (SC8R) 

whereas the RC footings and the soil were made of full integration brick elements with the latter 

having pore pressure degree of freedom (C3D8 and C3D8P respectively). Relatively fine 

meshes comprising 143,840 to 144,160 elements (depending on the hybrid feature) were 

verified to be sufficiently accurate via a mesh sensitivity study (Haiderali 2015). The monopile-

RC footing-soil meshed model and a close-up view of the monopile-skirted footing-soil model, is 

illustrated in Figure 2. For clarity, only one-half of the model, along the axis of load symmetry, is 

shown. 

 

3. Material models 

A ground investigation factual report for a proposed offshore wind farm in the English Channel 

was used to develop the soil model comprising 1 m of soft clay underlain by 9 m of stiff clay, 20 

m of very stiff clay and 20 m of very dense sand. The soil profile is illustrated in Figure 2. All 

soils were considered to be fully saturated, their key geotechnical parameters summarised in 

Table 1. Due to the permeability of the clay being very low relative to the rate of loading, these 

analyses simulated undrained conditions as would occur in practice under an extreme storm.  
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Table 1 Key geotechnical parameters 

Depth Soil type Parameters 

0 - 1 m Soft clay 𝐺s = 2.61, 𝛾sat = 15.51 - 17.05 kN/m3 

𝑤L = 78%, 𝑤P = 21%, 𝑃𝐼 = 57% 

𝐶c = 0.575 , 𝐶s = 0.115 

φ𝑐𝑠
′  = 19.7o, c′ = 0.5 kPa (𝛽 = 37.2o, 𝑑 = 1.1 kPa) 

𝐾0 = 0.663, δ = 15.9o, 𝜇 = 0.285, 𝜈′ = 0.3 

𝑘sat = 7.94 × 10−10 - 2.02 × 10−10 m/s 

1 - 10 m Stiff clay 𝐺s = 2.73, 𝛾sat = 20.10 - 21.65 kN/m3 

𝑤L = 67%, 𝑤P = 23%, 𝑃𝐼 = 44% 

𝐶c = 0.329 , 𝐶s = 0.063 

φp
′  = 21o, c′ = 10.6 - 19.4 kPa (𝛽 = 39.1o, 𝑑 = 22.4 - 41.2 kPa) 

𝐾0 = 1.673 - 0.895, δ = 16.5o, 𝜇 = 0.296, 𝜈′ = 0.25 

𝑘sat = 3.56 × 10−11 - 8.5 × 10−12 m/s 

10 - 30 m Very stiff 

clay 

𝐺s = 2.73, 𝛾sat = 21.65 – 22.32 kN/m3 

𝑤L = 63.3%, 𝑤P = 22.4%, 𝑃𝐼 = 40.9% 

𝐶c = 0.170 , 𝐶s = 0.022 

φp
′  = 21.4o, c′ = 20 kPa (𝛽 = 39.8o, 𝑑 = 42.4 kPa) 

𝐾0 = 0.891 - 0.657, δ = 16.7o, 𝜇 = 0.3, 𝜈′ = 0.25 

𝑘sat = 9.82 × 10−12 - 4.87 × 10−12 m/s 

30 - 50 m Very dense 

sand 

𝐺s = 2.65, 𝛾sat = 20.98 kN/m3 

𝑑10= 0.023 mm, 𝐶u = 3.91 

φp
′  = 33o, c′ = 0.5 kPa, ψ = 5o 

𝐾0 = 0.455, δ = 23.1o, 𝜇 = 0.427, 𝜈′ = 0.35 

𝑘sat = 9.74 × 10−6 m/s 

 

3.1 Clay 

As shown in Figure 3a, the soft normally consolidated clay had undrained shear strength, 𝑠𝑢 , of 

25 kPa while the stiff and very stiff over-consolidated clays had 𝑠𝑢 of 100-200 kPa and 200-350 

kPa respectively. With the exception of soft clay, for which it was zero, the cohesion 

intercept,  c′, was assumed to be 10% of 𝑠𝑢 (Danish Standards 1998). However, its maximum 

value was capped at 10 kPa for the stiff clay and 20 kPa for the very stiff clays. The vertical pre-

consolidation stress, σc
′ , and over-consolidation ratio, OCR, along with the compression (Cc) and 

swelling (Cs ) indices, were estimated from the oedometer test compression curves, which were 

corrected for sample disturbance using the Schmertmann method described in Holtz and 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 
 

Kovacs (1981). The OCR varied between 14.5 at a depth of 1 m and 1.1 at a depth of 30 m, as 

illustrated in Figure 3b while the initial void ratio, 𝑒0, varied between 1.9 and 0.4 (Figure 3c).  

 

Due to the paucity of consolidated drained triaxial tests on clay samples, their friction angle, φ′ 

– critical state, φcs
′ , for the soft clay and peak, φp

′ , for the stiff and very stiff clays - were 

correlated with their plasticity index, 𝑃𝐼, as per Equations 1 and 2 respectively (Sorensen and 

Okkels 2013).  

 

 φcs
′ = 39 − 11 log10 𝑃𝐼 (1) 

 φp
′ = 44 − 14 log10 𝑃𝐼 (2) 

 

The coefficient of earth pressure at rest, K0, for normally and over-consolidated clays was 

computed using Equation 3 (Jaky 1944) and Equation 4 (Mayne and Kulhawy 1982) 

respectively. 

 

 K0 = 1 − sin φcs
′   (3) 

 𝐾0 = (1 − sin 𝜑p
′ )OCRsin φp

′
 (4) 

 

The interface friction angle, δ, between the steel pile/hybrid feature and clay was calculated 

using Equation 5 (Randolph and Wroth 1981).  

 

 δ = tan−1{(sin φ′ × cos φ′)/(1 + sin2 φ′)}     (5) 

 

Although soil permeability measurements were available from triaxial tests, their accuracy was 

questionable as very low values, in the region of 10-8 m/s, were obtained for sand samples. This 

was thought to be due to the porous stones in the triaxial equipment being clogged by clay 

particles from previous tests on clay samples. Therefore, the saturated permeability, 𝑘sat, of 

clays was predicted to vary between 7.94 × 10−10  and 4.87 × 10−12 m/s using Equation 6 

(Mbonimpa et al. 2002).  
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 𝑘sat = 0.01𝐶p

γw

μw

𝑒0
3+𝑥

1 + 𝑒0

1

ρs
2𝑤L

2𝜒 (6) 

where  

𝑘sat is in m/s, 

𝐶p is a constant equal to 5.6 g2/m4, 

γw is the unit weight of water equal to 9.8 kN/m3, 

μw is the dynamic viscosity of water equal to 10-3 Pa.s, 

𝜒 is a material parameter equal to 1.5, 

𝜌s is the density of the solid grains in kg/m3, which is derived from the clay’s specific gravity, 𝐺𝑠, 

𝑤L is the liquid limit in %, and  

𝑥 is parameter that takes into account the effect of tortuosity and is defined as: 

 

 𝑥 = 7.7wL
−0.15 − 3 (7) 

 

Based on published literature, the drained Poisson’s ratio, 𝑣′, was specified to be 0.25 for soft 

clays and 0.3 for the stiff and very stiff clays. The stiffness, 𝐸, of the clays was estimated using 

the Duncan and Buchignani 1976 correlation with 𝑠u, 𝑂𝐶𝑅 and 𝑃𝐼, and ranged between 4.4 and 

105 MPa (Figure 3d).  

 

The clay behaviour was represented by the elasto-plastic Modified Drucker-Prager constitutive 

model, whose yield surface, illustrated in Figure 4, is composed of two segments - a linear 

pressure dependent shear failure surface, Fs (Equation 8), and an elliptical cap yield surface, Fc 

(Equation 9). Fs is perfectly plastic while Fc hardens or softens as a function of the volumetric 

plastic strain, εvol
p

. Yielding on Fc causes hardening while that on Fs causes softening.  

 

 𝐹𝑠 = 𝑡 − 𝑝ℎ tan 𝛽 − 𝑑 = 0 (8) 

𝐹𝑐 = √(𝑝ℎ − 𝑝𝑎)2 + [𝑅𝑡
(1 + 𝛼 − 𝛼/ cos 𝛽)⁄ ]

2

− 𝑅(𝑑 + 𝑝𝑎 tan 𝛽) = 0     (9) 
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where 

𝑡 is the deviatoric stress, 𝑝ℎ is the equivalent hydrostatic pressure, 𝛽 is the angle of friction, 𝑑 is 

the material cohesion, 𝑝𝑎  is a parameter that controls the volumetric plastic strain driven 

hardening/softening, 𝑅 is the cap eccentricity (calibrated to be 0.1), and 𝛼 is the radius of the 

transition surface that provides a smooth intersection between 𝐹𝑠 and 𝐹𝑐. For these analyses, 

the transition surface was omitted; hence 𝛼=0.  

 

 

𝛽 and 𝑑 were computed by matching them to Mohr-Coulomb triaxial compression (Equations 10 

and 11), 

 tan β =
6 sin φ′

3 − sin φ′
 (10) 

 𝑑 =
6c′ cos φ′

3 − sin φ′
 (11) 

 

and cap hardening was prescribed at 1 m depth intervals as a piecewise linear function relating 

the pre-consolidation yield stress, 𝑝𝑏, and 𝜀vol
p

 (Equation 12). 

 

 𝜀vol
𝑝

=
𝐶c − 𝐶s

2.3(1 + 𝑒0)
log10

𝑝′

𝑝b

 (12) 

where 

𝑝′ is the mean effective stress. 

 

3.2 Very dense sand 

The sand had constant 𝑒0 of 0.503 (Figure 3c), saturated unit weight, 𝛾𝑠𝑎𝑡, of 20.98 kN/m3 and 

grain diameter, 𝑑10, of 0.023 mm. Its 𝜑𝑝
′  was determined from consolidated drained triaxial tests 

to be 33o whereas its dilatancy angle, 𝜓, was computed to be 5o (Koerner 1970). Although non-

zero values were reported for 𝑐′, it was considered prudent to consider the sand as 

cohesionless. Its 𝑘sat was computed to be 9.74 × 10−6 m/s using Equation 12 (Chapuis 2004).  

 

𝑘sat = 0.024622 (
𝑑10

2 𝑒0
3

1 + 𝑒0

)

0.7823

 (12) 
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where 𝑘sat is in m/s and 𝑑10 is in mm.  

 

The secant modulus corresponding to a stress level of 50% of the peak strength, 𝐸50
′ , computed 

using Equation 13, was considered apt for the sands (Schanz and Vermeer 1998).    

 

 𝐸50
′ = 𝐸ref√𝜎𝑥

′ 𝑝ref⁄  (13) 

where 

𝑝ref is the atmospheric pressure equal to 100 kPa, 

𝜎𝑥
′  is the effective lateral stress, and 

𝐸ref is the reference stiffness, specified to be 50 MPa to attain 𝐸50
′  values between 63.4 and 

80.7 MPa (Figure 3d) that were a close fit to the values reported in results of triaxial tests for a 

limited number of sand samples. 

 

The Mohr Coulomb model, with a non-associative flow rule, was used to characterise the sand 

behaviour.  

 

3.3 Reinforced concrete 

C40/50 reinforced concrete with characteristic cylinder strength of 40 N/mm2 was simulated 

using the concrete damaged plasticity model (Lubliner et al. 1989) (Lee and Fenves 1998). It is 

a continuum elastoplastic model that takes into account damage to quasi-brittle materials under 

low confining stresses as a result of tensile cracking and compression crushing. At sufficiently 

high confining stresses, the concrete is assumed to behave as a strain hardening/softening 

material. The parameters for this class of concrete were obtained from laboratory tests reported 

by Jankowiak and Lodygowski 2005. The concrete was assigned a density of 2400 kg/m3, 

Young’s Modulus of 19.7 GPa, Poisson’s ratio of 0.19 and dilation angle (internal friction angle) 

of 38o. The reinforcing bars were assumed to be ribbed with density of 7840 kg/m3, Young’s 

Modulus of 210 GPa, Poisson’s ratio of 0.3 and characteristic yield strength of 500 MPa.  

 

3.4 Steel 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 
 

Steel was modelled as an elastic perfectly plastic material with density of 7840 kg/m3, Young’s 

Modulus of 210 GPa and Poisson’s ratio of 0.3. Depending on the thickness of the structural 

member, its yield strength varied between 335 and 295 MPa.  

 

4. Loading 

After the soil had achieved geostatic equilibrium, the hybrid monopile system was subjected 

sequentially to gravity, axial and lateral loads. Pile, fin and skirt installation effects were not 

taken into account. An axial load, 𝑉, of 4.3 MN was applied incrementally to the pile head over 

duration of 48 h (2 days) to cater for the self-weight of the turbine, tower and transition piece. A 

lateral load, 𝐻, of 12.1 MN was applied incrementally at the pile head over duration of 132 h (5.5 

days). This duration enabled prescription of a minimum step time increment that was 

satisfactory in preventing pore pressure oscillation (Vermeer and Verruijt 1981). The resulting 

overturning moment to lateral load ratio (𝑀𝑎/𝐻) at mudline was 36. This correlated to the 

environmental loading regime monopiles would be subjected to at UK North Sea offshore 

locations with harsh wind and water depth, ℎ𝑤, of 30 m. 

 

Rock armour is commonly provided around a monopile to minimise scouring of the seabed, 

which has an adverse effect on the dynamic response and lateral capacity of a monopile due to 

the following: 

 The gradual reduction of soil in the scoured region reduces the effective embedment of 

the monopile and increases the overturning moment on the pile due to an increase in 

the lever arm of wind and wave loading, and 

 A reduction in soil support and stiffness lowers the natural frequency of the structure.  

 

Since clayey soils limit scour development (Whitehouse et al. 2011), it was assumed that the 

rock armour can be relied upon to contribute to the long-term lateral capacity of hybrid 

monopiles without undergoing significant attrition. Therefore, its effect on the lateral capacity of 

hybrid monopiles was assessed by applying a 25 kPa surcharge, over a circular area of 294.5 

m2  around the monopile, on top of the footings or on the surface of the fins and the soft clay. 
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This was equivalent to rock with volume of 307 m3 and mass of 736 tonnes, which was 

representative of rock armour at offshore wind farms (Van Oord ACZ 2003).  

 

5. Model verification 

The FEA model was calibrated using results of a centrifuge test carried out by Lau 2015 to 

investigate investigate the lateral behaviour of monopiles in Speswhite Kaolin. Carried out at a 

centrifugal acceleration of 100g, the model monopile, fabricated of aluminium, in prototype 

scale, had 𝐷 of 3.8 m, 𝐿T of 50 m and 𝐿 of 20 m. The clay was submerged to a prototype depth 

of 4 m, which was limited by the height of the centrifuge strongbox.  

 

With 𝑃𝐼 of 33%, 𝐺s of 2.61, 𝜑′ of 23.2o and 𝑂𝐶𝑅 varying between 15 at mudline and 1.0 at the 

pile tip, the artificially produced clay was consolidated under 1g conditions prior to the centrifuge 

test to achieve the required 𝑠u profile, which was measured using a seismic cone penetrometer 

test. Its 𝑠u increased from 3 kPa at mudline to 33 kPa at the pile tip.  A 5 m (50 mm in model 

scale) layer of dense Hostun sand with relative density of 70% was provided beneath the 

Speswhite Kaolin to accelerate the consolidation process.  

 

The model monopile was installed to a prototype depth of 16 m at 1g with the remaining 4 m 

installed at 100g following 4 hours of in-flight consolidation. This was considered sufficient in 

mobilising the shaft friction and end bearing capacity of the pile. After the application of an axial 

load, 𝑉, of 4 MN, the pile head was displaced laterally, at a rate of 0.05 mm/s, to a maximum 

displacement, 𝑦a, of 6 m (under prototype scale). As illustrated in Figure 5, a very good 

agreement was obtained between the results of the FEA model and centrifuge test (CT). Similar 

comparisons were made with more extensive centrifuge tests with different clay properties as 

reported by Haiderali et al. 2014.  

 

6. Results 

6.1 Lateral capacity 

The deformation of an offshore wind turbine tower can adversely affect its nacelle by disrupting 

the distribution of lubrication in gearboxes, imposing additional loads on bearings and creating 
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abnormal component forces. Therefore, the performance of these hybrid monopiles is evaluated 

in terms of serviceability rather than ultimate failure.   

 

The efficacy of the hybrid features in limiting pile displacement was assessed by comparing the 

ratio of the lateral load required by the hybrid monopile, HHybrid, and that by the monopile-only, 

HPile-only, to undergo the same lateral pile displacement at mudline, 𝑦m. As illustrated in Figure 6, 

without taking into account the surcharge load, HHybrid was on average 1.08 to 2.27 times greater 

than HPile-only. Inclusion of the surcharge load increased the HHybrid/HPile-only ratio to between 1.14 

and 2.44. In this regard, the most effective was the skirted steel footing (2.27-2.44) followed by 

the finned pile (1.6-1.66) and the RC footing (1.19-1.32) whereas the least effective was the 

non-skirted steel footing (1.08-1.14).  

 

A comparison based on pile displacements can slightly over-estimate the effect of these hybrid 

features mainly because the increased flexural rigidity they provide to the monopile results in its 

point of rotation to move up leading to an increase in the pile head rotation at mudline, 𝜃𝑚, 

which has to be limited to 0.25o during the design life of a monopile (Malhotra 2011). Therefore, 

a better performance indicator is the serviceability lateral pile capacity, 𝐻serv, at which 𝜃m is 

equal to 0.25o. For the monopile-only, 𝐻serv was determined to be 6.35 MN. When combined 

with the non-skirted RC and steel footings, 𝐻serv increased by a factor of 1.10 and 1.04, to 7.0 

and 6.6 MN respectively. On the other hand, when used with the skirted steel footing and fins, 

𝐻serv increased by considerably larger multipliers of 1.72 and 1.30, to 10.95 and 8.25 MN. This 

represented an increase of 4-72% over the 4 hybrid options, with the skirted and non-skirted 

steel footings being the most and least effective respectively. 

 

As illustrated in Figure 7, when the hybrid features were used in combination with the rock 

armour, 𝐻serv was enhanced by a further 4% for the non-skirted steel footing, 5% for the finned 

monopile and 9% for the non-skirted RC and skirted steel footings to yield 𝐻serv of 7.55, 6.85, 

11.5 and 8.55 MN respectively. This denoted an overall increase in 𝐻serv of 8-81%.  

The improvement in lateral capacity brought about by these 8 hybrid options is summarised in 

Table 2.  
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Table 2 Lateral pile capacity at serviceability, Hserv 

Hybrid feature 
𝐻serv (MN) % Increase in 𝐻serv 

No surcharge With surcharge No surcharge With surcharge 

Monopile-only 6.35 - - - 

RC footing 7.00 7.55 10 19 

Non-skirted 

steel footing 

6.60 6.85 4 8 

Skirted steel 

footing 

10.95 11.5 72 81 

Fins 8.25 8.55 30 35 

 

The 30-35% increase in lateral capacity brought about by the fins was less than the 40-76% 

improvement in sand reported by Bienen et al. 2012 and Peng et al. 2010. On the other hand, 

the provision of a skirt to the steel footing increased the pile lateral capacity in clay by a greater 

proportion (68-73%) in comparison to the 50% increase in sand reported by Arshi et al. 2013. 

However, this is to be regarded as an indirect comparison as skirt lengths were not stated by 

Arshi et al. 2013. Finally, contrary to the findings of Lehane et al. 2010, both the skirted and 

non-skirted steel footings enhanced the monopile lateral capacity in clay. However, owing to the 

relatively small improvement brought about by the non-skirted steel footing, increased material 

and installation costs would not justify its implementation. 

 

6.2 Shear force and bending moment 

A better understanding of the mechanisms through which these hybrid features enhanced the 

monopile lateral capacity was obtained by examining the shear force, 𝐹, and bending moment, 

𝑀, developed along the embedded depth of the hybrid monopile. To ensure the results were 

generally applicable, independent of specific loading conditions, the shear force and bending 

moment have been normalised by the applied lateral load, 𝐻, and the overturning moment at 

mudline, 𝑀𝑎, respectively.  

 

The pile shear force profile, shown in Figure 8 for the hybrid monopiles with surcharge at 𝐻 of 

5.5 MN, indicates that with the exception of the fins, the rest of the hybrid features provide a 

relatively large restoring force. The magnitude of the restoring force varied between 0.25𝐻 for 
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the non-skirted steel footing, 0.69𝐻 for the RC footing and 0.79𝐻 for the skirted steel footing (at 

its centroid). Without surcharge, there was a reduction in the restoring force with respective 

values of 0.14𝐻, 0.33𝐻 and 0.77𝐻. Hereafter, the shear force results incorporate the effect of 

the surcharge load.  

 

The effectiveness of the non-skirted steel footing diminished very quickly with pile depth such 

that the peak shear force in the hybrid monopile was 89% of that in the pile-only. The RC 

footing retained its influence with depth slightly better such that its peak shear force was 82% of 

that in the pile-only. The positive influence of the skirt on the steel footing is clearly evident with 

the shear force significantly reduced in the lower half of the pile and the peak shear force, which 

was 92% of that in the pile-only, occurring at a relatively shallow depth. Although the fins did not 

generate a restoring force, they were effective in lowering the peak shear force in the finned pile 

by 8% relative to the pile-only. 

 

Similarly, the bending moment profile, illustrated in Figure 9 for the hybrid monopiles with 

surcharge at 𝐻 of 5.5 MN, demonstrates that all the hybrid features except the fins generate a 

resisting moment. The magnitude of the resisting moment varied between 0.038𝑀𝑎 for the 

skirted steel footing, 0.043𝑀𝑎 for the RC footing and 0.054𝑀𝑎 for the non-skirted steel footing, 

with surcharge included, and 0.023, 0.041 and 0.047𝑀𝑎 without surcharge respectively. 

Consequently, relative to the pile-only, bending moments were lower throughout the embedded 

length of the hybrid monopiles. Utilising surcharge, the skirted steel footing was best performing 

with the peak bending moment in the pile below the skirt being 58% of that in pile-only. Even 

though the non-skirted RC and steel footings contributed a larger resistive moment relative to 

the skirted steel footing, they led to respective reductions of only 12% and 11% in the peak 

bending moment thus explaining their inefficiency in improving the pile lateral capacity. As a 

result of the fins generating a negligible resisting moment, the reduction in the finned pile’s peak 

bending moment was a paltry 2%. 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19 
 

7. Discussion 

On the basis of these results, the skirted steel footing, with and without surcharge, was the most 

effective hybrid option for enhancing the monopile lateral capacity. Its superiority is attributed to 

the extra soil resistance generated against the skirt, which can be visualised in Figure 10 by 

higher lateral soil stresses in its vicinity. As shown by Figure 11a, in comparison to the pile-only, 

the soil resistance along the skirt length was significantly greater, especially in the stiff clay layer 

where it was on average 716% higher at maximum lateral load. Beyond the skirt tip, there was a 

sharp drop in soil resistance, which suggests that most of the lateral load was being resisted by 

the clay adjacent to the skirt. This translated to a considerable reduction in the lateral 

displacement of the hybrid pile relative to the pile-only (Figure 11b). It can also be inferred from 

the reduction in soil resistance at the pile toe that part of this hybrid pile was redundant and that 

its embedded length could be reduced. However, this needs further investigation.  

 

Even though the fins did not provide significant flexural stiffness to the pile, they were the next 

best option due to additional soil resistance being invoked against them. Figure 12a shows that, 

at maximum lateral load, the soil resistance against the finned section was on average 64% 

greater relative to the pile-only. At a depth, 𝑧, of 12.5 m (𝑧/𝐿 of 0.417), just prior to the 

termination of the fins, there was a marked reduction in soil resistance, the effect of which 

cascaded to the underlying soil until the pile toe. As illustrated in Figure 12b, the increased soil 

resistance along the finned section led to a reduction in the lateral displacement throughout the 

finned pile relative to the pile-only. Interestingly, a slightly greater deflection of the fin toe, or 

‘toe-kick’, occurred due to increased shearing there. This was also manifested by a ‘kink’ in the 

shear force profile immediately after the termination of the fins, at 𝑧/𝐿 of 0.517 (Figure 8). 

Increased shear stresses in the soil adjacent to the fins that are perpendicular to the direction of 

lateral loading can be visualised in Figure 13.   

 

Of the 4 fins provided, the 2 perpendicular to the direction of lateral loading were considered 

most susceptible to plastic yielding. The presence of both sagging and hogging bending 

moments along the length of the perpendicular fins, shown in Figure 14a, indicates that the fins 

undergo twisting when laterally loaded. The deformed shape of the perpendicular fin, illustrated 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 
 

in Figure 14b, confirms this. Figure 14a also shows that fin sections between the depth of 2.5 

and 4 m (𝑧/𝐿 ratio of 0.083 to 0.133) experience the most bending. However, up to the 

maximum lateral load of 12.1 MN, these fin sections had not undergone plastic deformation as 

the bending moment did not even exceed the elastic yield moment, 𝑀y, of 0.402 MNm, let alone 

the plastic moment, 𝑀p, of 0.603 MNm (Figure 15). 

 

It can therefore be postulated that the relative inefficiency of the non-skirted RC and steel 

footings can be attributed to their reliance on the resistance afforded by the soft clay beneath 

the footings. Finally, the dead load from the rock armour interacted positively with the hybrid 

monopiles and enhanced the lateral pile capacity by a further 4-9%. 

 

8. Conclusion 

3D soil-pore fluid coupled FEA was undertaken to assess the effect of hybrid features, namely 

non-skirted RC footing, non-skirted steel footing, skirted steel footing and steel fins, on the 

lateral response of a 5 m diameter monopile in clay. The beneficial influence of rock armour, 

represented by a surcharge load on the hybrid features, was incorporated into all the analyses.  

 

Results indicated a positive interaction between the hybrid features, the rock armour and the 

monopile leading to an increase in its lateral capacity at serviceability. The skirted steel footing, 

followed by the steel fins, were found to be the most effective hybrid options. However, 

experimental research should be undertaken to verify the effectiveness of these hybrid features.  
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Figure captions 

Figure 1. Geometry of hybrid features, (a) RC footing, (b) Steel footing, (c) Skirted steel footing, 

(d) Steel fins 

Figure 2. Monopile-RC footing-soil model and mesh. Inset shows close-up of the monopile-

skirted steel footing-soil model 

Figure 3. Variation in geotechnical parameters with depth, (a) undrained shear strength (b) 

Over-consolidation ratio, (c) initial void ratio, (d) stiffness 

Figure 4. Modified Drucker-Prager yield surface 

Figure 5. Verification of FEA model using centrifuge test (CT), (a) lateral load-displacement 

curve, (b) bending moment profile at applied pile head displacement, ya, of 1.61 m (ym = 0.5 m), 

(c) lateral pile displacement profile at ya = 1.61 m (ym = 0.5 m)   

Figure 6. Relative magnitude of lateral load required to cause hybrid monopile displacement at 

mudline equivalent to the monopile-only 

Figure 7. Relationship between the lateral load and the pile rotation at mudline for the hybrid 

options with rock armour 

Figure 8. Shear force profiles at a lateral load of 5.5 MN 

Figure 9. Bending moment profiles at a lateral load of 5.5 MN 

Figure 10. Higher lateral soil stresses against the skirt (deformation scale factor of 5; stress in 

kPa) 

Figure 11. Comparison of results at maximum lateral load for pile-only and hybrid pile with 

skirted footing and surcharge (a) soil resistance profile (b) lateral pile displacement profile 

Figure 12. Comparison of results at maximum lateral load for pile-only and finned pile with 

surcharge (a) soil resistance profile (b) pile lateral displacement profile 

Figure 13. Increased shear stresses in the soil adjacent to the perpendicular fins (shear stress 

at the base of the pile omitted for clarity) (deformation scale factor of 1; stress in kPa) 

Figure 14. Perpendicular fin (a) bending moment profile at maximum lateral load (b) deformed 

shape (exaggerated using a deformation scale factor of 15) 

Figure 15. Evolution of bending moment with lateral load in the perpendicular fin 
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