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Abstract17

MT�t is a Python module for Bayesian moment tensor source inversion of earthquake seismic18

data using polarities, amplitudes or amplitude ratios. It can solve for double couple or full19

moment tensor solutions, taking into account uncertainties in polarities, take-o� angles of the20

rays from the source to the receiver, and amplitudes. It provides an easily accessible and21

extendable approach to earthquake source inversion which is particularly useful for local and22

regional events.23

Introduction24

Earthquake source inversion is carried out at many seismological observatories and research25

facilities around the world. Pugh et al. (2016b) introduced a Bayesian approach to estimating26

the moment tensor of the source using polarities and amplitude ratios, which was extended to27

include automated Bayesian polarity probability estimates by Pugh et al. (2016a). This28

approach di�ers from existing approaches, such as FPFIT (Reasenberg & Oppenheimer, 1985),29

HASH (Hardebeck & Shearer, 2002, 2003) and FOCMEC (Snoke, 2003), because it uses30

polarities and amplitude ratios in a Bayesian framework to estimate the full source probability31

density function (PDF) for the double-couple and full moment tensor model spaces. The32

approach can include location and velocity model uncertainties, as well as marginalizing over33

measurement uncertainties in the data.34

The approach of Pugh et al. (2016b) has been developed into MT�t, a Python package for35

source inversion. Python is a common programming and scripting language with many scienti�c36

modules available, both for mathematical calculation such as NumPy (https://www.numpy.org)37

and SciPy (https://www.scipy.org/), and for seismological applications such as ObsPy38
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(https://www.obspy.org) (Beyreuther et al., 2010).39

Python and many of its modules are open source, allowing easy code development and removing40

licensing restrictions. Moreover, Python is platform independent, intuitive, and accessible, with a41

good shell interface in the form of iPython (https://ipython.org/). It is used in many �elds and42

is easy to install on almost any computer platform. Python can also interface easily with C and43

Fortran libraries, and can call functions from compiled C modules, such as those generated with44

Cython (http://cython.org/), with no di�erence from normal Python functions. Note that earlier45

versions of the code were referred to as MTINV, but the name has been changed to MTF�t to46

avoid a clash with a previous use of the name MTINV. MT�t has already been used in several47

studies, including these reported by Wilks et al. (2015), Green�eld & White (2015), Pugh et al.48

(2016b), Schuler et al. (2016), Mildon et al. (2016), Smith et al. (2017) and Hudson et al. (2017).49

In this paper, the functionality of MT�t is introduced, and examples of the approach are shown.50

The model probability estimates derived from the Bayesian evidence are explored, and methods51

of extending MT�t are presented. Lastly, two examples of plotting the results from MT�t are52

shown. A �ow diagram outlining the main modules of MT�t is shown in Figure 1.53

54

Moment Tensor Inversion55

MT�t uses the Bayesian source inversion approach from Pugh et al. (2016b). The solutions are56

estimated using polarities and amplitude ratio data, although the code is extendible, so it is57

possible to include other data types in this framework. MT�t incorporates uncertainty estimates58

both in the data, such as those arising due to noise, and due to the model (and location), in the59

resultant posterior PDF. We have developed three sampling approaches, each with di�erent60

advantages and disadvantages (Pugh 2015). MT�t can also be used for relative amplitude61
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Fig. 1: Flow diagram outlining the main steps in the moment tensor inversion package.

inversions (Pugh 2015).62

The MT�t approach evaluates the data likelihood (p (data|model)) for the observations and63

measurement uncertainties at each receiver over a range of random moment tensor samples. These64

likelihoods are combined to produce the likelihood for all the receivers. Location and model65

uncertainties are included by generating samples of locations of the receivers on the focal sphere,66

corresponding to the distribution of possible locations of the earthquake, which are marginalized67

over to produce the location marginalized likelihood. The resultant likelihood is then saved. If a68

Markov chain algorithm is used, the moment tensor samples are generated and saved using the69

Markov chain algorithm.70

MT�t can be called both from the command line and from within the Python interpreter. On71

the command line:72

$ MTfit event_data . inv73

is equivalent to74
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>>> import MTfit75

>>> MTfit . MTfit ( da ta_f i l e="event_data . inv ")76

in the Python interpreter.77

Three search algorithms have been implemented. The simplest is a Monte Carlo (MC) random78

sampling algorithm, which can be limited either by the number of samples or by the elapsed time79

(in seconds):80

$ MTfit −−a lgor i thm=i t e r a t e −−max−samples=100000 event_data . inv81

$ MTfit −−a lgor i thm=time −−max−time=600 event_data . inv82

The other two algorithms are Markov chain Monte Carlo (McMC) approaches: Metropolis-83

Hastings McMC and reversible jump McMC. These are described in detail in Pugh (2015). The84

two McMC algorithms can be selected on the command line:85

$ MTfit −−a lgor i thm=mcmc −−chain−l ength=100000 event_data . inv86

$ MTfit −−a lgor i thm=transdmcmc −−chain−l ength=100000 event_data . inv87

MT�t can be constrained to the double-couple space or allowed to explore the full moment88

tensor space. This also allows comparisons to be made between the di�erent models and can89

be used to evaluate the model probabilities. Additional sampling algorithms can be added using90

entry points. The prior distribution for generating the source models can also be changed, either91

to select speci�c submodels or to change the prior distribution on the source model. An example92

of the former is the strike-slip example in MT�t.extensions.model_sampling_strike_slip, which93

generates only strike-slip sources rather than full double-couple sources.94

The full moment tensor space used in the calculation has 5 free parameters (the 6 parameters95

from the symmetrical moment tensor normalised to 1 because the data types cannot constrain the96

seismic moment).97

5



There are several di�erent output formats, including a MATLAB® format and a format98

based on the .hyp format of NonLinLoc (Lomax et al., 2000, 2009), with a binary structure for99

the moment tensor samples, and it is easy to extend the output formats using the entry points100

described below.101

A Simple Example102

This example shown in Figure 2, using real data collected from the Kra�a volcano in northern103

Iceland can be found at104

https://github.com/djpugh/MT�t/tree/master/examples/SRL_examples/kra�a.py. It is a105

strongly non-double-couple event, with manually picked P- and S-wave arrival times and P-wave106

polarities, located using NonLinLoc (Lomax et al. 2000, 2009). In this case, it is di�cult to107

measure the amplitudes of the S-wave arrivals, so amplitude ratios are ignored. Instead,108

polarities and polarity probabilities (Pugh et al., 2016a) are used separately to constrain the109

source, along with the location data. This event is shown in Pugh et al. (2016b) and investigated110

in more detail in Mildon et al. (2016), and has large location uncertainty, especially in the111

take-o� angle of the source-to-receiver arrays (Figure 2). The script used for generating Figure 2112

is equivalent to outputting the data �le and location uncertainty from Python:113

>>> from MTfit . examples . example_data import kraf la_event , k r a f l a_ l o ca t i on114

>>> data = kraf la_event ( )115

>>> open ( ' kra f la_event . s catang l e ' , 'w ' ) . wr i t e ( k r a f l a_ l o ca t i on ( ) )116

>>> import p i c k l e117

>>> p i c k l e . dump( data , open ( ' kra f la_event . inv ' , 'wb ' ) )118

and calling MT�t with the command line options:119

$ MTfit −−l ocat ion_pdf_f i l e_path=kra f la_event . s c a t ang l e −−a lgor i thm=i t e r a t e120
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Fig. 2: Kra�a example results from the script at
https://github.com/djpugh/MT�t/tree/master/examples/SRL_examples/kra�a.py (run
with 1,000,000 samples). The �rst plot shows the station distribution of observed receivers
on the focal sphere, all with negative polarity, determined from the NonLinLoc estimate
of the location PDF. The lighter points correspond to more likely receiver locations, and
the maximum likelihood station locations with observed polarities are shown as triangles.
The second plot shows the fault plane distribution for the double-couple constrained solu-
tion, with darker fault planes more likely. The last plot shows the Hudson type plot of
the marginalized source-type PDF from the full moment tensor solution, with dark regions
corresponding to low-probability source-types and lighter areas to higher probability types.

−−pmem=1 −−double−couple −−max−samples=121

−−i nve r s i on−opt ions=PPolar i ty −−convert −−bin−s c a t ang l e kra f la_event . inv122

$ MTfit −−l ocat ion_pdf_f i l e_path=kra f la_event . s c a t ang l e −−a lgor i thm=i t e r a t e123

−−pmem=1 −−max−samples=10000000 −−i nve r s i on−opt ions=PPolar i ty −−convert124

−−bin−s c a t ang l e kra f la_event . inv125

It is possible to run these inversions using other algorithms, such as those described in Pugh126

(2015), as described in the MT�t documentation.127

The inversion also produces distributions of the moment tensor parameters which can be128

plotted using the MTplot command to show the distribution of individual parameters (Figure 3).129

Model Probabilities130

Pugh et al. (2016b) introduced a method of estimating the model probabilities using the131

Bayesian evidence. MT�t can include the Bayesian evidence estimation required for this132
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Fig. 3: Marginalised posterior parameter distribution histogram for the �ve parameters described
in Tape & Tape (2012) for the event shown in Fig. 2. γ and δ describe the moment tensor
pattern, while κ (strike angle), h (cosine of dip) and σ (rake) describe the orientation. All
parameters are dimensionless except κ and σ, which are in radians. This shows that the
distributions are well constrained for the δ component, but are less well constrained for the
fault plane orientation and γ component.
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calculation in its results. To estimate the model probabilities for the double-couple and full133

moment tensor models, it is necessary to run the inversions in both the model spaces. The134

�double-couple command line �ag will constrain the model to the double-couple space; otherwise135

the full moment tensor space is used. The Bayesian evidence values generated by each inversion136

can be combined and normalized to produce the model probabilities137

ln (Bmax) = max (ln (BDC) , ln (BMT)) , (1)

pDC =
eln(BDC)−ln(Bmax)

eln(BDC)−ln(Bmax) + eln(BMT)−ln(Bmax)
, (2)

pMT =
eln(BMT)−ln(Bmax)

eln(BDC)−ln(Bmax) + eln(BMT)−ln(Bmax)
, (3)

where B corresponds to a Bayesian evidence estimate (MT�t outputs the logarithm of the138

Bayesian evidence estimate) and pDC and pMT correspond to the double-couple and full moment139

tensor model probabilities respectively. As MT�t can be extended (see below), it is possible to140

introduce new model constraints, and the model probabilities can be extended using a similar141

logic to that in Eqs 1 � 3. For the example shown in Figure 2, the pDC estimate is 0.0008, and the142

pMT estimate is 0.9992. This can be calculated using the MT�t.probability.model_probabilities()143

function, which takes the calculated logarithm of the Bayesian evidence estimates as arguments.144

Alternatively, the model probability can be estimated using the transdimensional (reversible145

jump) McMC algorithm, selected using �algorithm = transdmcmc. This algorithm uses the146

reversible-jump approach described in Pugh (2015). The model probability estimates from this147

algorithm are consistent with those from the Bayesian evidence estimators (Pugh, 2015), and148

both estimates can be used as a hypothesis test for whether or not the source is double-couple.149

Figure 4 shows inversions for a synthetic double-couple source with a range of di�erent signal to150

noise ratios (SNR) and polarity picks. As the SNR decreases, fewer picks can be made on151
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arrivals, thus reducing the constraints available for �tting. The two left hand columns show the152

results using only polarity picks, while the two right hand columns include constraints from153

polarity and amplitude data. We show the solutions if they are constrained to be double-couple154

in the �rst and third columns. The constraints also allowed full moment tensor solutions to be155

calculated, and these are shown in the second and fourth columns. It is clear that, as expected,156

the solutions are constrained better for the higher SNR cases. But there is a marked157

improvement in the constraints if amplitude ratios as well as polarity data are also taken into158

account (third and fourth columns in Figure 4). Indeed, for the better SNR cases, down to SNR159

of 3, the moment tensor solutions that include amplitude ratios still return a double-couple160

solution as the best �t, and even with a SNR of 2, the best solution is close to a double couple:161

these full moment tensor solutions also faithfully reproduce the strikes and dips of the nodal162

planes of the synthetic example we used (top row, Figure 4), at least down to SNR as low as 3.163

Computer Run Times164

Typical run times depend on the sampling size and the chosen algorithm as well as details of the165

particular moment tensor solution. Figure 5 shows processor elapsed time for calculation of a166

typical double couple source mechanism using a relatively slow single core computer. The167

random sampling and McMC algorithms produce comparable results, but the McMC calculation168

takes about 5 times longer to achieve similar resolution. Random sampling requires typically 50169

million samples to produce a good sampling of the PDF, though the peak is sharpened if the170

number of samples is increased to 500 million. The McMC approach requires far fewer samples171

than random sampling, with a chain length of 50,000 for the McMC approach giving comparable172

results to 100 million random samples. However, the calculation of the likelihood for a large173

number of samples is much faster with the random sampling algorithm because the McMC174
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Fig. 4: Lower hemisphere equal area projections and Hudson plots of the source PDF for a syn-
thetic double-couple source for a range of data uncertainties, corresponding to SNR =
in�nity, SNR = 10, SNR = 7, SNR = 5, SNR = 3 and SNR = 2. The �rst and third
columns show the source PDF for the solution constrained to be double-couple only. The
second and fourth columns show the source PDF for the full moment tensor solution. The
�rst two columns show the solutions for inversions using only polarity data, and the second
two columns show the solutions using polarity and amplitude ratio data. Manually picked
station �rst motions are given by upward red or downward blue triangles. For the focal
sphere plots, possible fault planes are given by dark lines. The most likely fault planes are
given by the darkest lines. For the Hudson plots, high probability is red and low probability
is in blue.
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Fig. 5: Elapsed time on a single core computer for di�erent sample sizes of the random sampling
(left plot) and for the McMC algorithms with di�erent chain lengths (right plot) for a
double couple source with no uncertainties in the input data. The red dots in the McMC
case correspond to the trans-dimensional McMC algorithm and the blue dots correspond
to the standard algorithm.

algorithm requires extra computations to obtain new samples. The random sampling algorithm175

can also readily be parallelised, with n processors reducing the calculation time n-fold. Although176

there are techniques for sampling multiple Markov chains in parallel, the overall gain in speed is177

much less than for random sampling.178

If location uncertainty and model uncertainty are also included in the forward model, there is a179

signi�cant increase in the time taken to run the random sampling algorithm before su�cient180

sampling has been achieved because the algorithm is running a Monte-Carlo test over all the181

location uncertainties: for m-location samples this is equivalent to calculating m-events (where182

m is typically 500 to 1000 or more). The additional uncertainties have less e�ect on the time183

taken to run the McMC algorithm because it requires fewer samples at each iteration. An184

example of the elapsed calculation time for inversions including location and model185

uncertainities is shown in Figure 6.186

187
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Fig. 6: Elapsed time on a single core computer for di�erent sample sizes of the random sampling
algorithm (left plot) and for the McMC algorithms with di�erent chain lengths (right plot)
for a double couple source which includes location and velocity model uncertainties. The
red dots in the McMC case correspond to the trans-dimensional McMC algorithm and
the blue dots correspond to the standard algorithm. The velocity model and location
uncertainty in the source was included with a one degree binning, reducing the number of
location samples from 50,000 to 5,463.

Extending MT�t188

MT�t has been written so that it is easy to extend. This is achieved using the Python setuptools189

module (https://pythonhosted.org/setuptools/), which provides entry points for a module.190

These entry points enable a module to check for other functions in di�erent modules that have191

been advertised at this entry point, and can call them without any changes to the source code of192

either module. The MT�t documentation provides a more comprehensive description of the193

entry points, and how to call them, but a small overview is provided here.194

Table 1 shows the list of entry points for MT�t. This section presents a step-by-step guide for195

installing an example data parser entry point.196

First, the parser code must be written, which requires understanding the format of the input197

data, and parsing the required observations to be used in MT�t. The return data format is a198

Python dictionary of data per event, with the results for multiple events corresponding to a list199

of dictionaries.200

https://github.com/djpugh/MT�t/tree/master/examples/SRL_examples/simple_parser.py201
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Entry Point Description

MT�t.cmd_opts Command line options
MT�t.cmd_defaults Default parameters for the command line options
MT�t.tests Test functions for the extensions
MT�t.pre_inversion Function to be called with all kwargs before the

inversion object is initialised
MT�t.post_inversion Function to be called with all available kwargs

after the inversion has occurred
MT�t.extensions Functions that replace the call to the inversion

using all the kwargs
MT�t.parsers Functions that return the data dictionary from

an input �lename
MT�t.location_pdf_parsers Functions that return the location PDF samples

from an input �lename
MT�t.output_data_formats Functions that format the output data into a

given type, often linked to the output format
MT�t.output_formats Functions that output the results from the

output_data_formats
MT�t.process_data_types Functions to convert input data into correct

format for new data types in forward model
MT�t.data_types Functions to evaluate the forward model for new

data types
MT�t.parallel_algorithms Search algorithms that can be run (in parallel)

like MC random sampling
MT�t.directed_algorithms Search algorithms that are dependent on the

previous value (e.g., McMC)
MT�t.sampling Function that generates new moment tensor

samples in the MC random sampling algorithm
MT�t.sampling_prior Function that calculates the prior probability

distribution either in the McMC algorithm or the
MC Bayesian evidence estimate

MT�t.sample_models Function that generates random samples
according to some source model

MT�t.plot Callable class for source plotting using matplotlib
MT�t.plot_read Function that reads the data from a �le for the

MTplot class
MT�t.documentation Installs the documentation for the extension
MT�t.source_code Installs the source code documentation for the

extension

Tab. 1: List of MT�t entry points and their short descriptions. For details see the MT�t docu-
mentation.
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shows an example parser for a simple data format of202

ReceiverName\tPolarity\tError\tAzimuth\tTakeO�Angle.203

This parser can be installed using the MT�t.parsers entry point, which requires a setuptools204

setup.py �le for the parser, which should contain the entry point de�nition:205

kwargs [ ' entry_points ' ] = { 'MTfit . par se r s ' : [ ' . sim = example : s imple_parser ' ] }206

With the parser installed, input �les that end in .sim can be read by MT�t.207

Similar approaches for the other entry points allow further extension of MT�t.208

Plotting Results209

MT�t also has a plotting submodule, MT�t.plot, which uses matplotlib210

(https://www.matplotlib.org) to plot the results. It can handle several di�erent plot types,211

including beachball plots, fault plane plots, Riedesel-Jordan plots (Riedesel & Jordan, 1989),212

radiation pattern plots, lune plots (Tape & Tape, 2012), and Hudson plots (Hudson et al., 1989).213

These are shown in Figure 7, which also shows several representations of the source PDF on the214

fault plane, lune, and Hudson plots. The MT�t.plot entry point allows other plot types to be215

added easily.216

An example script for generating the plots in Figures 2 and 7 is shown in217

https://github.com/djpugh/MT�t/tree/master/examples/SRL_examples/plot_kra�a.py218

There is a similar MATLAB® module, MTplot, available from219

https://github.com/djpugh/MTplot, which can produce similar plot types and also several220

additional ones.221
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Fig. 7: MTplot examples showing (a) an equal area projection of a beachball for an example
moment tensor source, (b) fault plane distribution showing the mean orientation in green,
(c) Hudson and (d) lune type plots of a full moment tensor PDF, and (e) a Riedesel-Jordan
type plot of an example moment tensor source.

Conclusion222

MT�t is a Python module for Bayesian source inversion using di�erent data types. It has been223

written to allow easy extension using Python and C modules. It has an in-built test suite, which224

allows changes to the code base to be tested, and it is platform independent, requiring only225

Python. It has been written to take advantage of parallel computation, both on a single machine226

and over a larger cluster, using MPI and multiprocessing.227

MT�t provides an easily accessible and extendable updated approach to source inversion. The228

detailed documentation and package can be accessed at https://github.com/djpugh/MT�t.229

Data and Resources230

The example data used here are included in the MT�t package and have been published in231

Mildon et al. (2016). The MT�t package and detailed documentation is available from232

https://github.com/djpugh/MT�t for research and teaching i.e. for non-commercial use only.233

The methods incorporated into the MT�t package are patents-pending, protected, and licensed234

intellectual property. Applications for commercial use of the MT�t package and/or its underlying235
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methodologies should be made to either Schlumberger or Cambridge Enterprise Limited.236
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Figure Captions291

Figure 1. Flow diagram outlining the main steps in the moment tensor inversion package.292

293

Figure 2. Kra�a example results from the script at294

https://github.com/djpugh/MT�t/tree/master/examples/SRL_examples/kra�a.py (run with295

1,000,000 samples). The �rst plot shows the station distribution of observed receivers on the296

focal sphere, all with negative polarity, determined from the NonLinLoc estimate of the location297

PDF. The lighter points correspond to more likely receiver locations, and the maximum298

likelihood station locations with observed polarities are shown as triangles. The second plot299

shows the fault plane distribution for the double-couple constrained solution, with darker fault300

planes more likely. The last plot shows the Hudson type plot of the marginalized source-type301

PDF from the full moment tensor solution, with dark regions corresponding to low-probability302

source-types and lighter areas to higher probability types.303

304

Figure 3. Marginalised posterior parameter distribution histogram for the �ve parameters305

described in Tape & Tape (2012) for the event shown in Fig. 2. γ and δ describe the moment306

tensor pattern, while κ (strike angle), h (cosine of dip) and σ (rake) describe the orientation. All307

parameters are dimensionless except κ and σ, which are in radians. This shows that the308

distributions are well constrained for the δ component, but are less well constrained for the fault309

plane orientation and γ components.310

311

Figure 4. Lower hemisphere equal area projections and Hudson plots of the source PDF for a312

synthetic double-couple source for a range of data uncertainties, corresponding to SNR =313

in�nity, SNR = 10, SNR = 7, SNR = 5, SNR = 3 and SNR = 2. The �rst and third columns314
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show the source PDF for the solution constrained to be double-couple only. The second and315

fourth columns show the source PDF for the full moment tensor solution. The �rst two columns316

show the solutions for inversions using only polarity data, and the second two columns show the317

solutions using polarity and amplitude ratio data. Manually picked station �rst motions are318

given by upward red or downward blue triangles. For the focal sphere plots, possible fault planes319

are given by dark lines. The most likely fault planes are given by the darkest lines. For the320

Hudson plots, high probability is red and low probability is in blue.321

322

Figure 5. Elapsed time on a single core computer for di�erent sample sizes of the random323

sampling (left plot) and for the McMC algorithms with di�erent chain lengths (right plot) for a324

double couple source with no uncertainties in the input data. The red dots in the McMC case325

correspond to the trans-dimensional McMC algorithm and the blue dots correspond to the326

standard algorithm.327

328

Figure 6. Elapsed time on a single core computer for di�erent sample sizes of the random329

sampling algorithm (left plot) and for the McMC algorithms with di�erent chain lengths (right330

plot) for a double couple source which includes location and velocity model uncertainties. The331

red dots in the McMC case correspond to the trans-dimensional McMC algorithm and the blue332

dots correspond to the standard algorithm. The velocity model and location uncertainty in the333

source was included with a one degree binning, reducing the number of location samples from334

50,000 to 5,463.335

336

Figure 7. MTplot examples showing (a) an equal area projection of a beachball for an example337

moment tensor source, (b) fault plane distribution showing the mean orientation in green, (c)338
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Hudson and (d) lune type plots of a full moment tensor PDF, and (e) a Riedesel-Jordan type339

plot of an example moment tensor source.340
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