
Samuel A. Mason, Faiz Sayyid, Paul D. W. Kirk, Colin Starr, and
David L. Wild*
MDI-GPU: Accelerating integrative
modelling for genomic-scale data using
GP-GPU computing

Abstract: The integration of multi-dimensional datasets remains a key challenge
in systems biology and genomic medicine. Modern high-throughput technologies
generate a broad array of different data types, providing distinct – but often com-
plementary – information. However, the large amount of data adds burden to any
inference task. Flexible Bayesian methods may reduce the necessity for strong mod-
elling assumptions, but can also increase the computational burden. We present an
improved implementation of a Bayesian correlated clustering algorithm, that per-
mits integrated clustering to be routinely performed across multiple datasets, each
with tens of thousands of items. By exploiting GPU based computation, we are
able to improve runtime performance of the algorithm by almost four orders of
magnitude. This permits analysis across genomic-scale data sets, greatly expand-
ing the range of applications over those originally possible. MDI is available here:
http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/

1 Introduction
The integration of multi-dimensional datasets remains a key challenge in systems bi-
ology and genomic medicine. Modern high-throughput technologies generate a broad
array of different data types, providing distinct — yet often complementary — infor-
mation. The Multiple-Dataset Integration (Kirk et al., 2012) (MDI) algorithm permits
the simultaneous clustering of an arbitrary number of datasets in a context dependent
manner. This, and related, methods, show promise in recovering biologically mean-
ingful clusters, as demonstrated in a number of recent studies (Barash and Friedman,
2002; Liu et al., 2006, 2007; Savage et al., 2010; Rogers et al., 2009; Savage et al.,

Samuel A. Mason, David L. Wild: Systems Biology Centre, University of Warwick, Coven-
try, CV4 7AL, UK
Faiz Sayyid: Department of Computer Science, University of Warwick, Coventry, CV4 7AL,
UK
Paul D. W. Kirk, Colin Starr: MRC Biostatistics Unit, Cambridge Institute of Public
Health, Cambridge, CB2 0SR, UK

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162913154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Samuel A. Mason, Faiz Sayyid, Paul D. W. Kirk, Colin Starr, and David L. Wild

2013; Yuan et al., 2011). By performing simultaneous clustering over multiple of com-
plementary datasets our method is able to exploit correlations in clustering structure
between datasets.

MDI is motivated by the desire to separate the items within datasets into statisti-
cally distinct clusters while exploiting any latent structure in cluster allocations across
datasets. A flexible Bayesian mixture modelling approach is taken in order to allow
the data to speak for themselves, and to avoid overly strong modelling assumptions.
MDI requires that each of the K datasets contain the same n items, while allowing each
dataset to be drawn from a different distribution and to contain different feature sets.
For example one dataset could contain log-Normally distributed gene-expression data,
whilst another contains Multinomial phenotypic attributes.

Previous implementations of this algorithm have been in the MATLAB program-
ming language, whose resulting performance limited clustering to only a few hundred
items. In this work, we improve the implementation such that tens of thousands of
items may be clustered, removing any a-priori requirement to filter the large numbers
of genes available from genomic-scale studies.

2 Methods
As in Kirk et al. (2012) we employ an approximation to the Dirichlet-process (DP)
mixture model, by truncating to a finite N components. Within a single dataset, the data,
x, is distributed as F and parametrised by θ , with latent cluster allocations described by
c1...n:

xi | ci,θ ∼ F(θci) , θci ∼ G(0) , (1)

ci | π ∼Multinomial(π1, . . . ,πN) , (2)

π1, . . . ,πN ∼ Dirichlet(α/N, . . . ,α/N) , (3)

where i ranges over items, α describes the Dirichlet concentration of mixture propor-
tions π1...N , and θs are drawn from base distribution G(0). The distributions of F and G
supported remain unchanged from previous publications.

Markov-chain Monte Carlo (MCMC) sampling of the posterior is performed using
a hybrid sampler consisting of Gibbs and Metropolis-Hastings steps. In genomic-scale
datasets the number of items to cluster increases dramatically, and runtime becomes
dominated by a Gibbs step sampling ci, termed “conditional component allocation”—
which scales as O(nNK), using big-O notation. In order to reduce MC integration times,
we turned to algorithmic changes and a C implementation capable of exploiting Graph-
ical Processing Unit (GPU) based computation via CUDA (Nvidia, 2013). GPU based
computation requires a large degree of parallelism, and this is naturally present when a



MDI-GPU: Accelerating integrative modelling for genomic-scale data using GP-GPU computing 3

large number of calculations are independent of each other. Within the previous algo-
rithm this independence is, in principle, present when evaluating dependence between
datasets (Kirk et al., 2012, section 2.2). However, Kirk et al. target the following con-
ditional distribution, as a result of which each cluster assignment is dependent on all
other cluster assignments:

ci | c,π ∼Multinomial(π̂i,1, . . . , π̂i,N) , (4)

π̂i, j ∝ π j

∫
f
(
xi | xC−i

j
,θ
)

dθ , (5)

where C−i
j is the set of items associated with cluster j except for item i, and the weights

π̂ are drawn using the density function f associated with F , and normalised such that
∀i,∑ j π̂i, j = 1.

We therefore introduce independence in cluster allocations by explicitly sampling
each clusters’ parameters, θ j, as suggested in Suchard et al. (2010):

θ j |C j ∼ F(xC j ) , (6)

ci | π,θ ∼Multinomial(π̂i,1, . . . , π̂i,N) , (7)

π̂i, j ∝ π j f
(
xi | θ j

)
. (8)

Moving this integration into the MC sampler requires additional parameters to be
sampled, however the target distribution remains unchanged and, empirically, does not
appreciably alter the rate at which component allocations mix.

3 Results and Discussion
The changes noted above reduce the MCMC integration time by approximately four
orders of magnitude, as shown using synthetic data in Fig. 1. The statistical models
used for the different datatypes are described in the online Supplementary Material.
In greater detail, this total improvement results from four changes: first, the algorith-
mic change to the sampler resulted in a 5-fold runtime improvement across all imple-
mentations, second, the C implementation reduced runtime by 100 times, third, a fur-
ther 5-fold improvement is obtained by employing cache-friendly algorithms and data-
structures, finally a 30-fold improvement is obtained by enabling the optional CUDA
support.

To generate the data used in Fig. 1, cluster allocations were first drawn from a
DP, with concentration parameter α = 1 and whose base distribution is the prior of
each datatype. Samples were generated from the resulting components, to produce a
synthetic dataset whose analysis was timed for the original MATLAB (circles), and C
implementations with and without CUDA support enabled, drawn as diamonds and



4 Samuel A. Mason, Faiz Sayyid, Paul D. W. Kirk, Colin Starr, and David L. Wild

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

100 200 500 1000 2000 5000 10000 20000

0.
37

10
10

0
10

00
17

00
0

Items to Cluster

M
ill

is
ec

on
ds

 p
er

 M
C

M
C

 s
am

pl
e

●

●

●

●

●Bag of Words
Multinomial
Gaussian
Gaussian Process

Matlab
C
C & CUDA

Fig. 1. Log-log plot of average runtimes for a single MC sample comparing the original to
our new implementation, with and without CUDA support enabled. Runtimes are reported
for a given number of items when clustering datasets of individual datatypes, with each
point’s datatype is indicated by its colour and the implementation by the point’s style. The
plateau in runtime at smaller item counts is due to the per-item runtime being dominated
by other constant factors.

crosses respectively. This was repeated five times and median runtimes used for plot-
ting. The only free parameter in MDI that significantly affects runtime is the DP trun-
cation, N, which here is fixed at 50. Ensuring N is approximately double the number
of occupied clusters provides a good trade off between runtime and accuracy. Run-
time scales almost linearly with the number of items and features present in the data,
whilst the number datasets scales as O(2K2

) placing a practical upper limit on the num-
ber of datasets at six. The performance difference visible between Gaussian and other
datatypes in the new implementation is largely due to evaluating transcendental func-
tions when performing component allocation.

In a more realistic example consisting of 2000 items with a single dataset drawn
from each datatype and all clustered simultaneously, the MATLAB implementation
takes 37 seconds to generate a single MC sample. This time is reduced to 46 millisec-
onds with the C implementation, and down to 8.8 milliseconds when CUDA support is
enabled. All performance evaluations were performed on 2.13GHz Intel Xeon E5606
processors with Tesla C2075 GPUs, running Ubuntu 14.10 and MATLAB 2013b, GNU
GCC 4.9.1 and CUDA 6.0.1. The code has been developed and tested under recent
versions of Ubuntu and OS X.

In order to obtain reasonable posterior estimates, three chains of 104 MC sam-
ples are generally required. Clustering three datasets of 103 items could occupy nine
days of CPU time with the MATLAB implementation, while the CUDA implementa-
tion reduces this to less than five minutes. Alternatively, the CUDA implementation
allows 104 items to be clustered in less than two hours, a number that would have taken
months of computation time with the MATLAB implementation. This reduction in anal-



MDI-GPU: Accelerating integrative modelling for genomic-scale data using GP-GPU computing 5

ysis time permits both significantly larger datasets to be analysed whilst also permitting
a significantly faster analysis turnaround when working on smaller datasets.

Funding:
This work was supported by the EPSRC (grants EP/I036575/1 and EP/J020281/1).

References
Barash, Y. and N. Friedman (2002): “Context-specific Bayesian clustering for gene expres-

sion data.” Journal of Computational Biology, 9, 169–91.
Kirk, P., J. E. Griffin, R. S. Savage, Z. Ghahramani, and D. L. Wild (2012): “Bayesian cor-

related clustering to integrate multiple datasets,” Bioinformatics (Oxford, England), 28,
3290–3297.

Liu, X., W. J. Jessen, S. Sivaganesan, B. J. Aronow, and M. Medvedovic (2007): “Bayesian
hierarchical model for transcriptional module discovery by jointly modeling gene expres-
sion and ChIP-chip data.” BMC Bioinformatics, 8, 283.

Liu, X., S. Sivaganesan, K. Y. Yeung, J. Guo, R. E. Bumgarner, and M. Medvedovic
(2006): “Context-specific infinite mixtures for clustering gene expression profiles across
diverse microarray dataset.” Bioinformatics (Oxford, England), 22, 1737–44.

Nvidia (2013): “Compute Unified Device Architecture,” URL http://docs.nvidia.com/cuda/
cuda-c-programming-guide/.

Rogers, S., A. Klami, J. Sinkkonen, M. Girolami, and S. Kaski (2009): “Infinite factorization
of multiple non-parametric views,” Machine Learning, 79, 201–226.

Savage, R. S., Z. Ghahramani, J. E. Griffin, B. J. de la Cruz, and D. L. Wild (2010): “Dis-
covering transcriptional modules by Bayesian data integration,” Bioinformatics (Oxford,
England)), 26, i158–i167.

Savage, R. S., Z. Ghahramani, J. E. Griffin, P. Kirk, and D. L. Wild (2013): “Identifying
cancer subtypes in glioblastoma by combining genomic, transcriptomic and epigenomic
data,” in International Conference on Machine Learning.

Suchard, M. A., Q. Wang, C. Chan, J. Frelinger, A. Cron, and M. West (2010): “Under-
standing GPU Programming for Statistical Computation: Studies in Massively Parallel
Massive Mixtures.” Journal of Computational and Graphical Statistics, 19, 419–438.

Yuan, Y., R. S. Savage, and F. Markowetz (2011): “Patient-specific data fusion defines
prognostic cancer subtypes.” PLoS computational biology, 7, e1002227.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

	MDI-GPU: Accelerating integrative modelling for genomic-scale data using GP-GPU computing
	1 Introduction
	2 Methods
	3 Results and Discussion


