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Abstract

Reconstructing continuous signals from discrete time-points is a challenging

inverse problem encountered in many scientific and engineering applications.

For oscillatory signals classical results due to Nyquist set the limit below

which it becomes impossible to reliably reconstruct the oscillation dynamics.

Here we revisit this problem for vector-valued outputs and apply Bayesian

nonparametric approaches in order to solve the function estimation problem.

The main aim of the current paper is to map how we can use of correlations

among different outputs to reconstruct signals at a sampling rate that lies

below the Nyquist rate. We show that it is possible to use multiple–output

Gaussian processes to capture dependencies between outputs which facilitate

reconstruction of signals in situation where conventional Gaussian processes

(i.e. this aimed at describing scalar signals) fail, and we delineate the phase

and frequency dependence of the reliability of this type of approach. In

addition to simple toy-models we also consider the dynamics of the tumor

suppressor gene p53, which exhibits oscillations under physiological condi-
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tions, and which can be reconstructed more reliably in our new framework.

Keywords: Gaussian processes, Mutiple-output Gaussian processes,

Oscillating systems, Nyquist limit

1. Introduction

The reconstruction of dynamical processes in nature and technology from

experimental observations has become central to many scientific fields [1].

Regression approaches, for example, take experimental data and model the

empirically found relationships between free, x, and dependent variables, y,

in order to capture or predict the behaviour of the system [2]. Here the choice

of the model,

y ∼ f(x; θ)

is generally chosen in light of prior knowledge or beliefs about the correct

relationship between y and x; the choice of the functional form for f(. . .)

is thus of crucial importance and a wealth of statistical approaches [3, 4]

have been developed to choose the best models as well as sets of predictor

variables, x, that allow us to explain the change in y.

But even if we have settled on the correct form for f(. . .) the dynamics

captured by the regression framework may still differ substantially from the

true relationship. This is perhaps less apparent in conventional linear regres-

sion frameworks, but becomes readily apparent in more complicated contexts

such as (complex) dynamical systems[5, 6]. Here we are particularly inter-

ested in oscillatory systems; these have been characterized comprehensively

in physics and many engineering contexts, and they continue to intrigue in

biological contexts that range from ecosystems down to molecular networks
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that control, for example, circadian clocks and the cell cycle. Our aim here

is to explore how we can capture such oscillatory behaviour from observing

sets of random variables Xt, Yt, . . . that depend on time t and are produced

by a vector-valued source model.

In order to reconstruct the essential aspects of an oscillatory process, in

particular its frequency, temporal sampling of the output has to be sufficiently

dense. The theoretical framework is due to Nyquist and Shannon, and for

scalar signals very straightforward; in particular the so-called Nyquist rate

[7, 8], reviewed in detail below, sets the minimum frequency at which a signal

needs to be sampled so that the frequency of the original signal can be reliably

inferred. Here we investigate the extent to which temporal sampling affects

an important class of Bayesian non-parametric approaches.

Gaussian processes (GP) have seen widespread application in signal pro-

cessing [9], machine learning [10, 11, 12], and modelling of dynamical systems

[13, 14]. GPs define priors over the space of differentiable functions. They are

outlined briefly below and reviewed extensively in [15]. Typically, they pro-

ceed by considering the output of a scalar-valued function over time, and can

be used to define posterior distributions that capture the temporal change in

system output (including an assessment of the uncertainty). GPs for scalar

inputs are, of course, subject to the same limitations imposed by the Nyquist-

Shannon theorem, and inappropriate (i.e. too sparse) sampling, will result

in incorrect inferences about the system dynamics: while aspects of the qual-

itative dynamics — oscillatory vs. non-oscillatory — may be recovered, the

frequency cannot be inferred adequately below the Nyquist rate.

In many important instances, the source of the information does not,
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however, only produce one output, but generates vector-valued outputs. Tra-

ditionally, in the GP framework these have been treated as independent and

separate GPs have been fitted to each output separately. Multi-output GPs

(MOGP) [16, 17] are more recent developments that allow us to detect cor-

related behaviour between different outputs of a system; this in turn opens

up the ability of “borrowing” information between outputs if these are cor-

related or mutually informative in some discernible way. MOGPs are used

to infer such dependencies from the available data, and here we investigate

whether this is indeed a worthwhile pursuit. More specifically, we investigate

in illustrative examples and applications to the p53 protein signalling system,

whether MOGPs are superior to conventional GP procedures in correctly in-

ferring properties of oscillatory behaviour. Below, after a brief discussion

of the Nyquist ratio, we review GPs and MOGPs before discussing their

behaviour and their use in reconstructing oscillatory dynamics; to our con-

tinuing surprise the role of the Nyquist rate has received scant if any attention

from the Bayesian non-parametric community and this is the first compre-

hensive analysis of the factors affecting reconstruction on oscillatory signals

using GPs and MOPGs. We conclude by giving a brief set of guidelines as

to how proceed carefully when trying to analyze oscillatory systems.

2. Nyquist Ratio for Oscillatory Systems

In information theory, and especially in the theory of signal processing,

the signal sampling rate often determines reliability of signal transmission

and recovery. Usually it is analysed in the time domain where a sequence

of samples is often spaced uniformly, but in order to describe adequately
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or recover the signal using a finite (typically small) set of samples, it is

critical to choose the correct sampling rate. The Nyquist–Shannon sampling

theorem [7, 18] sets out a lower bound on this rate, below of which recovery

is impossible.

Let y(t) be a continuous-time signal and fm : |f | > fm be the band-

limit of the frequency f of the signal. The theorem states that the original

continuous time signal can be accurately reconstructed from the series of

discrete samples only if the signal is sampled at a frequency fs > 2fm, where

2fm is called the Nyquist rate. Thus the Nyquist rate is a minimum rate at

which it is necessary to sample a signal, so that its frequency information can

be recovered. A signal sampled at less than its Nyquist rate will be referred

to as an undersampled signal; a signal sampled at greater than its Nyquist

rate is accordingly referred to as an oversampled signal (even if correctly

sampled may be more appropriate). In order to identify the Nyquist rate, it

is of course better to move into the frequency domain. The Fourier transform

(FT) of a signal y(t) is,

G(F ) ≡ F{y(t)} =

∞∫
−∞

y(t) exp(−i2πft)df,

where f is a frequency. The FT tells us which frequencies constitute the

signal and the Nyquist sampling rate is readily identifiable from G(F ) for a

given signal, y(t).

3. Gaussian Processes

Here we take a Bayesian non-parametric perspective on signal recovery.

In particular we use Gaussian process regression (GPR) in order to obtain
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representations of the signal. Let x and z be continuous n-dimensional real–

valued vectors; x = {x1, . . . , xn} represents inputs and z = {z1, . . . , zn}

corresponds to the outputs. In a regression framework we relate x and z

through a function, z = f(x). The observed values of the dependent variable,

z, may be related to the independent variables, f(x) by

y(xi) = f(xi) + ε, i = 1, . . . , n,

where ε is a noise term, which for simplicity, is generally assumed to follow

a Gaussian distribution, ε ∼ N (0, σ2
ε ). In GPR we place a Gaussian process

(GP) [19] prior over the functions f(x), i.e. f ∼ GP . In simple terms this

means that the nonlinear function f evaluated at a finite number of input

points x1, . . . , xn has a multivariate Gaussian distribution with zero mean

and there exists a covariance function, K,

[f(x1), ..., f(xn)]T ∼ N (0, K(x,x′)).

The covariance function can be chosen to meet e.g. specific criteria imposed

by the data considered, or to facilitate computational evaluation. Here we

make a generic and flexible choice and set the covariance function to be a

squared exponential with unknown set of parameters θ = {σ2
g , l},

K ≡ Kse(xp,xq) = σ2
g exp (− 1

2l
|xp − xq|2),

where xp and xq are input vectors. Consequently, y = {y1, ..., yn}T has a

normal distribution with zero mean and covariance matrix C(θ) = K + σ2
ε I,

with I the identity matrix.

The parameters, θ, need to be inferred from the data; typically, this is
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h(t)x(t) z(t)

Figure 1: Graphical representation of single input-output linear system. x(t) is an input

signal (excitation); z(t) - an output signal (response); and h(t) - impulse response.

done by evaluating the log-likelihood function, which is given by

L(θ) = −1

2
log |C(θ)| − 1

2
yTC(θ)−1y − n

2
log 2π; (1)

from this we can, for example, obtain the maximum likelihood estimates of

the model parameters, θ̂.

Given the GP prior it is possible to compute the posterior which is also

a GP. Under the prior we have for any finite number of input (test) points

x?1, ..., x
?
r the joint (prior) probability distribution

[y, f(x?1), ..., f(x?r)]
T ∼ N

0,

 K(xp,xq) + σ2
ε I K(xp,x

?
q)

K(x?p,xq) K(x?p,x
?
q)

 .

Hence, in order to get the posterior distribution over functions it is nec-

essary to determine a suitable form for the joint prior above. The values

f(x?1), ..., f(x?r) of function f conditioned on the outputs y are also jointly

distributed according to [15],

[f(x?1), ..., f(x?r)]
T |y ∼ N (mp, Kp), (2)

where

mp = K(x?p,xq)[K(xp,xq) + σ2
ε I]
−1y,
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and

Kp = K(x?p,x
?
q)−K(x?p,xq)[K(xp,xq) + σ2

ε I]K(xp,x
?
q).

As a result, given a GP prior and observations equation (2) defines a GP

posterior.

Here we use GPs to obtain statistical descriptions (including an assess-

ment of their uncertainty) of functions that describe sets of points, i.e. we

use them as a curve fitting technique. But our discussion thus far pertains

only to single outputs. If we have sets of dependent variables for each x,

i.e. we want to make predictions about several variables simultaneously, it is

wise to consider a model that could capture the correlations between these

variables. One way of dealing with multiple outputs is to model each output

variable independently using single GPs; however, this does not capture the

dependencies between the output variables and it becomes difficult to specify

a valid covariance function that could include cross and auto correlations in

a set of related Gaussian processes. An alternative formulation for handling

many outputs was introduced by Boyle and Frean [16], who constructed de-

pendant Gaussian process via multiple-input multiple-output linear filters,

which are described next.

4. Multiple–Output Gaussian Processes

In this section we introduce the theory on GPs that are the outputs of

linear filters excited by white noise [20]. In signal transmission theory a linear

system represents a physical unit that is able to generate an output signal in

response to a given input signal [8]. Linearity here means that the system’s
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response z(t) to multiple simultaneous signals x(t) is equal to the sum of

responses z1(t), ..., zn(t) of the individual signals x1(t), ..., xn(t), see Figure 1.

Linear filters that are time invariant (shifting an input in time x(t + τ)

result in the same shift of an output in time z(t + τ)) can be characterised

by their impulse response, h(t), and the output, z(t), can be expressed via

the convolution,

z(t) = h(t)⊗ x(t) =

∞∫
−∞

h(τ)x(t− τ)dτ,

where the symbol ⊗ denotes the convolution operator. In addition if the

impulse response satisfies a necessary and sufficient stability condition, i.e.

it is absolutely integrable
∞∫

−∞

|h(t)|dt <∞,

and the input X(t) is a Gaussian white noise process, then the output Z(t)

will be a Gaussian process as well. Specifying a stable, linear, time invariant

filter with M Gaussian white noise processes as inputs, X1(t), . . . , XM(t),

K outputs, Z1(t), . . . , ZK(t), and M × K impulse responses, results in a

dependent Gaussian processes model [16]. A multiple–input multiple–output

filter can thus be defined as

Zk(t) =
M∑
m=1

∞∫
−∞

hmk(τ)Xm(t− τ)dτ,

where hmk(t) are kernel functions and Zk(t) the kth output in response to

m impulses. Generally, observed outputs might differ from expected outputs

because of measurement noise, and for this reason we use,

Yk(t) = Zk(t) +Wk(t), (3)
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where Wk(t) is a stationary Gaussian white noise process with variance σ2
k.

It follows that such a modelling framework includes the dependencies

between outputs Yk(t) by deriving them from a shared set of input noise

sources. At this point setting the impulse response to be a Gaussian ker-

nel hmk(t) = vmk exp{−1
2
(t − µmk)

2Amk}, the cross-covariance and auto-

covariance function between outputs i and j take the following form,

covij(d) =
M∑
m=1

∞∫
−∞

hmi(t)hmj(t+ d)dt

=
M∑
m=1

(2π)
1
2vmivmj√

Ami + Amj
exp

{
− 1

2
(d− [µmi − µmj])2S

}
,

where, S = Ami(Ami + Amj)
−1Amj and d = ta − tb is the separation be-

tween two input points, (see [16] appendix for derivation and generalisation

to multi-dimensions). Such a covariance function allows the construction of

intermediate matrices Cij, that combined together define a positive definite

symmetric covariance matrix C,

C =


C11 + σ2

1I . . . C1K

. . . . . . . . .

CK1 . . . CKK + σ2
KI


[N×N ]

,

where N =
K∑
i=1

Ni is a total number of observations between all K outputs,

and Ni defines the number of observations of output i. Similarly, hyper-

parameters θ = {vmk, µmk, Amk} can be inferred by maximizing the log-

likelihood, which has form (1) with y being a vector of all observation of

all outputs and n = N . From here, estimating hyper-parameters θ̂ and

following a Bayesian framework [21], we can evaluate the joint predictive
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distribution (2) for all outputs, which is, of course, Gaussian. From the

predictive distribution it is possible to evaluate the marginal distributions

for each output i with mean mi(t
′) and variance vari(t

′), given by

mi(t
′) = kTC−1y,

vari(t
′) = κ− kTC−1k, (4)

where

κ = Cii(0) + σ2
i ,

kT = [kT1 , · · · , kTK ],

kTj = [(Cij(t
′ − tj,1) · · ·Cij(t′ − tj,Nj

)].

In this study multiple–output Gaussian processes are applied to detect

and capture correlations in oscillating signals and to describe the relationship

between phase and frequency of outputs.

5. Phase and Frequency Dependence

Here we investigate the performance of single and multiple–output Gaus-

sian processes by testing them on simple simulated oscillating systems with

different phase and frequency values. Additionally, we explore the impact of

sparse sampling of the data on the GP performance quality.

5.1. Variations in phase

Here we consider a simple sinusoidal signal, f(t) = A sin(ωt+φ), where A

is the amplitude, ω = 2πf the angular frequency, and φ the phase. Our first

example consists of two sinusoidal signals, where f2 is simply a shifted version
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of signal f1, i.e. both signals have identical amplitudes and frequencies but

are phase shifted, f1(t) = sin(2t) and f2(t) = sin(2t + π
4
), on an interval

t ∈ [0, 4π]. To mimic real experimental measurements we add random noise

to the simulated trajectories, Y1(t) = f1(t)+ε1, Y1(t) = f2(t)+ε2, where εi ∼

N (0, 0.12). Figure (2A, B) illustrates the simulated sinusoidal trajectories

with different shifts in time; here φ1 = 0, φ2 = π
4

and φ1 = 0, φ2 = π

respectively. From these noisy measurements we record a dataset of N =

20 data points. Selected points, representing 10 measurements per output

signal, were spaced at regular intervals.

In order to build a single model that captures a relationship between

both signals, we applied two dependent GPs framework (3) (K=2), where

each signal can be expressed as a superposition of three Gaussian processes

— two of which are being constructed via convolution between a noise source

and a Gaussian kernel and the third one is simply additive noise. We

set parameters Ai of each Gaussian kernel to be exp(fi) and noise lev-

els to σ1 = exp(η1), σ2 = exp(η2), leading to a set of hyper-parameters

θ = (vi, fi, µ1, µ2, η1, η2), i = 1, . . . , 4. To build the model the following priors

were chosen: vi, fi ∼ (1, 22), ηj ∼ N (−2, 22) and µj ∼ N (0.5, 12), j = 1, 2;

and the maximum a posteriori (MAP) estimate [22] θ̂ was calculated using

a multi-starting Nelder-Mead optimisation algorithm [23]. Dependent GPs

posteriors (4) allow us to make predictions about both signals at any finite

number of input points, and the resulting posterior processes are given in

Figures (3A and D). For comparison, we also fitted two independent GP

models to signals that are given in the dataset used in Figure (2A). From the

posterior processes (see Figure (4)) it can be seen that in order to correctly
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capture the oscillations either it is necessary to consider the relationship be-

tween the signals or increase the number of observations per signal above

the Nyquist sampling rate. In general, the performance of dependent GPs

and independent GPs are in good agreement for signals that are sampled

at sufficiently high frequencies; at low frequencies, however, the dependency

structure implemented here allows us to reconstruct signal frequencies —

and signal shapes more generally — at a rate below the classical Nyquist

sampling rate.

Based on the previous example (see Figure (2A)), we next assume that

we have a dataset with N = 15 observations: N1 = 10 observations of sig-

nal f1 and N2 = 5 of signal f2. Repeating the above modelling procedure

we obtained dependent posterior processes for both signals. It can be seen

in Figure (3B) that the dependent GP model can provide an excellent esti-

mation of both signals in circumstances where one signal is undersampled.

Both signals can be accurately estimated because of the strong relationship

between the signals, which can be captured by the (constant in time) co-

variance matrix. By contrast, an independent GP model fitted to signal

f2 exhibits the so-called “aliasing” [18] phenomenon, and if applied to re-

alistic experimental signal would lead to a serious misinterpretation of the

underlying process. However, if we further reduce the number of observa-

tions and consider a dataset of N = 10 (5 per signal) observation, even the

MOGP model behaves poorly and is unable to correctly capture the original

trajectories and results in aliasing of both signals. Note, however, that we

inferred all aspects of the MOGP from the provided data, in particular the

covariances.
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For an oscillatory signal with frequency ω = 2, the Nyquist rate is 2
π
. For

this reason in the considered interval of 4π we need more than 8 samples

in order to reconstruct the frequencies of such a signal. For systems that

consist of two signals with identical frequencies and different values of phase

parameter (for example π
2
, 3π

8
, π
4
, π
8
), MOGP models produce a good curve

estimation applied to either oversampled signals or signals where only one

signal is oversampled and the second is undersampled. This suggests that

modelling the dependence between signals provides additional information

about original processes and will generally improve the overall predictions.

5.2. Variations in frequency and phase

Next we consider a system with two oscillating signals, with different fre-

quencies as well as phase shifts (see Figure (2C and D). The data consist of

N1 = 25 noisy observations of the fast signal - f1(t) = sin(4t) and N2 = 15

noisy observations of the slow signal - f2(t) = sin(2t), t = [0, 4π] result-

ing in a joint dataset of size N = 40 observations. Again, we applied the

MOGP framework (3) with Gaussian kernels and θ = (vi, fi, µ1, µ2, η1, η2),

i = 1, . . . , 4. We kept priors for hyper-parameters of the model as described

in previous section, and used multi-starting Nelder-Mead algorithm to ob-

tain the estimated values θ̂. The resulting GPs are summarised in Figure

(5) where solid blue and green lines represents the mean behaviour of the

posterior process and shaded areas corresponds to two standard deviations

at each prediction point for f1 and f2, respectively. A and B illustrate the

MOGPs where φ1 = φ2 = 0 and φ1 = π, φ2 = 0. In this case reducing the

number of observations so that the fast signal would be undersampled results

in aliasing; and the fast signal is distorted as to adapt to the frequency of the
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slow signal. By contrast, in situations where the slow signal is undersampled

and the fast signal is oversampled the aliasing occurs in the undersampled

signal in such a way that the inferred slow signal is forced to adopt the

behaviour of the fast signal. Fitting MOGP models for oscillating signals

with relationship between frequencies ω2 = aω1, where a is a constant, and

different values of phase parameter (for example π
2
, 3π

8
, π
4
, π
8
), leads to reason-

ably good predictions about the true signals. This is especially, and trivially,

true if both signals are oversampled. This can be explained by the fact that

the covariance structure between the signals is no longer constant but varies

over time, resulting in weaker dependence between the signals, which in turn

complicates the inference.

In Figure (5A and B) the Nyquist rate for fast signal is 4
π

and 2
π

for a

slow signal, meaning that we require to sample the signals at rates which are

greater than 16 and 8 samples per signal in our 4π time interval. Similarly,

Figure (5C and D) illustrates the MOGP fit to the data where signals are

related via ω2 =
√

2ω1 frequencies, here the Nyquist rate for the fast signal

is 2
√
2

π
and for the slow - 2

π
. For an accurate reconstruction of both signals

it is therefore necessary to have more than 12 samples of the fast and more

than 8 samples of the slow signal in a considered interval of time.

6. Applications to systems biology data

Many of the problems in the analysis of biological systems involve pro-

cesses that show regularly repeating patterns in both time and space. Cell

cycle, diurnal cycles and clocks are the canonical examples for such regularly

recurring temporal patterns. A host of other systems have been reported
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to oscillate over physiological time-scales and here we illustrate how MOGPs

perform on one such system, the p53-Mdm2 signalling system, under different

data sampling schedules.

6.1. p53-Mdm2 system

Proteins are biomolecules that are responsible for many cellular activi-

ties such as providing structural molecules, catalysing biochemical reactions

or participating in cell signalling and signal transduction. The protein p53

stands out due to its ability to participate in regulation of cell cycle, response

to DNA damage and tumour suppression. Under stress conditions, p53 con-

centration levels increase within the cell and physical interactions with Mdm2

stabilise p53 levels. This is done by inhibiting p53 transcriptional activity

and increasing its degradation rate; this can then lead to oscillation in both

protein species.

A widely used model for the p53-Mdm2 system was first proposed by

Zatorsky et al. [24]; here the influence of Mdm2 on p53 occurs in a nonlinear

fashion via Michaelis–Menten dynamics,

ẋ = βx − αxx− αky
x

x+ k
,

ẏ0 = βyx− α0y0,

ẏ = α0y0 − αyy.

Here x, y0 and y corresponds to the nuclear levels of p53, Mdm2 precursor and

Mdm2, respectively (see [24] for detailed explanation of the model and pa-

rameters). Dashed lines given in Figure (6) illustrate the simulated trajecto-

ries from the ODE model with a set of parameters (βx, αx, αk, βy, α0, αy, k) =

(0.9, 0, 1.7, 1.1, 0.8, 0.8, 0.0001) and initial conditions (x, y0, y) = (0.0, 0.1, 0.8).
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To evaluate how we can benefit from the MOGP framework for recon-

struction of the concentration levels of sparsely sampled protein species we

investigate four differently sampled datasets. The first dataset in Figure (6A)

is a control case where all protein species are oversampled and our depen-

dent MOGPs model (3) (K=3) accurately describes noisy observations of

all proteins. To build our model we describe each protein by a linear sum

of four Gaussian processes, where dependence between all proteins is intro-

duced via two shared input noise sources under convolutions with different

Gaussian kernels. We apply this model to datasets given in Figures (6B and

C), where two proteins are oversampled (N1 = N2 = 20) and one is under-

sampled (N3 = 6). It can be seen that predictions with posterior GPs allow

us to fairly well reconstruct the concentration levels of all proteins. However,

in cases where dataset consists of any two proteins that are undersampled

(N1 = N2 = 6) and only one is oversampled (N3 = 20) the MOGPs posterior

can capture correct oscillation only for the oversampled protein and leads to

aliasing for the undersampled proteins (see Figure (6D)).

7. Conclusion and Discussion

Constructing dependent Gaussian processes via convolution involving sets

of Gaussian white noise processes and appropriate kernel functions offers con-

siderable advantages compared to traditional methods. In particular we are

able to account for covariances between outputs and use this information to

improve the predictive power substantially. Here we have used computation-

ally affordable linear filters to construct a single MOGP rather than several

single-output GPs.
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Experimental measurements are frequently hard to come by and we have

explored the use of MOGPs in the analysis of oscillatory systems as a po-

tential means of accounting for potential under-sampling of such oscillatory

systems. For oscillating systems with scalar outputs the Nyquist sampling

rate sets the limit below of which recovery of the correct oscillatory pat-

tern — here we are particularly concerned with the frequency of oscillations

— is no longer possible. For vector-valued output such hard and fast rules

are harder to come by and we resorted to simulations to explore the use of

MGPs in reconstruction of oscillatory (vector-valued) outputs. This problem

reduces in a sense to inferring an appropriate covariance matrix between the

signals/system outputs.

This turns out to be straightforward for systems where the different states

oscillate at the same frequency (but with a phase-shift). Here undersampling

one output (below the Nyquist rate appropriate for a single output) can be

compensated for by sampling the other signal sufficiently densely (above the

Nyquist rate), whence the MOGP provides an adequate description of the

whole output (as opposed to conventional single output GPs). But MOGP

performance on small datasets strongly depends on the nature of both signals

and undersampling all outputs leads to aliasing as the covariance matrix

cannot be inferred sufficiently well. For cases where different outputs oscillate

at different frequencies, the covariance is no longer constant in time and all

outputs need to be sampled at high enough rate for MOGPs to result in

reliable predictive distributions over the system outputs.

MOGPs thus offer advantages in cases where correlations between differ-

ent outputs exist and, crucially, can be learned from sparse inputs, compared
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to conventional GPs, which treat each output independently. In many exper-

imental situations it is simply not possible to quantify all outputs at sufficient

temporal resolution; this unfortunate fact is particularly common in biologi-

cal and medical settings. MOGPs offer here a way to triage experiments and

experimental resources while enabling probing biological systems [25], such

as signal transduction networks, at different levels.
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Figure 2: Simulated datasets. Solid blue lines correspond to noiseless trajectories f1(t) =

A sin(ω1t + φ1), and solid green lines to - f2(t) = A sin(ω2t + φ2) ; dots represent 80

measurements with added Gaussian noise N (0, 0.12). A. Dataset with parameters A = 1,

ω1 = ω2 = 2, φ1 = 0, φ2 = π
4 . B. Dataset with parameters A = 1, ω1 = ω2 = 2, φ1 = 0,

φ2 = π. C. Dataset with parameters A = 1, ω1 = 4, ω2 = 2, φ1 = φ2 = 0. D. Dataset

with parameters A = 1, ω1 = 4, ω2 = 2, φ1 = π, φ2 = 0. E. Dataset with parameters

A = 1, ω1 = 2, ω2 = 2
√
2, φ1 = 0, φ2 = π

4 . F. Dataset with parameters A = 1, ω1 = 2,

ω2 = 2
√
2, φ1 = 0, φ2 = π.
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Figure 3: MOGPs. Solid lines represents the mean of the model; blue and green areas

corresponds to two standard deviations at each prediction point for outputs one and two

respectively; red points are noisy observations and dashed lines corresponds to the true

sinusoidal signals. A MOGP model for N = 20 dataset with parameters A = 1, ω1 =

ω2 = 2, φ1 = 0, φ2 = π
4 . B MOGP model for N = 15 dataset with parameters A = 1,

ω1 = ω2 = 2, φ1 = 0, φ2 = π
4 . C MOGP model for N = 10 dataset with parameters A = 1,

ω1 = ω2 = 2, φ1 = 0, φ2 = π
4 . D MOGP model for N = 20 dataset with parameters

A = 1, ω1 = ω2 = 2, φ1 = 0, φ2 = π.
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Figure 4: Independent GP models for N = 20 dataset with parameters A = 1, ω1 = ω2 =

2, φ1 = 0, φ2 = π
4 . Solid lines represents the mean of the model; green areas corresponds

to two standard deviations at each prediction point.
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Figure 5: MOGPs. Solid lines represents the mean of the model; blue and green areas

corresponds to two standard deviations at each prediction point for outputs one and two

respectively; red points are noisy observations and dashed lines corresponds to the un-

derlying sinusoidal signals. A MOGP model for N = 40 dataset with parameters A = 1,

ω1 = 4, ω2 = 2, φ1 = φ2 = 0. B MOGP model for N = 40 dataset with parameters A = 1,

ω1 = 4, ω2 = 2, φ1 = π, φ2 = 0. C MOGP model for N = 35 dataset with parameters

A = 1, ω1 = 2, ω2 = 2
√
2, φ1 = 0, φ2 = π

4 . D MOGP model for N = 35 dataset with

parameters A = 1, ω1 = 2, ω2 = 2
√
2, φ1 = 0, φ2 = π.
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Figure 6: MOGPs for the p53-Mdm2 system. Solid lines represents the mean of the

model; blue, green and pink areas corresponds to two standard deviations at each predic-

tion point for all outputs; red points are noisy observations and dashed lines corresponds

to the underlying p53-Mdm2 ODE model behaviour. A MOGPs for all species being

oversampled. B MOGPs for oversampled p53 and Mdm2 precursor, and undersampled

Mdm2. C MOGPs for oversampled p53 and Mdm2, and undersampled Mdm2 precursor.

D MOGPs for oversampled p53 and undersampled Mdm2 precursor and Mdm2.
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