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Many DNA-binding factors, such as transcription factors, form oligomeric complexes with 18 

structural symmetry that bind to palindromic DNA sequences 1.  Palindromic consensus 19 

nucleotide sequences are also found at the genomic integration sites of retroviruses 2-6 and 20 

other transposable elements 7-9, and it has been suggested that this palindromic consensus 21 

arises as a consequence of the structural symmetry in the integrase complex 2,3. However, we 22 

show here that the palindromic consensus sequence is not present in individual integration 23 

sites of Human T-cell Lymphotropic Virus type 1 (HTLV-1) and Human Immunodeficiency 24 

Virus type 1 (HIV-1), but arises in the population average as a consequence of the existence of 25 

a non-palindromic nucleotide motif that occurs in approximately equal proportions on the 26 

plus-strand and the minus-strand of the host genome. We develop a generally applicable 27 

algorithm to sort the individual integration site sequences into plus-strand and minus-strand 28 

subpopulations, and use this to identify the integration site nucleotide motifs of five 29 

retroviruses of different genera: HTLV-1, HIV-1, Murine Leukemia Virus (MLV), Avian 30 

Sarcoma Leucosis Virus (ASLV), and Prototype Foamy Virus (PFV). The results reveal a 31 

non-palindromic motif that is shared between these retroviruses.32 

Integration of a cDNA copy of the viral RNA genome is essential to establish infection 33 

by retroviruses. This process (see, for example, 10 for a review) is catalysed by the virus-encoded 34 
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enzyme integrase (IN) and is composed of two steps: (i) the 3’ processing reaction; and (ii) strand 35 

transfer. During the 3’ processing reaction, a di- or tri-nucleotide is removed from the 3’ ends of 36 

the viral long terminal repeats (LTRs) to expose the nucleophilic 3’OH groups that consequently 37 

attack the phosphodiester backbone of the target DNA during strand transfer. Strand transfer 38 

results in single-stranded DNA gaps that are filled in and repaired by host cellular enzymes.  39 

Depending on the retrovirus, the strand transfer reaction takes place with a 4 (e.g. MLV and 40 

prototype foamy virus, PFV), 5 (e.g. HIV-1) or 6 (e.g. HTLV-1 and 2) base pair stagger, giving 41 

rise to a duplication of the respective number of nucleotides at the integration site. 42 

 43 
 44 

Integration is not random:  each retrovirus has characteristic preferences for the genomic 45 

integration site (InS) (e.g. 11-15).  These preferences are evident on at least three scales: 46 

chromatin conformation and intranuclear location; proximity to specific genomic features such 47 

as transcription start sites or transcription factor binding sites; and the primary DNA sequence at 48 

the InS itself. Certain host factors also play an active part: t he best characterized of such factors 49 

are LEDGF 16,17, which biases HIV-1 integration into genes in preference to intergenic regions 18, 50 

and BET proteins, which direct MLV integration into the 5’ end of genes 10. 51 

 52 

  A nucleotide sequence is said to be palindromic if it is equal to its reverse complement 53 

(e.g. GAATTC and its complement, CTTAAG).  Previous studies have revealed a weak 54 

palindromic consensus sequence at the InS in several retroviral infections, including HTLV-1, 55 

ASLV, PFV, MLV, Simian Immunodeficiency Virus (SIV), and HIV-1 2,3,19-23. The reason for 56 

the presence of a palindromic consensus sequence remains unknown, but authors have 57 

speculated that it reflects the binding to the DNA of the pre-integration complex (PIC) in 58 
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symmetrical dimers or tetramers, so that each half-complex has a similar DNA target (i.e. 59 

potential integration site) preference 2.  However, the consensus sequence is a population 60 

average, defined by taking the modal nucleotide at each position in a population of InS 61 

sequences. The question arises whether or not the consensus is truly representative of the 62 

population. It may be a poor representation of the population if, for example, the population is 63 

highly variable or is composed of two or more distinct subpopulations (and hence is bi- or multi-64 

modal).  Retroviral InS sequences are known to be highly diverse, which immediately indicates 65 

the need for caution when interpreting the consensus. Here we perform statistical analyses to 66 

determine whether or not the palindromic consensus sequences efficiently represent the 67 

populations of InS sequences from which they are calculated.  We find strong evidence that this 68 

is not the case, and investigate the possibility that these palindromic consensus sequences arise 69 

from the presence of motif sequences that appear in both “forward” and “reverse complement” 70 

orientations in the genome. 71 

 72 
 73 
 74 
To depict the sequence of the consensus integration site motif, we calculated the frequency of 75 

each nucleotide at each respective position in the motif: the result, shown as a sequence logo 76 

(Figure 1), shows a clear palindrome for each virus, as previously described 2,3,19.  However, on 77 

close inspection an anomaly becomes evident: the sequence is palindromic not only in the most 78 

frequent nucleotide, but also at the 2nd, 3rd and (therefore) 4th nucleotide at every position.  79 

While it is plausible that the symmetry of the integrase complex should favor a palindromic 80 

motif in the nucleotides that make contacts with the integrase protein, it is not clear why the less 81 

frequent nucleotides across all positions in the motif should also be perfectly palindromic. 82 

 83 
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To quantify whether or not an individual sequence is palindromic, we defined the adjusted 84 

palindrome index (API), described further in Methods.  The API is 1 if the sequence is perfectly 85 

palindromic, 0 if the sequence is as palindromic as expected by chance, and negative if the 86 

sequence is less palindromic than expected by chance.  The APIs of the HTLV-1 and HIV-1 87 

motifs confirmed the very high palindromicity of the consensus sequence in each case (Figure 88 

2).  However, examination of the APIs of individual observed integration site sequences reveals 89 

a second anomaly: the mean values of the API across the populations of InS sequences are 90 

significantly less than zero, for both the HTLV-1 (Table 1) and HIV-1 (Table 2) InS sequences. 91 

Although the effect size is small (as might be expected given that the sequences are highly 92 

diverse), the key point is that, on average, the InS sequences are less palindromic than we would 93 

expect by random chance.   94 

 95 

How can a population of individually non-palindromic sequences generate a palindromic 96 

consensus motif?  We hypothesized that the retroviral integrase complex recognizes a non-97 

palindromic motif present either on the plus strand (“forward” orientation) or the minus strand 98 

(“reverse” orientation) of the host genome: the reverse complement of the minus-strand motif 99 

appears as the mirror image of the plus-strand motif, so that when the two are combined in a 100 

population of sequences, the consensus appears as a palindrome. 101 

 102 

To test this hypothesis, we fitted a model to resolve the population of observed integration sites 103 

into two components, one component corresponding to the subpopulation of sequences in the 104 

forward orientation and the other corresponding to those in the reverse orientation. We fitted the 105 
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model by maximum likelihood (see Methods for details of the model and fitting procedure, and 106 

Code Availability for an implementation).  We additionally considered a number of alternative 107 

algorithms for fitting the models (maximum profile likelihood and Gibbs sampling approaches), 108 

which provided qualitatively identical results (see Supplementary Figure 1).  For both HTLV-1 109 

and HIV-1, the algorithms identified complementary subpopulations within the collections of 110 

InS sequences (Figure 3a), with the subpopulations appearing in approximately equal 111 

proportions (λHTLV   = 0.47 and λHIV  = 0.49, where λ denotes the proportion of sequences in 112 

the “forward orientation”).  As a further check, we additionally considered an unconstrained 113 

clustering of the sequences, which also identified complementary clusters among the InS 114 

sequences (see Supplementary Figures 2 and 3). 115 

We next assessed whether the hypothesis of two complementary subpopulations provided a 116 

significantly better description of the data than the hypothesis of a single population 117 

characterized by a palindromic motif.  A likelihood ratio test (see Methods) decisively rejected 118 

the single-population hypothesis (p < 0.001).  We also calculated for each model the Bayesian 119 

Information Criterion 24 (BIC), which provides a measure of the ability of a model to explain the 120 

observed data.  The results again showed that for both HIV-1 and HTLV-1, there was very strong 121 

evidence against the one-population (palindromic) model (∆BICHIV= 2.86 × 103 and ∆BICHTLV= 122 

1.48 × 103). 123 

 124 
We fitted our 2-component mixture model to smaller datasets on HTLV-1, HIV-1, MLV, and 125 

ASLV taken from the literature 19. The results on MLV and ASLV are given in Figure 3b: the 126 

results on HTLV-1 and HIV-1 are qualitatively identical to those obtained from the larger 127 
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datasets, and are given in Supplementary Figure 4. We also considered two large PFV datasets 128 

from Maskell et al (2015) 25: (i) the PFV (WT) dataset, which comprises integration sites 129 

for 153,447 unique integration events in HT1080 cells; and (ii) the PFV (IV) dataset, comprising 130 

approximately 2 × 106 integration sites determined using purified PFV intasomes and 131 

deproteinized human DNA. 132 

 133 
After pre-processing to remove duplicates and sequences containing indeterminate nucleotides 134 

(Ns), 152,001 integration sites remained in the PFV (WT) dataset and 2,197,613 in the PFV (IV) 135 

dataset. To reduce computation time, we randomly sampled 200,000 integration site sequences 136 

from the PFV (IV) dataset to use for analysis. The results on PFV (WT) and PFV (IV) are given 137 

in Figure 3c. The results obtained for all retroviruses reveal similarities between the non-138 

palindromic motifs. 139 

 140 
 141 

 142 
 143 
The factors that influence the pattern of integration of retroviruses and transposable elements 144 

operate at different physical scales. The strength of association between specific genomic 145 

features and retroviral integration frequency depends on the genomic scale on which the data are 146 

analyzed 20,26. Broadly, three scales have been studied: chromosome domains and 147 

euchromatin/heterochromatin; genomic features such as histone modifications and transcription 148 

factor binding sites; and primary DNA sequence. 149 

 150 
 151 

The primary DNA sequence of the host genome is thought to influence the site of 152 

retroviral integration by determining both the binding affinity of the intasome and the physical 153 
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characteristics of the target DNA, especially the ability of the double helix to bend 7,27, which 154 

depends in turn on the presence of specific dinucleotides and trinucleotides. Muller and Varmus 155 

28 concluded that the bendability of DNA could explain the preferential integration of certain 156 

retroviruses in DNA associated with nucleosomes. The requirement for DNA bending during 157 

retroviral integration has been explained by the discovery of the crystal structure of the foamy viral 158 

intasome complexed with target DNA 29,30. Complete unstacking of the central dinucleotide at 159 

the site of integration allows the scissile phosphodiester backbone to reach the active sites of 160 

the IN protomers 36.  Although the bending of the tDNA observed in the crystal structure 161 

does not correspond with the bend described in nucleosomal DNA 31, the cryo-electron 162 

microscopy structure of the foamy viral intasome in complex with mononucleosomes 25 showed 163 

that the nucleosomal DNA is lifted from the histone octamer to allow proper accommodation 164 

within the active sites of the IN protomers. Given that integration catalyzed by different retroviral 165 

INs gives rise to a different target duplication size, it is expected that DNA bending at the site of 166 

integration will be more severe for integrations with a 4 bp target duplication compared to those 167 

with a 6 bp target duplication 29. 168 

 169 
 170 

Whereas some retroviruses preferentially integrate into regions of dense nucleosome packing 171 

(e.g.  PFV, MLV)25, others prefer regions of sparse nucleosome packing (e.g.  HIV, ASV; 32). 172 

However, even in cases where nucleosome sparseness is preferred, a nucleosome at the integration 173 

site itself contributes to efficient integration. 174 

 175 

In addition to the impact of specific dinucleotides and trinucleotides on DNA bendability, 176 

the other chief impact of primary DNA sequence on retroviral integration is the presence of a 177 
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primary DNA motif, i.e. preferred nucleotides at specific positions in relation to the integration 178 

site. Palindromic DNA sequences have been reported at the insertion site of transposable 179 

elements in Drosophila 7, yeast 8,9  and retroviruses 2-6,19. The presence of the palindrome has 180 

been attributed by several workers to the symmetry of the multimeric viral preintegration 181 

complex2,3. However, Liao et al.7
 

noted that, although the palindromic pattern that they 182 

observed at the insertion site of a P transposable element in Drosophila could be discerned 183 

when as few as fifty insertion sites were aligned and averaged, the palindrome was not evident 184 

at the level of a single insertion site. 185 

 186 
 187 
It was previously assumed that the non-appearance of the palindromic nucleotide sequence in 188 

individual retroviral integration sites was due to the fact that the palindrome was weak, i.e. 189 

poorly conserved.  However, in the present study we found evidence that the palindrome was 190 

statistically significantly disfavored at the level of individual sites:  the palindrome is evident 191 

only as an average – a consensus – of the population of integration sites.  We propose that the 192 

most likely explanation is that the palindrome results from a mixture of sequences that contain a 193 

non-palindromic nucleotide motif in approximately equal proportions on the plus-strand and the 194 

minus-strand of the genome.  In fact, while the integrase components of the in vitro purified 195 

intasome form a highly symmetrical structure, within the in vivo pre-integration complex, which 196 

also includes other viral and host proteins, a degree of asymmetry is imposed by the presence of 197 

the retroviral DNA; this asymmetry may be sufficient to favor a non-palindromic sequence at the 198 

integration site. 199 

On the hypothesis of a non-palindromic nucleotide motif in approximately equal proportions on 200 

the plus-strand and the minus-strand of the genome, we sorted the populations of sequences of 201 
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several different retroviral integration sites into those with a conserved motif respectively on the 202 

plus-strand and the minus-strand of the genome. The resulting alignment revealed the putative true 203 

nucleotide motif that is recognized by the intasome in each case. Comparison of these motifs 204 

between the respective viruses showed certain similarities between the sequences (Figure 3), 205 

including two T residues upstream of the integration site and an A residue 2 or 3 nucleotides 206 

downstream.  There is a shared motif 5’- T(N1/2)[C(N0/1)T | (W1/2)C]CW - 3’, where [ and ] 207 

represent the start and end of the duplicated region, W  d e n o t e s  A  o r  T ,  and | represents 208 

the axis of symmetry.  The preference for an A (T) 2 or 3 nucleotides downstream (upstream) 209 

of the integration site was previously observed and explained by a direct contact between A and 210 

the residue at the PFV IN Ala188 equivalent position 29,30,33.  Indeed, the recent X-ray structure 211 

of the post-strand-transfer complex of the alpharetrovirus Rous Sarcoma Virus (RSV) IN 212 

illustrates a direct contact with an A (T) 3 nucleotides downstream (upstream) of the integration 213 

site and the homologous Ser124 residue site 34.   Using the same algorithm on InS sequences 214 

generated with HIV-1 IN Ser119Thr (equivalent to PFV IN Ala188) 33 the shared motif is 215 

preserved (Supplementary Figure 5), with a stronger preference for an A(T) 3 nucleotides 216 

downstream (upstream) of the InS.  It remains to be seen whether the nucleotide composition 217 

of the remainder of the shared motif, in particular the central T-rich region, is preferred 218 

because of the flexibility of the DNA at such sequences or is due to direct contact between 219 

IN and the bases.  Further structural information on lenti-, gamma-, and delta-retroviral synaptic 220 

complexes is needed to answer this question. 221 

 222 

To summarize, we conclude that, in contrast to the palindromic sequence motifs that are bound by 223 

many transcription factors, the primary DNA motif recognized by the retroviral intasome is non-224 



10

 

palindromic. 225 

 226 
 227 
 228 
 229 
 230 
Methods 231 

 232 
 233 
 234 
Mapped integration sites To focus on the initial integration targeting profile of HTLV-1 and HIV- 235 

 236 
 237 
1, integration sites were identified in DNA purified from cells infected experimentally in vitro. 238 

Jurkat T-cells were infected either by short co-culture with HTLV-1-producing cell line MT2 35 

or 239 

by VSV-G pseudotyped HIV-1 (kind gift from Dr. Ariberto Fassati, UCL). Identification of 4,521 240 

HTLV-1 integration sites from in vitro infected Jurkat T-cells has been described before 15,36. 241 

Identification of 13,442 HIV-1 integration sites was carried out using a similar approach, using the 242 

following HIV-specific PCR forward primers: HIVB3 5’-243 

GCTTGCCTTGAGTGCTTCAAGTAGTGTG-3’, HIVP5B5 5’-244 

AATGATACGGCGACCACCGAGATCTACACGTGCCCGTCTGTTGTGTGACTCTGG-3’ and 245 

HIV-specific sequencing primer 5’-ATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTC-246 

3’. 247 

Credible intervals for entries of the PPM To obtain the credible intervals given in Figures 1d 248 

and 1h, we regard the elements of the PPM as parameters, which we then infer using Bayesian 249 

methods.  Let ݌௑,௞	denote the probability that nucleotide ܺ ∈ 	 ,ܣ} ܶ, ,ܥ  is observed in position 250 ݇, and define ݊௑,௞ to be the number of times ܺ was observed in position ݇.  For column ݇ of the 251 {ܩ

PPM, which we denote ࢑࢖ = ௑,௞݌ ௞൧, we know that each,ீ݌	஼,௞݌	௞,்݌	஺,௞݌ൣ ≥ 0	and that 252 ∑ {஺,்,஼,ீ}	௑,௞௑∈݌ = 1, so a Dirichlet prior is appropriate.  We take a symmetric Dirichlet prior 253 

with ߙ = 1	(which is equivalent to a uniform prior).  Assuming [݊஺,௞	்݊,௞	݊஼,௞	݊ீ,௞] are jointly 254 
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distributed according to a multinomial distribution with ݊TOTAL = ∑ ݊௑,௞	௑∈	{஺,்,஼,ீ} trials and 255 

probabilities ൣ݌஺,௞	்݌,௞	݌஼,௞	ீ݌,௞൧, it can be shown that the marginal posterior distributions for 256 

the entries of column ݇ of the PPM are ݌௑,௞~Beta(1 + ݊௑,௞, 4	 +	݊TOTAL − (1 + ݊௑,௞)).  Using 257 

these, we find 95% highest posterior density (HPD) regions using the betaHPD function from 258 

the pscl package 37 in the R statistical programming language 38. 259 

Adjusted Palindrome Index (API) We define the palindrome index (PI) for a sequence to be 260 

the proportion of positions at which it is equal to its reverse complement.  For example, the PI 261 

for the sequence s = ATCCGGTT is 0.75, since the reverse complement sequence is s’ = 262 

AACCGGAT, and s and s’ are identical at 6 out of the 8 positions (6/8 = 0.75).  For sequences 263 

of odd length, we first remove the central letter.  Hence sequences may be assumed to be of even 264 

length.  The adjusted palindrome index (API) is a “corrected for chance” version of the PI, 265 

which controls for the fact that the expected value of the PI depends upon the length of the 266 

sequence.  Such adjusted indexes are common (e.g. 39), and are calculated as: Adjusted Index = 267 

(Observed Index – Expected Index)/(Maximum Index – Expected Index).  For the PI, the 268 

maximum value is 1 (when a sequence is perfectly palindromic). Given sequence ݏ ௡ିߪ	 269= .ାଵߪଵିߪ… . .  ௝ are 270ିߪ ା௝ andߪ ା௡, the expected value for the PI is the expectation whenߪ

independent, which is given by 
ଵ௡ ∑ ൫∑ ௝ିߪ)	݌ = ା௝ߪ)	݌	(ܺ = ܿ	(ܺ))௑∈	{஺,்,஼,ீ} ൯௡௝ୀଵ .  Here ܿ	(ܺ) 271 

denotes the complement of ܺ, and ݌	ߪ)±௝ = ܺ)	are the empirical marginal probabilities, which 272 

may be taken from the entries of the PPM.  273 

Two-component mixture model We model the InS sequences as being drawn from a 2-274 

component mixture model, ݏ)݌|ܲ, (ߣ = (ܲ|ݏ)݂ߣ	 + (1 −  is the 275 (ܲ|ݏ)݂ หܲ(ோ஼)൯, whereݏ൫݂(ߣ

likelihood of sequence ݏ given PPM ܲ, and ܲ(ோ஼) denotes the reverse complement of PPM ܲ 276 
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(which follows automatically from ܲ by reversing the order of the columns, and swapping the A 277 

and T rows with one another, and the C and G rows with one another).   We define the 278 

likelihood straightforwardly as the product of probabilities of each of the elements of ݏ, where 279 

the individual probabilities are given by the entries of the PPM.  To fit the model, we must 280 

estimate the parameters ߣ and ܲ.  We find the maximum likelihood estimates of these 281 

parameters using the expectation maximization algorithm. 282 

 Expectation-maximization (EM) algorithm for our model  We refer the reader to 40 for 283 

general information about the EM algorithm, and here provide the update equations for the 284 

model parameters, ߣ and ܲ.  Suppose we have a collection of ܰ InS sequences, ݏ(ଵ), …	,  At 285  .(ே)ݏ

iteration ݐ, define ݓ௧(௜)	to be the posterior probability of sequence ݏ(௜) belonging to the 286 

subpopulation with PPM ܲ, given ߣ௧ିଵ and ௧ܲିଵ (the parameter estimates at iteration ݐ − 1).  287 

That is, ݓ௧(௜) = ఒ೟షభ௙൫௦(೔)ห௉೟షభ൯ఒ೟షభ௙൫௦(೔)ห௉೟షభ൯ାఒ೟షభ௙ቀ௦(೔)ቚ௉೟షభ(ೃ಴)ቁ.  Also, for ܺ ∈ 	 ,ܣ} ܶ, ,ܥ ݇ and {ܩ = 1,… , ݊ (or 288 

݇ = 0,… , ݊ in the odd palindrome case), we define ܳ௧(௞,௑) = 	∑ ൬ݓ௧(௜)ॴቀିߪ௞(௜) = 	ܺቁ +ே௜ୀଵ289 

	ቀ1 ௧(௜)ቁॴݓ	− ቀߪା௞(௜) = 	ܿ(ܺ)ቁ൰.  Then ߣ௧ = 	∑ ௪೟(೔)ேே௜ୀଵ , and defining the element of ௧ܲ in column ݇ 290 

and row labeled by nucleotide ܺ to be ௧ܲ(݇, ܺ), we have ௧ܲ(݇, ܺ) = ொ೟(௞,௑)∑ ொ೟(௞,௑)೉	∈	{ಲ,೅,಴,ಸ} . 291 

EM algorithm: Initialization and stopping criteria We initialize the EM algorithm by setting 292 

the initial PPM, ଴ܲ, to be the original (palindromic) PPM, and setting the initial mixture weight, 293 ߣ଴, to be 0.5.  At iteration ݐ, we calculate the log-likelihood associated with the full dataset using 294 

the current parameter estimates, ℓ୲ 	= 	∑ log(݌(s୧	|	λ୲, P୲))ே௜ୀଵ .  We terminate the algorithm 295 

when	ℓ௧ାଵ −	ℓ୲ < 	τ, for some preset threshold value τ.  To obtain the results shown in Figure 296 
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3, we set τ = 	10ିଵ଴ .  To reduce run-times when finding the null distribution of the likelihood 297 

ratio test (LRT) statistic, we set  τ = 0.1, since it was necessary to run the algorithm a large 298 

number of times.  299 

Likelihood ratio tests for quality of fit Although it is tempting to apply a simple likelihood ratio 300 

test (LRT) to determine if the unconstrained 2-component mixture model provides a significantly 301 

better fit to the data than the constrained, single component palindromic model (in which P  = 302 

P(RC )), it is well known that for mixture models the LRT statistic does not in general follow 303 

standard χ2 distributions 41.  We therefore adopted McLachlan’s approach 42 in order to 304 

construct an empirical null distribution for the LRT statistic, D. Note that here the null model is 305 

a single component with PPM equal to the empirical PPM (given in Figure 1b for HTLV-1 and 306 

Figure 1f for HIV-1), while the alternative is the fitted 2-component mixture model. Briefly, we 307 

simulated 1,000 new datasets using the null model, fitted both the null and alternative models to 308 

each simulated dataset, and calculated the LRT statistic each time.  In this way, we obtained 309 

empirical null distributions for the LRT statistic, which we then used to assess the significance 310 

of the observed LRT statistic. For the HTLV-1 InS sequences, the 1,000 values sampled from the 311 

null distribution of the LRT statistic all fell between -28.64 and 18.79, while the observed LRT 312 

statistic was 1.49 × 103. For the HIV-1 InS sequences, the sampled LRT statistics all fell between -313 

32.37 and 29.24, while the observed LRT statistic was 2.86 × 103. For both the HTLV-1 and HIV-1 314 

datasets we may clearly reject the null model in favor of the alternative model (p < 0.001). 315 

Data Availability.  Data to reproduce the results on HTLV-1 presented in this study are included 316 

with the code (see Code Availability).  All other data that support the findings of this study are 317 

available from the corresponding author upon request. 318 

Code Availability. Code is available from http://www.mrc-bsu.cam.ac.uk/software/bioinformatics-319 
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Figures and Tables: 427 
 428 

 429 
 430 
Figure 1: Palindromic HTLV-1 and HIV-1 target integration site consensus sequences and 431 
position probability matrices (PPMs), calculated from 4,521 HTLV-1 and 13,442 HIV-1 InS 432 
sequences. (a) In agreement with previous studies, we find the HTLV-1 consensus sequence to 433 
be a distinctive weak palindrome. The dashed pink line indicates the palindrome’s axis of 434 
symmetry, while the shaded area indicates the duplicated region.  (b) The PPM, P, for the target 435 
integration sites is also palindromic, i.e. P1,−j  ≈ P2,j , P2,−j  ≈ P1,j , P3,−j  ≈ P4,j and P4,−j  ≈ P3,j for j 436 
= 1, . . . , 13. Sequence positions to the left of the symmetry line are labeled as negative, and 437 
those to the right as positive. (c) The symmetry in the PPM may be conveniently visualized 438 
using a sequence logo, which also highlights that the palindrome is only weak (has low 439 
information content). (d) We plot the entries in the first 13 columns of the PPM, P, against the 440 
corresponding entries in the reverse-complement PPM, P(RC) (i.e. the PPM obtained after first 441 
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taking the reverse complement of all of the sequences).  Uncertainty in the PPM entries is 442 
indicated using blue squares showing the 95% credible interval (highest posterior density) range 443 
(see Methods). A perfectly palindromic PPM would be one for which P(RC)  = P , whose entries 444 
would lie along the diagonal shown in the plot.  (e) – (h): As (a) – (d), but using the HIV-1 445 
integration sites. 446 
  447 
 448 

 449 
Figure 2: Distribution of adjusted palindrome index (API) scores over all 4,521 HTLV-1 450 
integration site sequences (top, taking the sequence length to be 2n = 26, where n is the number 451 
of positions each side of the line of palindromic symmetry), and over all 13,442 HIV-1 452 
integration sequences (bottom, with 2n + 1 = 25).  In both cases, the API for the corresponding 453 
consensus sequence (indicated by the red dashed line) is in the extreme positive tail of the 454 
distribution. 455 
 456 
 457 
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 458 
Figure 3: Summary of results from fitting the 2-component mixture model by maximum 459 
likelihood. (a) Sequence logo summaries of one of the two subpopulations of integration site 460 
sequences in the HTLV-1 and HIV-1 datasets (in each case, the other subpopulation is 461 
characterized by the reverse complement of the sequence logo shown). (b) As (a), but for the 462 
MLV and ASLV datasets. (c) As (a), but for the PFV (WT) and PFV (IV) datasets. 463 
 464 
 465 
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Sequence length API for consensus Mean API, ߩ஺ p-value (ℋ଴) 
26 0.79 -0.01 2.12E-06 
24 0.89 -0.01 2.99E-07 
22 0.87 -0.01 5.31E-07 
20 0.86 -0.02 1.58E-07 
18 0.85 -0.02 1.08E-07 
16 1 -0.02 2.41E-11 
14 1 -0.03 5.00E-15 
12 1 -0.03 1.08E-14 
10 1 -0.04 1.58E-18 
8 1 -0.03 1.15E-14 
6 1 -0.04 5.04E-18 
4 1 -0.05 1.28E-15 
2 1 -0.08 2.83E-21 
 466 
Table 1: Adjusted palindrome index (API) scores for HTLV-1 integration site sequences. We 467 
consider a variety of possible sequence lengths, ranging from 2n = 26 to 2n = 2, where n is the 468 
number of positions each side of the line of palindromic symmetry. The mean API values were 469 
calculated by finding the API for each of the 4,521 individual InS sequences, and then taking the 470 
mean.  The final column contains p-values resulting from one-sample t-tests assessing the null 471 
hypothesis that the population mean value is equal to zero. 472 
 473 
 474 
Sequence length API for consensus Mean API, ߩ஺ p-value (ℋ଴) 
25 0.88 -0.01 8.21E-09 
23 0.87 -0.01 1.60E-08 
21 0.86 -0.01 4.29E-09 
19 0.85 -0.01 1.29E-11 
17 0.83 -0.01 1.08E-12 
15 0.8 -0.02 1.04E-13 
13 1 -0.02 3.16E-18 
11 1 -0.03 1.69E-26 
9 1 -0.03 1.02E-27 
7 1 -0.03 8.57E-25 
5 1 -0.04 1.09E-24 
3 1 -0.07 1.95E-35 
 475 
Table 2: Adjusted palindrome index (API) scores for HIV-1 integration site sequences. 476 
 477 
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