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ABSTRACT

Motivation: One of the challenging questions in modelling biological

systems is to characterize the functional forms of the processes that

control and orchestrate molecular and cellular phenotypes. Recently

proposed methods for the analysis of metabolic pathways, for

example, dynamic flux estimation, can only provide estimates of the

underlying fluxes at discrete time points but fail to capture the com-

plete temporal behaviour. To describe the dynamic variation of the

fluxes, we additionally require the assumption of specific functional

forms that can capture the temporal behaviour. However, it also

remains unclear how to address the noise which might be present in

experimentally measured metabolite concentrations.

Results: Here we propose a novel approach to modelling metabolic

fluxes: derivative processes that are based on multiple-output

Gaussian processes (MGPs), which are a flexible non-parametric

Bayesian modelling technique. The main advantages that follow

from MGPs approach include the natural non-parametric representa-

tion of the fluxes and ability to impute the missing data in between the

measurements. Our derivative process approach allows us to model

changes in metabolite derivative concentrations and to characterize

the temporal behaviour of metabolic fluxes from time course data.

Because the derivative of a Gaussian process is itself a Gaussian

process, we can readily link metabolite concentrations to metabolic

fluxes and vice versa. Here we discuss how this can be implemented

in an MGP framework and illustrate its application to simple models,

including nitrogen metabolism in Escherichia coli.
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1 INTRODUCTION

It is generally impossible to simultaneously measure the abun-

dance of all the molecular entities making up biological systems.
In gene expression assays, for example, we typically measure

messenger RNA expression, but not the activity of transcription
factors and/or the occupancy of transcription-factor binding

sites. Similarly, in metabolomic analyses (Chou and Voit, 2012;
Voit, 2013), key metabolites can be measured using, e.g. mass

spectrometry or nuclear magnetic resonance quantification, but

it is rarely possible to comprehensively quantify the metabolites

even within a single pathway. Typically, more interesting than

metabolite and enzyme abundance are the fluxes through bio-

chemical reactions and metabolic networks (Orth et al., 2010;

Schuster et al., 1999). Fluxes, � ¼ ð�1, . . . , �mÞ
T, correspond to

the rates at which molecules, x ¼ ðx1, . . . , xnÞ
T, are turned over

by the m reactions; regulation of fluxes in light of changes in

environmental and physiological conditions is also intimately

linked to cellular physiology.
Although the fluxes are of central concern, they are hard to

measure directly. Estimates for intracellular fluxes can be ob-

tained by tracking products from isotope-labeled (13C and 15N

metabolic flux analysis) metabolites through the metabolic net-

work (Blank and Ebert, 2012; Zamboni, 2011). However, such

an approach is restricted to a metabolically steady-state analysis

and is not appropriate for capturing dynamical flux variations.

Instead, theoretical analysis has often progressed by assuming

stationarity of the metabolic processes, which in turn allows

for characterizing the sets of steady-state fluxes under a set of

suitable assumptions (Klamt and Stelling, 2003; Schwartz and

Kanehisa, 2006; Voit and Almeida, 2004). Flux-balance analysis

is the most popular example of this strategy, but it becomes

questionable once the steady-state assumption can no longer be

upheld. Furthermore, as more data on enzyme abundance be-

come available, we should attempt to include such information

and the impact on metabolic processes (Colijn et al, 2009; Rossell

et al., 2013).
Here we provide a new framework that allows us to model

metabolic fluxes and their dynamics, and which deals with the

missing data problem in metabolic analysis in a flexible and con-

sistent manner. Gaussian processes (GP) belong to the armoury

of non–parametric Bayesian methods and have been widely used

to describe dynamical processes (Kirk and Stumpf, 2009) and to

infer hidden states, e.g. transcription-factor activities (Honkela

et al., 2010). In applications to metabolic modelling, parametric

approaches can offer potentially incorrect representations of the

underlying fluxes (Voit, 2013). The strengths of GP models arise

from their non-parametric nature, which enables us to put priors

directly on a function rather than on the parameters of a para-

metric function. With a multiple-output GPs (MGPs), single GP

framework can be extended to handle many outputs, enabling us

to learn the unknown relationships between metabolic species. In

turn, MGPs can be used to infill the sparsely sampled data

(Boyle and Frean, 2004). This means that by using MGPs, it is

possible to impute the missing data in between the metabolic

measurements more efficiently.
Here we develop a more general framework that uses so-called

derivative GPs (Solak et al., 2003), which allow us to link*To whom correspondence should be addressed.
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metabolite abundance, x (or concentrations) and fluxes �. This in
turn enables us to also treat time course data on metabolites and

monitor the changes that occur in fluxes, e.g. over the course of

physiological responses, such as to changes in the environment

(Bryant et al., 2013).

2 METHODS

2.1 GP regression

Gaussian process regression (GPR) can be applied to recover an under-

lying dynamical process from noisy observations. A GP defines a prior

distribution over all possible functions, and to specify a GP, we need

expressions for the mean and covariance function that describe the be-

haviour of the system output over time (Haykin andMoher, 2010). Below

we review the standard GPR methodology.

In a typical regression problem, we connect inputs x and outputs z via

functions, z ¼ fðxÞ, where x ¼ x1, . . . ,xnð Þ and z ¼ z1, . . . , znð Þ are con-

tinuous n-dimensional real-valued vectors. The observed values of the

dependent variable, z, can be related to the independent variables, fðxÞ

through,

yi ¼ fðxiÞ þ �, i ¼ 1, . . . , n,

where � is a noise term, which is here assumed to be independent and

identically distributed according to a Gaussian distribution, � � N ð0, �2� Þ.

In GPR, we place a GP (Haykin and Moher, 2010; McKay, 1998) prior

over the functions fðxÞ, f � GP, meaning that at any finite number of

input points x1, . . . ,xn the values fðxiÞ have a multivariate Gaussian

distribution with zero mean and covariance function, K,

fðx1Þ, . . . , fðxnÞ½ �
T
� N 0,Kðx,x0Þð Þ:

Different functional forms can be chosen for the covariance function

(Rasmussen and Williams, 2006), either to simplify computations or to

reflect constrains imposed by the data. A flexible and generic choice is to

set the covariance function to

Kðxp, xqÞ ¼ �
2
g exp �

1

2l
jxp � xqj

2

� �
,

where � ¼ �2g , l
� �

represent a set of unknown hyper-parameters, and xp

and xq are inputs. Thus, y ¼ y1, . . . , ynð Þ
T has a multivariate normal dis-

tributionwith zeromean and covariancematrixCð�Þ ¼ Kþ �2� I, with I the

identitymatrix. The unknown set of hyper-parameters, �, can be estimated

from the data by evaluating the following log-likelihood function,

Lð�Þ ¼ �
1

2
log jCð�Þj �

1

2
yTCð�Þ�1y�

n

2
log 2�, ð1Þ

using either a maximum likelihood approach or by sampling from the

posterior distribution with Markov chain Monte Carlo methods (Neal,

1997).

For any finite number of input (test) points, x?1, . . . ,x?r , we define the

joint prior probability distribution

½y, fðx?1Þ, . . . , fðx?r Þ�
T
� N 0,

Kðxp, xqÞ þ �
2
� I Kðxp,x

?
qÞ

Kðx?p,xqÞ Kðx?p,x
?
qÞ

� �� �
:

With the GP prior, it is possible to evaluate the posterior distribution

over the functions; the values of f evaluated at inputs x?1, . . . , x?r
� �

and

conditioned on the observations y are jointly distributed as (Rasmussen

and Williams, 2006),

½fðx?1Þ, . . . , fðx?r Þ�
T
jy � Nðmp,KpÞ, ð2Þ

where

mp ¼ Kðx?p,xqÞ½Kðxp,xqÞ þ �
2
� I�
�1y,

and

Kp ¼ Kðx?p,x
?
qÞ � Kðx?p,xqÞ½Kðxp,xqÞ þ �

2
� I�Kðxp, x

?
qÞ:

Although Equation (2) defines an appropriate GP posterior, which

allows us to make predictions about a single variable y, it remains unclear

how to deal with several variables simultaneously: if outputs are corre-

lated then the standard GPR framework may fail in providing an ad-

equate description.

2.2 Multiple–output GPs

Boyle and Frean (2004) introduced MGPs, where a set of dependent

GPs is constructed via multiple-input multiple-output linear filters. This

perspective can capture the dependencies between several variables by

solving a convolution integral and specifying a suitable covariance func-

tion, which in turn includes the cross and auto correlations among related

variables. Our construction of derivative processes below builds onMGPs.

Dealing with linear filters is central to signal processing where such

filters describe a physical systems that can generate an output signal in

response to a given input signal (Haykin and Moher, 2010; Roberts,

2008). Linear filters are characterized by their kernel function (an impulse

response) h(t), and the output z(t) can be expressed via convolution

integral,

zðtÞ ¼ hðtÞ � xðtÞ ¼

Z1
�1

hð�Þxðt� �Þd�,

where the symbol ‘�’ denotes the convolution operator. To transmit the

signal that has the mathematical properties of a GP, the kernel function,

h(t) must be absolutely integrable, i.e.Z1
�1

jhðtÞjdt51,

Then if the input X(t) is specified to be a Gaussian white noise process,

the output process, Z(t), will also be a GP.

Specifying a stable linear time-invariant filter with M white noise pro-

cesses as inputs, X1ðtÞ, . . . ,XMðtÞ, K outputs, Z1ðtÞ, . . . ,ZKðtÞ and

M� K impulse responses results in a dependent GP model (Boyle and

Frean, 2005). A multiple-input multiple-output filter can thus be defined

as

ZkðtÞ ¼
XM
m¼1

Z1
�1

hmkð�ÞXmðt� �Þd�,

where hmkðtÞ are kernel functions and ZkðtÞ is the kth output. As dis-

cussed previously, the observed variables might differ from expected vari-

ables owing to the measurement noise, and we thus consider

YkðtÞ ¼ ZkðtÞ þWkðtÞ, ð3Þ

where WkðtÞ is a Gaussian white noise process with variance �2k .

Multiple-input multiple-output filters are able to capture the relation-

ships between several variables YkðtÞ; in the model, these kind of depen-

dencies are build in via shared input noise sources that enable the

specification of valid covariance functions. For the sake of simplicity,

let the impulse response be a Gaussian kernel, hmkðtÞ ¼ vmk expf�
1
2 ðt�

�mkÞ
2Amkg. Then evaluating the convolution integral leads to the follow-

ing covariance function,

CijðdÞ ¼
XM
m¼1

Z1
�1

hmið�Þhmjð� þ dÞd�

¼
XM
m¼1

ð2�Þ
1
2vmivmjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ami þ Amj

p exp �
1

2
ðd� ½�mi � �mj�Þ

2S

	 

,

ð4Þ

where S ¼ AmiðAmi þ AmjÞ
�1Amj and d ¼ ta � tb is the temporal separ-

ation between two input points, (see Boyle and Frean (2004) appendix for

derivation and generalization to multidimensions). Constructing
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intermediate matrices Cij permits the definition of a positive definite sym-

metric covariance matrix C between K variables,

C ¼

C11 þ �
2
1I . . . C1K

. . . . . . . . .
CK1 . . . CKK þ �

2
KI

0@ 1A
½N�N�

:

Here N ¼
PK

i¼1 Ni is total number of observations, and Ni the number

of observations of variable i. Having defined the covariance matrix, we

can use the log-likelihood, which has the form (1) for the inference of the

hyper-parameters � ¼ fvmk,�mk,Amkg. Again, following Bayesian frame-

work, we can use the results from the GPR section to evaluate the joint

predictive distribution (2) for all outputs. Alternatively, for a particular

variable i, predictions can be made using the appropriate marginal

distribution, which is Gaussian, with mean miðt
0Þ and variance variðt

0Þ,

given by

miðt
0Þ ¼ kTC�1y,

variðt
0Þ ¼ 	� kTC�1k,

ð5Þ

where

	 ¼ Ciið0Þ þ �
2
i ,

kT ¼ ½kT1 , . . . , kTK�,

kTj ¼ ½ðCijðt
0 � tj, 1Þ � � �Cijðt

0 � tj,Nj
Þ�:

2.3 Derivative processes

For a GP that is derived through a linear filter, YðtÞ ¼ hðtÞ � XðtÞ þWðtÞ,

where X(t) is a white noise GP, h(t) is a kernel function and W(t) is an

additive noise, it is easy to formulate the expression of a derivative process.

Taking a derivative of Y with respect to t, it is possible to obtain a new

process U that is also a GP (Boyle, 2007),

UðtÞ �
d

dt
YðtÞ ¼

Z1
�1

d

dt
hðt� �Þ

	 

Xð�Þd� ¼ gðtÞ � XðtÞ,

Thus, it is possible to construct the derivative process by convolving a

white noise GP X(t) with a derivative kernel function g(t). This definition

enables us to consider derivative processes and the corresponding original

processes as a collection of dependent GPs. This is true because the de-

rivative processes and the original processes are derived from exactly the

same input, X(t).

To construct a dependent model for several related variables

Y ¼ Y1, . . . ,YKð Þ and their derivatives U ¼ U1, . . . ,UKð Þ, it is necessary

to define a suitable covariance structure, which in principal arises from

the initial covariance function (4). For example, for a set of four depend-

ent outputs (two original and two derivative processes), the following

equations can be applied to compute the covariances (Girard, 2004;

Kirk, 2011; Solak et al., 2003),

	 Autocovariance function of derivative process Ui

DDCiiðdÞ � cov
dYi

dt

����
t¼ta

,
dYi

dt

����
t¼tb

 !
¼

d2

dtadtb
CiiðdÞ;

	 Cross-covariance function between two derivative processes Ui

and Uj

DDCijðdÞ � cov
dYi

dt

����
t¼ta

,
dYj

dt

����
t¼tb

 !
¼

d2

dtadtb
CijðdÞ;

	 Covariance between original process Yi and corresponding derivative

process Ui

DCiiðdÞ � cov Yi,
dYi

dt

����
t¼tb

 !
¼

d

dtb
CiiðdÞ;

	 Covariance between original process Yi and derivative process Uj

DCijðdÞ � cov Yi,
dYj

dt

����
t¼tb

 !
¼

d

dtb
CijðdÞ:

Let R denote a block matrix,

R ¼
C11 C12 DC11 DC12

C21 C22 DC21 DC22

� �
, L ¼ RT,

which describes the correlations between observations Y ¼ Y1,Y2ð Þ and

their ‘function’ values Z ¼ Z1,Z2ð Þ, and corresponding derivative vari-

ables U ¼ U1,U2ð Þ evaluated at any finite number of test points

t1, . . . , tr. In a similar manner, let H denote

H ¼

~C11
~C12

gDC11
gDC12

~C21
~C22

gDC21
gDC22gDC11

gDC12 DDC11 DDC12gDC21
gDC22 DDC12 DDC21

0BBBB@
1CCCCA,

where the ~Cij matrices contain the correlations between functions Z1 and

Z2 evaluated at a finite set of test points t1, . . . , tr; gDCij the correlations

between functions Z ¼ Z1,Z2ð Þ and derivative variables U ¼ U1,U2ð Þ

evaluated at the same test points; and finally, DDCij consists of auto/

cross-correlations between derivative variables U1 and U2. The matrices

R, L and H are building components of the overall covariance matrix K,

which is symmetric and positive definite,

K ¼
Cþ �2I R

L H

� �
:

At a finite number of input points t1, . . . , tr, the matrix K allows us to

place a joint prior over observations Y, functions Z and derivatives U,

Y1,Y2,Z1,Z2,U1,U2½ � � N 0,Kð Þ:

Evaluating a GP posterior

Z1,Z2,U1,U2½ �
�� Y1,Y2½ � � N ðmpost,KpostÞ, ð6Þ

where

mpost ¼ L Cþ �2I
� 
�1

R and Kpost ¼ H� L Cþ �2I
� 
�1

Y,

enables us to make joint predictions for the original and derivative pro-

cesses simultaneously. Alternatively, if there is no need to sample from

the posterior process, we can use marginal Gaussian distributions to

make predictions for individual output. The marginal distributions for

output i and its derivative process at any input point t?,

mYi
ðt?Þ ¼ kYi

Cþ �2I
� 
�1

Y,

mUi
ðt?Þ ¼ kZi

Cþ �2I
� 
�1

Y,

varYi
ðt?Þ ¼ 	� kYi

Cþ �2I
� 
�1

kTYi
,

varUi
ðt?Þ ¼ 
� kZi

Cþ �2I
� 
�1

kTZi
,

ð7Þ

where mYi
is the mean of the original process, mUi

the mean of the de-

rivative process, varYi
the variance of the original process and varUi

the

variance of the derivative process, and furthermore

	 ¼ Ciið0Þ þ �
2
i , 
 ¼ DDCiið0Þ

kYi
¼

Ci1ðt
? � t1, 1Þ

� � �

Ci1ðt
? � t1,N1

Þ

Ci2ðt
? � t2, 1Þ

� � �

Ci2ðt
? � t2,N2

Þ

0BBBBBBBB@

1CCCCCCCCA
, kUi

¼

DCi1ðt
? � t1, 1Þ

� � �

DCi1ðt
? � t1,N1

Þ

DCi2ðt
? � t2, 1Þ

� � �

DCi2ðt
? � t2,N2

Þ

0BBBBBBBB@

1CCCCCCCCA
Equations (6) and (7) can easily be extended to make predictions about

any number of variables.
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3 APPLICATIONS AND RESULTS

To demonstrate the performance of derivative processes, we

consider two simulation examples—a system of two oscillating

signals and a simple model of linear metabolic pathway—before

turning to a more complicated metabolic process and, finally,

some real metabolic network data. The derivative processes can

be used to address the flux estimation problem from time course

data. Here GPs describe the dynamics of metabolites, and

the corresponding derivative processes capture the functional

forms of the associated fluxes. Below, all examples were imple-

mented using the free statistical computing platform R www.r-

project.org.

3.1 Oscillating signals

A simple oscillating signal can be expressed as

zðtÞ ¼ A sinð!tþ �Þ, where A is the amplitude, ! ¼ 2�f the an-

gular frequency and � the phase angle. This is a particularly

useful example because it is easy to evaluate the performance

of derivative processes, as the derivative signals have a known

analytic form. We consider a simple system that consists of two

oscillating signals, z1ðtÞ and z2ðtÞ,

z1ðtÞ ¼ sinð2tÞ, ) _z1ðtÞ ¼ 2 cosð2tÞ,

z2ðtÞ ¼ sin 2tþ
�

4

� �
, ) _z2ðtÞ, ¼ 2 cos 2tþ

�

4

� �
,

with t 2 ½0, 4��. To model real experimental measurements, we

add random noise to the simulated trajectories, Y1ðtÞ ¼

z1ðtÞ þ �1, Y1ðtÞ ¼ z2ðtÞ þ �2, where �i � Nð0, 0:1
2Þ; we have

observations of both signals at regular time intervals,

D1 ¼ ft1, i,Y1, ig
N1¼10
i¼1 and D2 ¼ ft2, j,Y2, jg

N2

j¼1 ¼ 10. To build a

single model that captures the relationship between the two sig-

nals, we apply the dependent GP framework (3) (K¼ 2) on a

combined dataset D ¼ fD1,D2g; each signal can be expressed as

a superposition of three GPs—two of which are constructed via

convolution between a noise source and a Gaussian kernel, and

the third one is an additive noise. We set parameters Ai of each

Gaussian kernel to be expðfiÞ and noise levels to

�1 ¼ expð
1Þ, �2 ¼ expð
2Þ, leading to a set of hyper-parameters

� ¼ ðvi, fi,�1,�2, 
1, 
2Þ, i ¼ 1, . . . , 4. To build the model the fol-

lowing priors are chosen: vi, fi � ð1, 2
2Þ, 
j � Nð�2, 2

2Þ and

�j � Nð0:5, 1
2Þ, j ¼ 1, 2; the maximum a posteriori (MAP)

estimate �̂ is determined using a multistarting Nelder–Mead op-

timization algorithm (Nelder and Mead, 1965). Dependent GP

posteriors (6) allow us to make joint predictions about both sig-

nals and their derivative processes at any finite number of input

points, and the resulting posterior processes are summarized in

Figure 1. From these posterior processes, it can be seen that the

mean behaviour of our model agrees with trajectories of under-

lying noiseless signals, and to make predictions about derivative

processes, it is enough to consider only samples from the original

sinusoidal trajectories.

3.2 Linear pathway

Next we consider a linear metabolic pathway with two regulatory

signals (see Goel et al. (2008) Supplementary Material for de-

tails), which is summarized in Figure 3a. Here the flow from x1
to x2 is negatively regulated by metabolite x3, and x3 increases

the transformation of x2 into x3. A set of ordinary differential

equations (ODEs) can be used to describe the dynamics of these

two metabolites, x2 and x3 (x1 is the constant external input),

_x2 ¼
x1Vmax

Kmð1þ
x3
Ki
Þ þ x1

� x0:52 x3,

_x3 ¼ x0:52 x3 � x0:53 :

ð8Þ

To apply the derivative process approach, we simulate the

ODE model with the following parameter values

ðVmax,Km,KiÞ ¼ ð18:6819, 9:7821, 0:5992Þ and initial conditions

x2ð0Þ ¼ 1, x3ð0Þ ¼ 1. In this model, the concentration of x1 is

assumed to be constant and equal to 2. The dataset consists of

selected points from simulated trajectories with added Gaussian

noise Nð0, 0:052Þ. Again we combine the ‘noisy’ measurements,

and fit the dependent GP model to make predictions about the

original trajectories and their derivatives. To obtain a functional

expressions for fluxes v1 and v2 we need to estimate a dynamical

variations of metabolic, x2, x3, derivatives. The derivative pro-

cesses provide the predictions for the left side of Equation (8) at

any finite number of time points, whereas the original GPs de-

scribe the solution on the same ODE (8). This enables us to link

the metabolite measurements to metabolic fluxes. Figure 2 illus-

trates the predictions with posterior processes, where solid blue

lines correspond to the mean behaviour of the model, dashed

lines to the original x2 and x3 trajectories and solid green lines

to their derivatives. In addition, if we assume that we are able to

measure flux v3 ¼ x0:53 , we can obtain the functional expressions

for fluxes v1 and v2 that are summarized in Figure 2c and d. The

dark pink lines illustrate predicted fluxes from noisy metabolite

(a) (b)

(c) (d)

Fig. 1. Predictions withMGPs model for two oscillating signals. (a and b)

Dashed lines represent true behaviour of noiseless sinð�Þ trajectories; dots

correspond to the noisy observations for both signals (data); solid lines

are the mean behaviour of the MGPs model (predictions with original

GPs); light areas correspond to two standard deviations at each predic-

tion point. (c and d) Dashed lines represent true behaviour of noiseless

cosð�Þ trajectories; solid lines show the mean behaviour of the MGPs

model (predictions with derivative processes); light areas correspond to

two standard deviations at each prediction point
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measurements, dashed lines are real fluxes (calculated from

ODEs (8)) and light pink area corresponds to the confidence

region.

3.3 Branched pathway

We now turn to an example of metabolic pathway that was ori-

ginally proposed by Voit (2013) (see Example of actual charac-

terization); Figure 3b illustrates a schematic representation of a

branched pathway with two regulatory responses, where x3 in-

hibits the conversions of x1 into x2, and x2 positively regulates

reaction v4. The following ODE model describes the dynamics of

the metabolites that are involved in this pathway,

_x1 ¼ 0:05� 1:1x0:51 x�0:753 � 2:8x0:81 x0:42 ,

_x2 ¼ 1:1x0:51 x�0:753 � 1:1x0:62 ,

_x3 ¼ 1:1x0:62 ,

ð9Þ

where x1, x2, x3 denote the metabolites. For a given pathway

(Fig. 3b), the change in metabolite concentration can be

described by the differences between incoming and outgoing

fluxes. For this reason, we are able to obtain the following ex-

pressions for fluxes v1, v2, v3 and v4,

_x1 ¼ v1 � v2 � v4, v1 � v4 ¼ _x1 þ v2,

_x2 ¼ v2 � v3, ) v2 ¼ _x2 þ _x3,

_x3 ¼ v3, v3 ¼ _x3:

ð10Þ

These expressions define a system of linear equations that is

underdetermined, as we have more fluxes to estimate than

available equations, and it cannot be solved using standard

Gaussian elimination techniques. For this reason, additional in-

formation is required to uniquely determine fluxes v1 and v4. In

this example, we will focus only on estimation of fluxes v2 and v3
from available data rather than try to address a uniqueness prob-

lem of v1 and v4.
The above ODE model enables us to generate simulated time

course data using the initial conditions x1ð0Þ ¼ 4, x2ð0Þ ¼ 1 and

x3ð0Þ ¼ 2. Next, we apply the dependent GP framework (3)

(K¼ 2) on the combined dataset D ¼ fD1,D2g, where

D1 ¼ ft2, i, x2, ig
N1¼20
i¼1 andD2 ¼ ft3, i, x3, ig

N1¼20
i¼1 contains the meas-

urements of metabolites x2 and x3 with added random Gaussian

noise Nð0, 0:012Þ (we chose a low noise level so that predictions

with derivative processes could be easily compared with the ori-

ginal fluxes in the example in Voit (2013). For a set of model

hyper-parameters � ¼ ðvi, fi, 
1, 
2,�Þ, i ¼ 1, . . . , 4 we use the fol-

lowing priors, vi � ð2, 2
2Þ, fi � ð�3, 2

2Þ, 
j � Nð�2, 2
2Þ, j ¼ 1, 2

and � � Nð0:5, 12Þ, and calculate the MAP estimate �̂ as before.
Figure 4 illustrates the predictions with posterior processes using

Equation (7); (a and b) graphs summarize metabolite data. The

dark blue lines correspond to the mean behaviour of the original

GPs and agree well with simulated x2 and x3 dynamics; the green

lines describe the derivatives of the same metabolites and can be

understood as a slope estimates. In Figure 4c and d, dark pink

lines illustrate the predicted metabolic fluxes v2 and v3 under

consideration of pathway Figure 3b. From ODE model (9), we

can calculate original fluxes over the time (in real situations this

(a)

(b)

(c)

Fig. 3. Pathway information. (a) A simple linear metabolic pathway; red

and green dashed lines correspond to the inhibition and activation sig-

nals. (b) Illustrates a branched pathway with positive (green) and negative

(red) regulatory signals. (c) Illustrates a metabolic pathway in E.coli, here

vi, i ¼ 1:::4 denote the fluxes; �KG, GLU and GLN correspond to the

metabolites; TCA is a short notation for the citrate cycle in E.coli

(a) (b)

(c) (d)

Fig. 2. Predictions with MGPs model for linear metabolic pathway.

(a and b) Dashed lines represent a simulated x2 and x3 trajectories

from ODE model; dots correspond to the sparse noisy observations for

x2 and x3 (data); solid blue/green lines are the mean behaviour of the

MGPs model (blue, predictions with original GPs; green, predictions with

derivative process); light areas correspond to two standard deviations at

each prediction point. (c and d) Dark lines are predicted fluxes, light areas

correspond to the confidence region, and dashed lines represent true be-

haviour of noise-free fluxes v1 and v2 (calculated from ODE system)
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would not be possible). Figure 4c and d shows a good agreement

between predicted and original fluxes.

3.4 Escherichia coli nitrogen assimilation

Finally, we apply our technique to the experimental data from

E. coli, where we have measurements of the abundance of several

key metabolites involved in nitrogen assimilation. Nitrogen is

one of the key chemical elements that acts as a nutrient for the

cells; ammonium is a preferred source of nitrogen for E. coli

growth (Schumacher et al., 2013; van Heeswijk et al., 2013). In

E. coli, ammonium can be absorbed via two pathways: glutamate

dehydrogenase (GDH) that operates during cell growth in am-

monium-rich environments, and glutamine synthetase-glutamate

synthase (GS-GOGAT) that operates during cell growth in low-

ammonium conditions (van Heeswijk et al., 2013). Here, we are

focussing on experimental conditions, where after a period of

nitrogen starvation, the bacterial cultures are spiked with ammo-

nium (Schumacher et al., 2013); Figure 5a shows experimentally

obtained measurements for �-ketoglutarade (�KG), glutamate

(GLU) and glutamine (GLN) metabolites over the time after am-

monium spike; red dots correspond to a wild-type (WT) E. coli

metabolic measurements, and in squares—isogenic glnG deletion

(�glnG) measurements. Below we focus on the pathway

summarized in Figure 3c, which includes both GDH and GS-

GOGAT. For modelling purposes, we assume that fluxes v3 and

v4 can be summarized by the overall flux v3 that describes the

flow from GLU to GLN, as there is not enough information to

discriminate between them. From the pathway, we can construct

a system of linear equations that describe the dependencies be-

tween fluxes and metabolites,

� _KG ¼ v1 � v2, v1 ¼ � _KGþ G _LUþ G _LN,

G _LU ¼ v2 � v3, ) v2 ¼ G _LUþ G _LN,

G _LN ¼ v3, v3 ¼ G _LN:

ð11Þ

We fit a dependent GP model (3) (K¼ 3) to the WT data and

then to �glnG data (collected from a strain where glnG is

absent). In the model, �KG is expressed as a sum of three GPs:

the first GP describes �KG, the second expresses the relationship

between �KG and GLU and the third one describes additive

noise; GLN is modelled similarly. However, GLU is modelled

as the sum of four GPs, where the first three describe GLU;

the dependence between GLU and �KG; the dependence between
GLU and GLN; and the fourth is an additive noise. Choosing

kernel functions to be Gaussian hkðtÞ ¼ vk expf�
1
2 t

2Akg, we

obtain the MAP estimate for all hyper-parameters (17 in total).

The predictions with posterior process (7) are summarized in

Figure 5, where solid blue lines describe predictions with depend-

ent GP models for WT E. coli, and green lines for �glnG. Using

the relationship (11), we can estimate fluxes v1, v2 and v3
(Fig. 5c).
To evaluate our predictions, we can compare flux v3 and GS

protein levels in WT and �glnG E. coli (see Supplementary Fig.

S1). In E. coli, glnG encodes the transcription factor, NtrC (ni-

trogen regulator) that controls GS expression levels, and in its

active form, GS catalyses glutamine synthesis (van Heeswijk

(a)

(b)

(c) 1
1
1
1

Time(min) Time(min) Time(min)

WT model
glG model

WT data
glG data

Fig. 5. Predictions with MGPs model for E. coli (WT and �glnG). (a)

The symbols indicate experimentally measured concentrations of �KG,

GLU and GLN metabolites (dots for WT, squares for �glnG). Solid lines

correspond to the mean behaviour of dependent GPs model. (b) Predicted

derivative behaviour for �KG, GLU and GLN metabolites, where solid

lines correspond to the mean behaviour of dependent derivative pro-

cesses. (c) Predicted fluxes v1, v2 and v3 for convenience, dotted line illus-

trates horizontal 0-axis

(a) (b)

(c) (d)

Fig. 4. Predictions with MGP model for a branched metabolic pathway.

(a and b) Dashed lines represent simulated x2 and x3 trajectories from

the ODE model; red dots correspond to the sparse observations for x2
and x3 (data); solid lines are the mean behaviour of the MGPs model

(blue, predictions with original GPs; green, predictions with derivative

process); light areas correspond to two standard deviations at each pre-

diction point. (c and d) Dark lines are predicted fluxes; dashed lines rep-

resent true behaviour of fluxes v2 and v3 (calculated from the ODE

system)
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et al., 2013). Experimentally, it was observed that in �glnG case

protein, GS levels were significantly lower compared with the GS

levels in WT E. coli (see Supplementary Fig. S1C and D).

Because there is less enzyme available to catalyse the reaction

in �glnG, the flux v3 in the mutant will be noticeably reduced

compared with the WT flux v3 (see Supplementary Fig. S1A

and B).

4 DISCUSSION AND CONCLUSIONS

Flux estimation has become central to many analyses into the

metabolic processes and mechanisms. Typically, the estimates for

a set of fluxes are obtained in a point-wise manner at discrete

time points. It is clear that this fails to capture the temporal

behaviour of the fluxes and additional consideration of paramet-

ric models is compulsory to fully explain the fluxes; further, this

approach is susceptible to noise that is present in experimentally

measured metabolite data.
Here we have addressed these problems and proposed a novel

non-parametric Bayesian approach to modelling metabolic

fluxes. This is based on MGPs that enable the construction of

derivative processes. Because the derivative processes and ori-

ginal processes share the same input source, we can complement

the dependent GP model and make joint predictions about ori-

ginal and derivative processes at any finite number of input

points. Such derivative processes can be applied to characterize

the temporal behaviour of metabolic fluxes from time course

data—without having to make reference, e.g. transcriptomic

data, to explain temporal variation—and here we have demon-

strated the applicability on simple models and a real-world

example.
GPs, including our approach, propagate uncertainty in line

with the assumed covariance structures. This can lead to

large confidence intervals, especially if the dependencies among

different observations are not considered explicitly. With increas-

ing number of metabolic species within the pathway, the deriva-

tive process approach might become computationally costly due

to the inference of a large number of hyper-parameters and a

matrix inversion step; however, this limitation potentially might

be addressed by considering a sparse approximation for the full

covariance matrix of all metabolic species (Alvarez and

Lawrence, 2009). These can in principle deal with genome-level

data.
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