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Abstract 

Masonry arch bridges, most of which have far exceeded modern design lives, have 

demonstrated themselves to be sustainable structures with low life-cycle costs. However 

increased traffic loading and material deterioration over time necessitate periodic 

reassessment of these structures. There are numerous different analytical methods available 

for the assessment of masonry arch bridges. The expectation is that for increasing levels of 

assessment complexity an increase in load capacity converging on the ultimate capacity 

would be achieved. In this paper it is demonstrated that this is not always the case. This has 

cost implications for both the bridge assessment itself and for costs associated with load 

restrictions and strengthening measures. Five different assessment methods were selected to 

assess a set of 11 single span bridges, ranging in span from 2.4 m – 15.2 m, with the objective 

of reviewing and rationalising current assessment guidelines for masonry arch bridges. The 

bridges chosen are a representative sample of the stone arch bridges on the Irish National 

Roads network. It was found that there is a significant variation in assessed capacity 

depending on the assessment method used. Limit state analysis methods were found to 

generally result in higher ratings for segmental bridges while elastic methods resulted in 

higher ratings for three-centred or semi-circular bridges. Assessment ratings found using the 

MEXE method were difficult to rationalise across the bridge set considered in this study. 

Following a review of the origins of the MEXE method and its current form as set out in the 

assessment guidance, it is recommended that its use as the predominant tool in a simplified 

assessment procedure is not appropriate and that a more rational approach is required for a 

more realistic and reliable calculation of bridge capacity. The development of an improved 

assessment methodology is being considered as part of the current study. 

 

Keywords: Brickwork & masonry, bridges, codes of practice & standards 
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NOTATION 

a rise at centre span 

d ring thickness 

h depth of fill 

f compressive strength of masonry 

L span 

LB lower bound estimate of ring thickness 

M1 bending moment 

Mu ultimate bending moment capacity 

P1 axial force 

Pu ultimate axial force capacity 

PAL provisional axle load 

UB upper bound estimate of ring thickness 

W1 safe wheel load based on middle half rule 

W2 safe wheel load based on limiting compressive stress 

WA safe axle load 

σ density of masonry and fill 

 

1. INTRODUCTION 

There are important arguments for a coherent strategy and set of guidelines for masonry arch 

bridges.  Firstly, masonry arch bridges account for a significant proportion of the bridge stock 

both in Ireland and throughout Europe. They form an integral part of European transport 

infrastructure on the road, canal and rail networks. In Ireland there are an estimated 16,000 

masonry arch bridges constituting approximately 80% of the national bridge stock (Molloy, 

1988), and in Europe masonry arches are estimated to account for 40% of railway bridges 
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(Sustainable Bridges, 2007). In a survey carried out by the International Union of Railways 

(UIC), a total of 200,000 masonry arch bridges accounted for 60% of the bridges on the 

railway networks of the fourteen participating countries (Orbán, 2007). Outside of Europe, 

18% of railway bridges in India are masonry arches (Orbán, 2007) and arch construction of 

various forms comprises 70% of all bridges in China (Xiang, 1993). In the United States, they 

are found in smaller numbers: Pennsylvania, for example, has 386 masonry arches (Senker, 

2007) which are noted for their cultural and historical significance. 

 

Secondly, there is a multitude of assessment methods available for masonry arch bridges 

including empirical methods (Department of Transport, 1997; Network Rail, 2006), limit 

analysis methods based on the formation of plastic hinges (Heyman, 1982; Crisfield and 

Packham, 1987; Falconer, 1987; Harvey, 1988; Gilbert and Melbourne, 1994; Hughes, 2002; 

Ng and Fairfield, 2004), methods based on Castigliano’s energy theorems (Pippard, 1948; 

Bridle and Hughes, 1990; Brencich et al., 2001; Wang and Melbourne, 2010), one 

dimensional finite element methods (Crisfield, 1984; Choo et al., 1991; Brencich and De 

Francesco, 2004), two dimensional finite element methods (Woolfenden, 1993; Ng et al., 

1999; Boothby, 2001; Martín-Caro et al., 2004; Cavicchi and Gambarotta, 2006; Robinson et 

al., 2010), three dimensional finite element methods (Molins and Roca, 1998a; Fanning and 

Boothby, 2001; Frunzio, 2001), two dimensional and three dimensional discrete element 

methods (Ford et al., 2003; Gifford and Partners, 2003; Drosopoulos et al., 2006; Toth et al., 

2009; Kamiński, 2010) and discontinuous deformation analysis methods (Thavalingam et al., 

2001). 

 

Finally, despite the prevalence of numerous methods there is no widely accepted framework 

for their application. For example, for highway loading in the UK the current guidance is set 
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out by the Highways Agency in BD 21/01 (Department of Transport, 2001) and BA 16/97 

(Department of Transport, 1997). In Ireland, where both of these documents have been 

adopted by the National Roads Authority (NRA), they are further supplemented by a Stage I 

Assessment Methodology Report (NRA, 2009). 

 

BD 21/01 expresses a clear preference for the modified MEXE method stating “it  shall be 

used wherever possible before any of the more complex methods ... are tried”, with all other 

methods categorised simply as alternative methods. That said, BD 21/01 requires the use of 

an alternative method under a number of circumstances: 

 where the bridge is outside the scope of the modified MEXE method. Limitations to 

the modified MEXE method relating to the span length, span to rise ratio and multiple 

spans are stated in BA 16/97; 

 where the depth of fill is greater than the ring thickness. BD 21/01 states that “when 

the depth of fill at the crown is greater than the thickness of the arch barrel, the results 

shall again be confirmed using an alternative method. There is a possibility that for 

such cases the MEXE method may be unconservative”. The Stage I Assessment 

Methodology Report (NRA, 2009) similarly states that under such circumstances the 

modified MEXE results should be corroborated using an alternative method; 

 where the modified MEXE method indicates that the bridge is inadequate. However, 

it should be noted that the current guidance operates on the assumption that where a 

modified MEXE assessment is appropriate the results will always be always 

conservative, except where the depth of fill is greater than the ring thickness as noted 

above, with the ensuing guidance that even when an alternative assessment gives a 

lower capacity the higher modified MEXE assessment result shall take precedence: 

BD21/01 states that “when a bridge is found to have a lower capacity than that given 
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by the modified MEXE method, the MEXE assessment shall stand unless there is 

good reason to believe that it is unconservative for the case in question”. 

 

The Stage I Assessment Methodology Report (NRA, 2009) specifies that a modified MEXE 

assessment is to be carried out in accordance with BA 16/97. However the NRA 

methodology differs from BD21/01 and BA16/97 in that it provides more specific guidance 

on the type of assessment method to be used where an alternative assessment is required. 

Where arch geometry or arch conditions do not allow a MEXE analysis to be carried out, a 

three hinge limit analysis using the software package ARCHIE (Harvey 1988) is required. 

Additionally, where the depth of fill is greater than the ring thickness the NRA methodology 

requires that the MEXE result is corroborated using an ARCHIE analysis. This restricts the 

alternative assessment to a particular method but ensures a consistent assessment approach 

across the masonry arch bridge stock at the Stage I Assessment level. 

 

The main requirements of BD 21/01 are summarised in the flowchart shown Figure 1. First, a 

check is carried out to determine whether the bridge parameters are within the limits for the 

modified MEXE method to be applicable. These include being within the span range of 1.5 m 

– 18 m, with a total crown thickness of 0.25 m – 1.8 m, a maximum span to rise ratio of 8, 

and an arch profile which is not appreciably deformed; otherwise an alternative assessment 

method must be used. If the bridge parameters are within the scope of the modified MEXE 

method a MEXE assessment is carried out. However if the depth of fill is greater than the 

ring thickness the MEXE result is said to be potentially unconservative and an alternative 

assessment is required for the purpose of confirming the modified MEXE result. Otherwise 

the modified MEXE result is assumed to be conservative. If the modified MEXE result is 

equal to the highest Gross Vehicle Weight (GVW) category of 40/44 tonnes the assessment 
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procedure is then finished. Otherwise, an alternative assessment can be undertaken to see if a 

higher assessment rating can be achieved. If this alternative assessment result is higher than 

the modified MEXE method, the result from the alternative method can be taken for the 

bridge. However, if the result for the alternative assessment method is lower than the result 

for the modified MEXE method, the result from the modified MEXE method is deemed to 

still stand. This implies an inherent assumption in the assessment guidelines that the modified 

MEXE method, when used within its limits, can be taken as a conservative assessment 

approach. 

 

Examining these requirements raises a number of issues. Firstly, where the depth of fill is 

greater than the ring thickness, indicating that the modified MEXE method may be 

unconservative, there would appear to be no benefit in carrying out a modified MEXE 

assessment. Secondly, where an alternative assessment method has produced a lower result 

than the modified MEXE method it is difficult to rationalise why the modified MEXE result 

should still be assumed to be conservative and take precedence. As the guidance on 

alternative methods is limited and the applicability of the MEXE method is open to question, 

the intent of this work was to examine the current assessment approach with a view to 

developing a more rational and reliable assessment methodology including a review of the 

origins and applicability of the MEXE method, an evaluation of available alternative analysis 

methods, their application to typical arch bridges found in Ireland and the development of an 

improved arch bridge assessment protocol. 

 

In this paper five assessment methods, including the modified MEXE method, were selected 

to assess a set of eleven bridges characteristic of the Irish bridge stock with the objective of 

reviewing and rationalising current assessment guidelines for masonry arch bridges by 
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examining the range of assessment ratings achieved from a variety of assessment approaches 

and the implications of these varying ratings for current assessment guidelines. The 

assessment methods that were chosen are simplified methods considered appropriate at 

preliminary stages of assessment and excluded the more complex and computationally 

demanding methods, e.g. nonlinear finite element methods, discrete element methods and 

discontinuous deformation analysis, which might be considered at later stages in an 

assessment hierarchy. Three dimensional finite element methods incorporating nonlinear 

material models can be used to model progressive cracking of the masonry, the interaction 

between the fill, arch barrel, spandrel walls and surrounding soil medium, accounting for the 

transverse capacity of the arch barrel, providing an accurate representation of the axle load 

distribution, providing diagnostic information in the presence of defects, capturing the 

abutment response and predicting the evolution of damage leading to failure of the complete 

structural system. However, these methods are technically challenging, require extensive 

material data and as such are not practical for the assessment of a large body of bridges. 

Nonlinear one dimensional finite element approaches (Crisfield, 1984; Choo et al., 1991) 

allow for the consideration of a cracked or crushed zones in the masonry by updating the 

geometry in a stepwise iterative procedure and can also control the ductility of the masonry 

by limiting the inelastic strains (Brencish and De Francesco, 2004). These methods do not 

consider the interaction between the arch barrel and fill, however they are much less 

computationally demanding than three dimensional finite element methods. Despite their 

relative simplicity even these one dimensional nonlinear models are not widely used. 

 

2. ASSESSMENT METHODS 

The assessment methods chosen for this study were the modified MEXE method, a three 

hinge limit analysis method, a rigid block limit analysis method, a two dimensional elastic 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

- 9 - 

 

analysis and a three dimensional elastic analysis. Each of the methods is described briefly 

below and further details can be found in the relevant references. 

 

2.1. The modified MEXE method 

The Military Engineering Experimental Establishment (MEXE) developed its empirical 

assessment method for masonry arch bridges (MEXE, 1963) based on the work of Pippard 

(1948). It is now found in its current format in BA 16/97 (Department of Transport, 1997) 

and is referred to as the modified MEXE method. Pippard (1948) is based on a two pinned 

parabolic arch, with a span to rise ratio of 4, loaded at mid-span. Pippard acknowledged that 

this was not the most onerous load position for an arch, but rather that it was the location for 

the least amount of load distribution and therefore the greatest concentration of load. The 

load was assumed to be distributed at a ratio of 1:1 and, as a simplification, the density of fill 

was assumed to be equal to the density of the masonry. 

 

On the basis of these assumptions two equations for the safe wheel load, W1 and W2 were 

derived. The equation for W1 , Equation 1 below, (where L is the span, a is the rise, h is the 

depth of fill, d is the ring thickness and σ is the density of the masonry and fill) was based on 

keeping the line of thrust within the middle half of the bridge. The middle half as opposed to 

the traditional middle third rule was chosen on the basis that the even a weak lime mortar 

would be capable of carrying some tension, a conclusion that was drawn following 

experiments carried out on 3.048 m (10 foot) span model arches jointed using lime mortar, 

cement mortar and also without mortar (Pippard and Ashby, 1939).  

 

Equation 1 

  
 da

dhdadaLh
W

252821

214232 2

1






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The second equation for the safe wheel load W2 (Equation 2 below where f is the compressive 

strength of the masonry) was based on the compressive stress that would arise at the crown 

extrados. Initially Pippard (1948) then argued that the governing equation would be the lesser 

of the two values for W1 and W2, which would be dependent on the value chosen for the 

compressive strength of the masonry. 

 

Equation 2 

da

d

a

a

dh
Lh

L

fhd

W
4225

28421

1
128

256

2




















 

 

However on choosing a compressive strength of 1.4 MPa (13 tons per square foot), on the 

basis of full-scale load tests which had been carried out by the Building Research Station 

during and prior to WWII, and which were later reported by Davey (1953), it was concluded 

that the equation based on the limiting compressive stress, W2, should be taken as the 

governing equation, despite W1 often yielding a lower value. This was justified by arguing 

that when taking W2 as the governing case the maximum tensile stress produced was 

acceptable, which for the bridges considered was less than 0.7 MPa (100 pounds per square 

inch). In final versions of his work Pippard used a value of 2243kg/m³ (0.0625 tons per cubic 

foot) for the density of the masonry and the load was assumed to be applied over a 0.305 m (1 

foot) wide wheel base. Finally, to arrive at a safe axle load the safe wheel load was simply 

doubled, a valid assumption for the depths of fill considered in his paper. The safe axle load, 

WA, given in Equation 3, is expressed in imperial units and is equivalent to that presented in 
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Pippard (1948); with the safe axle load in units of tons, and the span, ring thickness and depth 

of fill in units of feet.  

 

Equation 3 

 
 

 






































dL

d

L

L

dh
hL

L

dh

WA 42100

112

5.0

21

1
5.08

5.0
3330

2  

 

Converting this to metric units gives Equation 4, with the safe axle load in units of tonnes, 

and the span, ring thickness and depth of fill in units of metres. 

 

Equation 4 

 
 

 






































dL

d

L

L

dh
hL

L

dh

WA 42100

112

152.0

21

1
152.0e2816

152.0
e4.358

e81.9

2

36

3
 

 

The modified MEXE method in its present format found in BA 16/97 (Department of 

Transport, 1997) centres around a nomogram relating the arch span and the total crown 

thickness to a provisional axle load (PAL) for a double axle bogie (tonnes). Alternatively, 

Equation 5 is provided with an upper limit of 70 tonnes, where the span, ring thickness and 

depth of fill are measured in metres. 

 

Equation 5 

 
3.1

2
740

L

hd
PAL


  
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This is then modified by a number of factors intended to account for variations in bridge 

geometry and materials and also for defects and deterioration. There are also axle factors to 

allow for conversion from allowable double axle loads to single and triple axle loads.  

 

Pippard’s work in itself is coherent with appropriate arguments and justifications advanced 

for the assumptions made. However, and irrespective of the validity of Pippard’s 

assumptions, there is a lack of full traceability between Pippard’s referenced work and the 

modified MEXE method in its current format – this does not promote confidence in its results 

and makes it difficult to understand the various limits of applicability for MEXE set out in the 

guidance. Furthermore, provisional axle loads calculated from the modified MEXE method 

are significantly higher than those calculated from Pippard’s equations - single axle loads 

determined from Pippard’s equations and the modified MEXE method are plotted for varying 

depths of fill for a 12.192 m (40 foot) span bridge with a ring thickness of 0.457 m (1.5 feet) 

in Figure 2. The comparisons are equally inconsistent for all of the other dimensions 

considered in Pippard (1948).  

 

Another anomaly is the sensitivity of the provisional axle load to the ring thickness. Pippard’s 

method treats the ring thickness and the depth of fill as separate parameters while these are 

combined as a single parameter, the total crown thickness, in the modified MEXE method. 

To illustrate the effect of this, the resulting single axle loads for a constant total crown 

thickness of 0.914 m (3 feet) but with the ring thickness representing differing percentages of 

this total are plotted, for both approaches, in Figure 3. The modified MEXE result, being a 

function of the total crown thickness, is constant (irrespective of whether the ring constitutes 

10% or 80% of this total crown thickness). On the other hand Pippard’s original work is 

sensitive to the percentage of total thickness made up of the ring - as the percentage of the 
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total crown thickness made up of ring thickness increases from 25% of the total crown 

thickness to 75% the axle load capacity increases, beyond this point, as the ring thickness 

increases further, the resulting decrease in the depth of fill limits the load distribution and 

increases the concentration of load, thereby reducing the load capacity. This is in contrast to 

the modified MEXE result which is constant, being a function of the total crown thickness. 

 

2.2. Limit analysis methods 

The two different limit analysis assessment methods used in this study are both based on the 

work of Heyman (1982). Heyman’s method identifies the minimum thickness of arch 

required to contain a line of thrust associated with the formation of four plastic hinges, at 

which point the arch would be unstable. This thickness is then used to define a geometrical 

factor of safety relative to the actual arch thickness. 

 

2.2.1. Three hinge limit analysis method 

The three hinge limit analysis method developed by Harvey (1988) is currently available as 

the commercial software package ARCHIE-M. Harvey’s method is based on Heyman (1982) 

but determines the line of thrust associated with the formation of only three plastic hinges. At 

this point a mechanism has not formed and the arch is still stable. As such, it can be 

considered a lower bound limit analysis method. If such a line of thrust, for a particular load, 

can be found within the boundaries of the arch ring a fourth hinge will not form and the 

available ring thickness, and hence the arch barrel, is deemed to be sufficient to resist the load 

being considered. If this line of thrust cannot be contained within the thickness of the arch 

ring the load is deemed to be unsafe. 

 

2.2.2. Rigid block method 
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The rigid block method developed by Gilbert and Melbourne (1994) is currently available as 

the commercial software package RING 3.0. Similar to Heyman (1982) this method models 

the arch ring as a series of rigid blocks with frictional interfaces and therefore can also allow 

for sliding failure between the blocks. This rigid block method determines the load required 

for the formation of the four plastic hinges. A failure load factor, the ratio of load required for 

the formation of four hinges to the assessment load, is then used to determine whether or not 

a bridge is safe. Being based on the formation of four plastic hinges this method can be 

considered as an upper bound limit analysis method. 

 

2.3. Elastic methods 

2.3.1. Two dimensional elastic analysis 

Boothby (2001) and Boothby and Fanning (2004) describe a 2D elastic analysis method 

based on a unit width plane frame model of the arch barrel. This method evolved from a 

series of in-service load tests and numerical models reported in Fanning and Boothby (2001). 

The arch is divided into a number of segments running along the centreline of the arch ring 

and modelled as straight beam elements. A single modulus of elasticity is assumed for the 

masonry mortar continuum. At the arch springing points the arch is taken to be fixed in the 

vertical direction and also against rotation. Spring supports are provided in the horizontal 

direction. This allows the model to account for movement where the abutments are not well 

founded. Live loads are distributed over a 3m width and a corresponding unit width load is 

determined. In the longitudinal direction, the live loads are applied over a 300mm wheel 

contact length and distributed longitudinally at a ratio of 1:2, horizontal to vertical. The fill is 

included in the model as a dead load only and hence does not contribute strength or stiffness 

to the arch beyond generating compressive stresses in the system. 
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This method is based on a defined ultimate limit state stress distribution at a cross-section. 

For a given masonry compressive strength a cross-sectional force-moment strength envelope 

can be derived (Boothby and Fanning, 2004). Any combination of force and moment at a 

cross-section within the strength envelope is deemed to be safe. The method also allows for 

the inclusion of a limited tensile capacity in the masonry mortar continuum. Further 

discussion on the inclusion of tensile strength for the masonry mortar continuum and 

validation of the modelling assumptions against service load testing can be found in Fanning 

et al. (2005) and Fanning and Boothby (2003). The effect of increasing the tensile capacity is 

to increase the range of moment and force combinations permissible, as shown in the strength 

envelopes determined from Boothby and Fanning (2004) in Figure 4 for a masonry arch with 

a compressive strength of 7.0 MPa, a ring thickness of 0.460 m and tensile capacities of 0 

MPa and 5% of the compressive strength, i.e. 0.35MPa. The margin of safety is determined 

by the ratio of the distances from the origin of the strength envelope to (M1, P1) and (Mu, Pu) 

respectively, Figure 4, where M1 and P1 are the bending moment and axial force at a given 

cross section and Mu and Pu are the ultimate bending moment capacity and axial force 

capacity as defined by the boundary of the strength envelope. 

 

2.3.2. Three dimensional elastic analysis 

Two-dimensional assessment methods cannot fully account for transverse load dispersion, a 

significant feature of the response of arch bridges to loading. Equally they cannot assess the 

transverse capacity. Insufficient transverse capacity frequently manifests itself as longitudinal 

cracking, a common defect identified in visual inspections of many masonry arch bridges. 

With the aim of proposing a relatively simple assessment tool which can account for the 

transverse capacity of the arch without recourse to a full 3D model including the arch, 

spandrel walls, and soil-structure interaction with the fill and surrounding soil, the 2D elastic 
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method in Boothby and Fanning (2004) was extended into a 3D elastic method with the arch 

barrel being modelled using shell elements. Consistent with the 2D approach the fill is again 

only included as a dead load and the spandrel walls are not included. The exclusion of the 

spandrel walls is considered to be prudent as it has been shown that spandrel wall separation 

may occur without any visual evidence at the barrel spandrel wall interface (Fanning et al., 

2005). Again, a single modulus of elasticity is taken for the masonry mortar continuum, the 

live loads are assumed to be distributed laterally over a 3m width and in the longitudinal 

direction at a ratio of 1:2, and the masonry arch is assigned a compressive strength and, if 

appropriate, a limited tensile capacity.  

 

The advantages of this method are that by modelling the arch as a three dimensional shell the 

transverse dispersion of load is accounted for and the transverse capacity can also be 

assessed. In the presence of longitudinal cracking a 3D elastic approach should not be 

considered but otherwise an enhanced rating relative to the 2D elastic approach is expected. 

 

3. BRIDGES ASSESSED 

The National Roads Needs Study (NRA, 1998) identified and surveyed 646 masonry arch 

bridges on the National Primary and Secondary Routes in Ireland, the vast majority of which 

serve as river crossings. Analysis of this bridge set, Figure 5 and Figure 6, identified these 

bridges as predominantly short single span structures with 92% of spans being less than 

12.5m and 63% of bridges having one span only. All of the masonry bridges documented on 

the national routes were of stone construction. Brick arches in Ireland are rare although some 

can be found on the rail network. 
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The eleven bridges selected for assessment were chosen so as to be representative of the 

largest proportion of bridges on the Irish road network. They are all single span structures of 

stone construction ranging in span from 2.4m to 15.2m.  

 

Whilst the bridges assessed are representative of a large proportion of bridges on the Irish 

road network with a diverse range of spans, bridge shapes, ring thicknesses, depths of fill, 

span to rise ratios and masonry strengths, there are a number of arch bridge types that are not 

part of this subset of masonry arches, for example brickwork arches which are commonly 

encountered throughout Europe particularly on the railway network (Sustainable Bridges, 

2007) and require consideration of debonding and ring separation between multiple rings 

(Gong et al., 1993; Melbourne and Gilbert, 1995; Melbourne et al., 2004; Sustainable 

Bridges, 2007). Additionally, all of the bridges selected are single span and as such the results 

do not address the complex issue of pier behaviour and the differing mechanism formation 

that occurs in multiple spans. The assessment of multiple spans as a series of single span 

assessments has been shown to overestimate the capacity of multiple span bridges and is not 

recommended (Hughes, 1995; Melbourne et al., 1997; Molins and Roca, 1998b; Ponniah and 

Prentice, 1998). Furthermore, shapes such as pointed segmental arches or obscure shapes 

such as the four-centred Tudor arch are not specifically considered. 

 

3.1. Bridge profiles and geometry 

The profile of these bridges varied between segmental, semi-circular and three-centred or 

semi-elliptical. The condition and state of repair also varied considerably. The bridge profiles 

and geometries are listed in Table 1. Four of the bridges selected for assessment are shown in 

Figures 7-10. 
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BD 21/01 (Department of Transport, 2001) requires axle loading to be applied within 2.5m 

transverse lane widths. For each bridge the minimum width of arch barrel available to support 

a single 2.5m lane was determined and is referred to as the “width for assessment” presented 

in Table 1. This value was dependant on the number and location of lanes, verges, parapets, 

longitudinal cracks etc. for each bridge. Backing material was not included in any of the 

assessments. 

 

3.2. Material properties 

The material properties were determined on the basis of visual inspections and are presented 

in Table 2. The values for the density of masonry were based on BS 648:1964 Schedule of 

Weights of Building Materials. The compressive strengths for the masonry were based on BD 

21/01 Figure 4.3 Characteristic Strength of Normal Stone Masonry (Department of Transport, 

2001). The values for tensile strength, Young’s modulus and Poisson’s ratio were based on 

the guidance provided in Boothby and Fanning (2004). For all of the bridges the tensile 

strength was limited to 5% of the compressive strength. 

 

For the limit analysis methods the density of the masonry, the compressive strength of the 

masonry and the density of the fill are required. For the two elastic methods all of the 

material properties listed in Table 2 are required. The modified MEXE method is an 

empirical method and while modifying factors based on the bridge materials are used, 

specific material properties are not required. For the 2D and 3D elastic methods the 

abutments were fixed in the horizontal direction for consistency with the two limit state 

analysis approaches which assume fixed abutments. 

 

4. ASSESSMENT PROCEDURE 
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The assessments were carried out in accordance with the current relevant guidance provided 

in BA 16/97 (Department of Transport, 1997) and BD 21/01 (Department of Transport, 

2001). In addition the Stage I Assessment Methodology Report (NRA, 2009), which 

complements these guidance documents and is used in Ireland, was considered. It generally 

follows similar requirements to BD 21/01 and BA 16/97 but there are additional 

requirements, some of which are discussed below.  

 

4.1. Inspection and site investigations 

The Stage I Assessment Methodology Report (NRA, 2009) states that for a Preliminary 

Assessment of masonry arch bridges, unless site investigations are being carried out on an 

adjoining concrete extension, the inspection is generally limited to a visual inspection 

recording the relevant dimensions, the type and condition of the materials, the presence of 

defects and the general condition of the structure. Frequently for stone arch bridges, the 

voussoir stones at the fascia have a greater thickness than those across the rest of the arch. 

Therefore, where only a visual inspection has been carried out, the Stage I Assessment 

Methodology Report (NRA, 2009) requires that lower bound and upper bound estimates of 

the ring thickness are made. The lower bound (LB) estimate is taken as 0.6 of the thickness of 

the voussoirs at the fascia and the upper bound (UB) estimate is taken as the full fascia stone 

thickness. The resulting difference in ring thickness can be substantial; for example in the 

case of Glennagevlagh Bridge the resulting range is 0.276 m to 0.460 m. BA 16/97 provides 

no guidance in relation to variations in ring thickness across the width of the bridge and 

indicates that the thickness of the arch barrel should be measured adjacent to the keystone, 

adjusting this value only for defects such as mortar loss, loss of material due to the provision 

of services, ring separation and displaced voussoirs. 
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4.2. Loading and load factors 

When masonry arch bridges are short in span they are assessed using axle load 

configurations. For masonry arch bridges greater than 20 m in span assessment is required for 

both HA loading and for axle loading. The axle configurations that are applied are for road 

legal vehicles as set out in The Road Vehicles (Authorised Weight) Regulations 1998 (House 

of Commons, 1998) for gross vehicle weights up to 40/44 tonnes. These are the common 

European legal vehicle weights as set out in Directive 96/53/EC. 

 

For all of the assessment methods bar the modified MEXE method, the limit state approach 

and the use of partial factors is adopted. The modified MEXE method determines the 

allowable axle loads directly without the use of safety factors, and the factor of safety is 

deemed to be inherent in the process. For the assessments presented in this paper a double 

axle bogie (1.8m axle spacing) was considered for each bridge. The axle loads were factored 

in accordance with BD 21/01 which requires that a load factor of 1.9 is applied to all of the 

axles and a further impact factor of 1.8 is applied to the critical axle. The vertical road 

alignment for one of the bridges, Glanbehy Bridge, was humpbacked and therefore additional 

conversion factors were applied for axle lift-off for the double axle bogie. BD 21/01 requires 

that a conversion factor of 1.28 is applied to the critical axle and a conversion factor of 0.5 is 

applied to the other axle. The various partial factors that were applied are summarised in 

Table 3. For the modified MEXE method different axle lift-off factors which are dependent 

on the span length, specified in BA 16/97, were included as appropriate.  

 

5. COMPARISON OF ASSESSMENT METHOD RESULTS 
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For the purposes of comparing the results from the various assessment methods the allowable 

axle loads per axle for a double axle bogey (1.8m axle spacing) are presented in Table 4 and 

also graphically in Figure 11 where they have been normalised with respect to the results 

from the 3D elastic method. There is significant variation in assessed capacity depending on 

the assessment method used and no one assessment method consistently produces either the 

highest or lowest axle load rating. While some level of variation is to be expected, given the 

differing engineering principles, analysis theories and inputs, on which the various methods 

are based, the degree of variation is often significant; the resulting maximum to minimum 

allowable axle load ratios vary between 1.54 and 4.52 (Table 4). The most striking feature is 

the number of bridges for which the modified MEXE method results in the highest rating – 

these are discussed in some detail below. 

 

It is noted in BD 21/01 that there is a possibility that axle loads resulting from the modified 

MEXE method may be unconservative “when the depth of fill at the crown is greater than the 

thickness of the arch barrel”. The four bridges in this category are marked with an asterisk in 

Table 4 and Figures 11 and 12 – for three of these bridges the highest rating is achieved with 

the modified MEXE method and relative to the next highest rating the modified MEXE 

assessment is between +20% and +72% higher. In cases where the depth of fill at the crown 

is greater than the thickness of the arch barrel the BD 21/01 requirement is that the modified 

MEXE assessment should be “confirmed using an alternative method”. In Ireland the Stage I 

Assessment Methodology Report (NRA, 2009) also requires corroboration but specifies that 

the alternative method to be used shall be the three hinge limit analysis method using the 

software package ARCHIE. However, for the four bridge profiles where this was the case, 

Whistle Bridge LB, Whistle Bridge UB, Oghermong LB and Owenmore LB, the three hinge 

plastic method gave a lower result than the modified MEXE method and is therefore unable 
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to confirm or support the modified MEXE result. Equally, with the exception of Whistle 

Bridge UB, the modified MEXE result could not be corroborated or confirmed with any of 

the other assessment methods either. 

 

There are five bridge profiles for which the modified MEXE method gave higher results than 

all other assessment approaches – Glennanevlagh Bridge LB, Glennanevlagh Bridge UB, 

Whistle LB, Oghermong Bridge LB and Owenmore Bridge LB. Of these the latter three are 

cases where the modified MEXE result is acknowledged to be potentially unconservative due 

to the height of fill being greater than the ring thickness. However, the case of Glennanevlagh 

Bridge, which falls within the scope of modified MEXE method, is noteworthy. The 

allowable axle load varies between 23.5 tonnes (modified MEXE) and 5 tonnes (three hinge 

limit analysis) for a lower bound estimate of the ring thickness. In practice an assessing 

engineer, without knowledge of the result of an alternative assessment, which in this instance 

is not required, would have no basis to query the result of a modified MEXE assessment. 

Glennanevlagh Bridge, span 3.1 m, is a short span bridge and the conservatism of MEXE for 

short span bridges has been questioned previously in the literature (Harvey, 1988; Melbourne 

and Gilbert, 1995; McKibbins et al., 2006; Sustainable Bridges, 2007; Melbourne et al., 

2009; Wang and Melbourne, 2010), but these reservations have yet to establish themselves in 

the assessment guidelines as currently specified. 

 

The requirement in Irish practice to consider upper and lower bound ring thickness values 

raises the issue of sensitivity of assessment results to ring thickness. Four of the eleven 

bridges have been assessed with upper (UB) and lower (LB) bound ring thicknesses. The 

allowable axle loads for a double axle (1.8 m axle spacing), normalised with respect to the 

upper bound value of ring thickness for the 3D elastic method, for these bridges only, are 
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plotted in Figure 12. For each method bar the modified MEXE method, there is a significant 

reduction in allowable axle load due to a reduction in ring thickness. The modified MEXE 

method is largely insensitive to arch ring thickness – this is not consistent with fundamental 

engineering principles. An arch carries load through a combination of compressive axial load 

and bending moments. Its capacity is sensitive to the ring thickness and indeed the original 

work (Pippard, 1948), discussed earlier, on which the modified MEXE method is based does 

reflect this sensitivity to arch ring thickness. However, as discussed, the modified MEXE 

method treats the total crown thickness, i.e. the combined thickness of the arch ring and the 

fill at the crown, as a single parameter in determining the provisional axle load for a bridge 

and therefore any variation in the percentage of the total crown thickness which is attributed 

to the ring thickness is not reflected in the resulting bridge capacity. 

 

Anglesea Bridge, Figure 10, is a very shallow bridge with a span to rise ratio of 10. It was not 

assessed using the modified MEXE method due to its span to rise ratio being outside the 

scope of the method. It is also outside the span to rise limit (≤ 6) quoted for the rigid block 

method (LimitState 2011). Shallow bridges result in large horizontal thrusts and both the 

three hinge limit analysis and rigid block methods are based on fixed abutments – an 

assumption that is potentially not justifiable for large abutment thrusts. Logically this 

limitation should also apply to the three hinge limit analysis method. However for 

comparative purposes with the two elastic methods the allowable axle loads for Anglesea 

Bridge for all of the methods, bar the modified MEXE method, are reported in Table 4 and 

Figure 11. Given the above the assessment rating achieved using both the 2D and 3D elastic 

methods are sensibly lower than those arrived at using both the three hinge limit analysis 

method and the rigid block method. 
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6. DISCUSSION OF ASSESSMENT RESULTS 

The five assessment methods considered can be broadly classified as empirical (the modified 

MEXE method), limit state analysis methods (three hinge limit analysis, rigid block analysis) 

and elastic (2D and 3D elastic methods). Within the latter two classes there is a rational 

hierarchy in the assessment methods in so far as the rigid block analysis approach (in which 

the load for the formation of four hinges is determined) yields a higher rating that the 3-hinge 

limit analysis, and the 3D elastic method (by virtue of representing the true dispersion and 

resistance of the arch barrel to load more completely) yields a higher rating than the 2D 

elastic analysis approach. 

 

Currently the modified MEXE method sits at the core of the assessment guidelines as set out 

in BD 21/01. This is due mainly to its simple and straightforward application, as well as its 

long history of use. Notwithstanding this, the results from the modified MEXE method are 

difficult to rationalise. In its current form this approach does not fully reflect the work on 

which it based, for example it is sensitive to the total crown thickness rather than the arch 

barrel ring thickness, and its origins are not fully traceable to earlier work from which it is 

derived. Current guidelines for its implementation, as presented in Figure 1, state that MEXE 

assessment ratings for bridges may be unconservative if the height of fill is greater than the 

ring thickness. In the case of the bridges assessed in this paper this is demonstrated to be the 

case, relative to the four other assessment approaches. For the other bridges an alternative 

assessment is specified only if the modified MEXE method results in a rating that is less than 

40/44 tonnes GVW. Furthermore if this is found to be the case and if the alternative approach 

results in a lower capacity, the restricted rating is based on the original modified MEXE 

assessment rather than the minimum of the two ratings. The clear implication is that the 

modified MEXE method is a conservative approach. The assessment results for Glennavelagh 
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Bridge, discussed above, show that, relative to other assessment methods, this is not 

necessarily the case. It is difficult to advocate continued use of the modified MEXE method 

in its current form. This may be an unpalatable finding for bridge owners and managers who 

understandably require an easily and efficient first level screening tool for their bridge 

populations. 

 

In Figure 13 the assessment ratings for the modified MEXE method are excluded as are the 

results for the shallow profile Anglesea Bridge. Immediately there is more consistency with 

the assessment ratings across all bridges and changes in ring thickness are reflected in 

increased/reduced capacity as expected. Within assessment method classes the higher ratings 

are achieved, as expected, with either the rigid block method or the 3D elastic method than 

their counterparts. Furthermore the limit state analyses produce higher ratings for bridges 

whose profile reflects a line of thrust when axles are at the critical location near to the quarter 

span, while the elastic methods produce higher ratings for bridges with three-centred arch 

profiles or semi-circular profiles. The exception to this was Whistle Bridge, a segmental 

bridge of ashlar limestone construction to which a compressive strength of 14.2 MPa was 

assigned. In this case, the elastic methods produced higher results than the limit analysis 

methods despite the segmental profile. The line of thrust determined by limit analysis 

methods is dependent on the geometry of the bridge; and while limited by the compressive 

strength of the materials the stresses that are reached for the critical line of thrust are typically 

very low (Heyman, 1982). Hence these methods are less sensitive to the compressive strength 

of the masonry than the elastic methods which directly compare the compressive strength 

required to resist the applied load to the compressive strength of the material. In the case of 

Whistle Bridge the compressive strength was sufficiently high to yield greater results from 

the elastic methods than the limit analysis methods.  
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The results discussed above and illustrated in Figure 13 could provide the basis for the first 

stages of a hierarchical assessment framework which would aim to maximise the assessment 

rating achieved for each bridge. A strategy for assessment method selection is identified in 

Table 5 and is based on the shape, compressive strength and span to rise ratio associated with 

the arch. The assessment approach that produced the highest rating, limit analysis or elastic 

analysis, is identified for each bridge. In general limit analysis approaches are most 

appropriate for segmental bridges while elastic methods are more appropriate for semi-

circular or three centred arches. However, the compressive strength has an impact on the 

optimum method for segmental shaped bridges. Where the compressive strength is high 

(greater than 10 MPa) the elastic analysis approach may give higher ratings. It is noted 

further that the usual limits of applicability for each of the individual methods should be 

considered, for example limit analysis approaches are not advisable for relatively flat profiles 

and indeed an upper bound on the span to rise ratio of 6 is advocated (LimitState, 2011). 

Also, limit analysis approaches assume rigid abutments and so may not be appropriate for 

flexibly sprung arches. 

 

7. CONCLUSIONS 

 

Eleven different bridge geometries and profiles have been assessed using five different 

assessment approaches with the objective of reviewing and rationalising current assessment 

guidelines for masonry arch bridges. The bridges chosen are representative of the largest 

majority of stone arch bridges on the Irish National Roads network. 
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It was found that it is difficult to rationally advocate the continued use of the modified MEXE 

method. The arguments for its continued use are primarily its ease of use and the implicit 

assumption that it is, within the specified limits of applicability, a conservative assessment 

approach. In the authors’ opinion the lack of full traceability to the original work on which it 

is based, and its inability to capture the sensitivity of arch bridge capacity to the ring 

thickness alone far outweigh these positives. It is anticipated that discontinuation of its use 

would renew research vigour, interest and financial support for the identification of a new 

and more appropriate first level conservative screening approach for masonry arch bridge 

assessment. 

 

Considering limit analysis and elastic methods alone, a more consistent set of ratings were 

achieved and limit analysis methods are advocated for bridges whose profiles match the 

expected line of thrust when the load is applied at its critical location, while elastic analysis 

methods are more appropriate for rating bridges that deviate from this profile, i.e. three-

centred or semi-circular arches. Within these classes the four hinge rigid block limit analysis 

method resulted in higher ratings than the three hinge method, and the three dimensional 

elastic method produced higher ratings than the two dimensional elastic method. This is 

consistent with an expectation of convergence on actual bridge capacity as assessment 

approaches more completely capture the true bridge response. 

 

The results presented are part of an ongoing research programme directed towards 

establishing a hierarchical framework of assessment algorithms for masonry arch bridges 

where increasing analysis effort is reflected in convergence to the expected bridge capacity. 

An initial attempt at defining this approach is presented. The next stage in the research 

programme is the quantification of the degree of conservatism associated with the limit 
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analysis and elastic methods described by comparison with nonlinear three dimensional finite 

element models that include the fill material, surrounding soil-structure interaction and 

constitutive models that enable progressive cracking and failure of the complete structural 

system. It is intended that this would form the basis of a more realistic and reliable 

methodology for the assessment of arch bridges. 
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Table 1 

Bridge geometries 

Name Shape Span  Rise  Span/rise Ring 

thickness 

Depth 

fill 

Width for 

assessment 

    (m) (m)   (m) (m) (m) 

Temple Segmental 3.0 0.68 4.4 0.380 0.050 6.53 

Oghermong LB Segmental 7.8 2.00 3.9 0.270 0.400 3.60 

Oghermong UB Segmental 7.8 2.00 3.9 0.550 0.120 3.60 

Owenmore LB Segmental 8.6 2.28 3.8 0.264 0.496 3.82 

Owenmore UB Segmental 8.6 2.28 3.8 0.440 0.320 3.82 

Glanbehy Segmental 13.4 3.40 3.9 0.625 0.150 6.40 

Windy Segmental 10.7 1.97 5.4 0.670 0.300 4.05 

Whistle LB Segmental 6.2 1.31 4.8 0.255 0.655 3.65 

Whistle UB Segmental 6.2 1.31 4.8 0.435 0.475 3.65 

Anglesea Segmental 15.2 1.53 10.0 0.800 0.300 3.12 

Glennagevlagh LB Semi-circular 3.1 1.53 2.0 0.276 0.234 3.60 

Glennagevlagh UB Semi-circular 3.1 1.53 2.0 0.460 0.050 3.60 

Glanlough Semi-circular 2.4 0.94 2.6 0.490 0.100 6.40 

Killeen Three-centred 9.3 2.65 3.5 0.480 0.250 3.15 

Griffith Three-centred 9.5 2.71 3.5 0.446 0.126 3.92 

 

 

Table 2 
Material properties 

Name Masonry           Fill 

 Compressive 

strength 

Tensile 

strength 

Density Young's 

modulus 

Poisson's 

ratio 

 Density 

  (MPa) (MPa) (kN/m³) (GPa)     (kN/m³) 

Temple 4.5 0.23 22.8 3 0.3  18 

Oghermong LB 4.5 0.23 22.8 3 0.3  18 

Oghermong UB 4.5 0.23 22.8 3 0.3  18 

Owenmore LB 7.0 0.35 22.0 4 0.3  18 

Owenmore UB 7.0 0.35 22.0 4 0.3  18 

Glanbehy 7.0 0.35 22.0 4 0.3  18 

Windy 10.5 0.53 22.0 5 0.3  18 

Whistle LB 14.2 0.71 22.0 13 0.3  18 

Whistle UB 14.2 0.71 22.0 13 0.3  18 

Anglesea 14.2 0.71 22.0 13 0.3  18 

Glennagevlagh LB 7.0 0.35 22.0 4 0.3  18 

Glennagevlagh UB 7.0 0.35 22.0 4 0.3  18 

Glanlough 7.6 0.38 22.8 4 0.3  18 

Killeen 15.0 0.75 22.0 10 0.3  17 

Griffith 15.0 0.75 22.0 10 0.3   17 

 

 

Table 3  
Partial load factors applied to axles 

 Critical 

axle 

Other 

axle 

Single axle 3.4 – 

Double axle 3.4 1.9 

Double axle with axle lift-off 4.35 0.95 
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Table 4 

Allowable axle load per axle for a double axle with 1.8 m spacing (tonnes) 

Name MEXE Three 

hinge 

Rigid 

block 

2D 

elastic 

3D 

elastic 

Max:Min ratio 

Incl. MEXE Excl. MEXE 

Temple 18.5 23.3 28.5 22.0 23.5 1.54 1.30 

Oghermong LB 12.0* 5.1 8.0 4.0 5.0 3.00 2.00 

Oghermong UB 13.5 16.2 21.5 16.0 19.0 1.59 1.34 

Owenmore LB 15.0* 4.2 12.5 5.0 6.0 3.57 2.98 

Owenmore UB 16.5 10.3 23.2 13.5 16.5 2.25 2.25 

Glanbehy 8.5 15.7 20.1 13.0 17.0 2.36 1.55 

Windy 18.0 35.7 43.4 25.0 40.5 2.41 1.74 

Whistle LB 25.0* 8.6 11.2 12.5 14.5 2.91 1.69 

Whistle UB 27.0* 22.5 28.9 37.0 51.0 2.27 2.27 

Anglesea – 50.0 77.6 19.0 21.0 4.08 4.08 

Glennagevlagh LB 23.5 5.2 6.8 7.0 8.0 4.52 1.54 

Glennagevlagh UB 26.5 10.9 13.0 23.0 23.0 2.43 2.11 

Glanlough 43.5 30.1 34.7 65.0 74.0 2.46 2.46 

Killeen 7.5 3.9 7.3 5.5 9.0 2.31 2.31 

Griffith 7.5 5.2 8.3 9.0 12.0 2.31 2.31 

*  MEXE result may be unconservative      

–  Profile too flat for MEXE assessment      

 

 

Table 5 

Analysis approach giving highest assessment rating excluding MEXE 

Name Shape Masonry 

compressive 

strength 

> 10 MPa 

Span/rise 

> 6 

Limit 

analysis 

Elastic 

analysis 

Temple Segmental   x  

Oghermong LB Segmental   x  

Oghermong UB Segmental   x  

Owenmore LB Segmental   x  

Owenmore UB Segmental   x  

Glanbehy Segmental   x  

Windy Segmental yes  x  

Whistle LB Segmental yes   x 

Whistle UB Segmental yes   x 

Anglesea Segmental yes yes  x 

Glennagevlagh LB Semi-circular    x 

Glennagevlagh UB Semi-circular    x 

Glanlough Semi-circular    x 

Killeen Three-centred yes   x 

Griffith Three-centred yes   x 
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