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Abstract

Despite the impressive quality improvements
yielded by neural machine translation (NMT)
systems, controlling their translation output
to adhere to user-provided terminology con-
straints remains an open problem. We describe
our approach to constrained neural decod-
ing based on finite-state machines and multi-
stack decoding which supports target-side con-
straints as well as constraints with correspond-
ing aligned input text spans. We demonstrate
the performance of our framework on mul-
tiple translation tasks and motivate the need
for constrained decoding with attentions as a
means of reducing misplacement and duplica-
tion when translating user constraints.

1 Introduction

Adapting an NMT system with domain-specific
data is one way to adjust its output vocabulary to
better match the target domain (Luong and Man-
ning, 2015; Sennrich et al., 2016). Another way
to encourage the beam decoder to produce cer-
tain words in the output is to explicitly reward
n-grams provided by an SMT system (Stahlberg
et al., 2017) or language model (Gulcehre et al.,
2017) or to modify the vocabulary distribution of
the decoder with external suggestions from a ter-
minology (Chatterjee et al., 2017). While provid-
ing lexical guidance to the decoder, none of these
methods strictly enforces a terminology. This is a
requisite, however, for companies wanting to en-
sure that all brand-related information is rendered
correctly and consistently when translating web
content or manuals and is often more important
than translation quality alone. Although domain
adaptation and guided decoding can help to reduce
errors in these use cases, they do not provide reli-
able solutions.

Another recent line of work strictly enforces a
given set of words in the output (Anderson et al.,

2017; Hokamp and Liu, 2017; Crego et al., 2016).
Anderson et al. address the task of image cap-
tioning with constrained beam search where con-
straints are given by image tags and constraint
permutations are encoded in a finite-state accep-
tor (FSA). Hokamp and Liu propose grid beam
search to enforce target-side constraints for do-
main adaptation via terminology. However, since
there is no correspondence between constraints
and the source words they cover, correct constraint
placement is not guaranteed and the corresponding
source words may be translated more than once.
Crego et al. replace entities with special tags that
remain unchanged during translation and are re-
placed in a post-processing step using attention
weights. Given good alignments, this method can
translate entities correctly but it requires training
data with entity tags and excludes the entities from
model scoring.

We address decoding with constraints to pro-
duce translations that respect the terminologies of
corporate customers while maintaining the high
quality of unconstrained translations. To this end,
we apply the constrained beam search of Ander-
son et al. to machine translation and propose to
employ alignment information between target-side
constraints and their corresponding source words.
The lack of explicit alignments in NMT systems
poses an extra challenge compared to statistical
MT where alignments are given by translation
rules. We address the problem of constraint place-
ment by expanding constraints when the NMT
model is attending to the correct source span. We
also reduce output duplication by masking cov-
ered constraints in the NMT attention model.

2 Constrained Beam Search

A naive approach to decoding with constraints
would be to use a large beam size and select from
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the set of complete hypotheses the best that satis-
fies all constraints. However, this is infeasible in
practice because it would require searching a po-
tentially very large space to ensure that even hy-
potheses with low model score due to the inclusion
of a constraint would be part of the set of outputs.
A better strategy is to force the decoder to produce
hypotheses that satisfy the constraints regardless
of their score and thus guide the decoder into the
right area of the search space. We follow Ander-
son et al. (2017) in organizing our beam search
into multiple stacks corresponding to subsets of
satisfied constraints as defined by FSA states.

2.1 Finite-state Acceptors for Constraints

Before decoding, we build an FSA defining the
constrained target language for an input sentence.
It contains all permutations of constraints inter-
leaved with loops over the remaining vocabulary.

Phrase Constraints: Constraints consisting of
multiple tokens are encoded by one state per to-
ken. We refer to states within a phrase as interme-
diate states and restrict their outgoing vocabulary
to the next token in the phrase.

Alternative Constraints: Synonyms of con-
straints can be defined as alternatives and encoded
as different arcs connecting the same states. When
alternatives consist of multiple tokens, the alterna-
tive paths will contain intermediate states.

Figure 1 shows an FSA with constraints C1 and
C2 where C1 is a phrase (yielding intermediate
states s1, s4) and C2 consists of two single-token
alternatives. Both permutations C1C2 and C2C1

lead to final state s5 with both constraints satisfied.

2.2 Multi-Stack Decoding

When extending a hypothesis to satisfy a con-
straint which is not among the top-k vocabulary
items in the current beam, the overall likelihood
may drop and the hypothesis may be pruned in
subsequent steps. To prevent this, the extended hy-
pothesis is placed on a new stack along with other
hypotheses that satisfy the same set of constraints.
Each stack maps to an acceptor state which helps
to keep track of the permitted extensions for hy-
potheses on this stack. The stack where a hypoth-
esis should be placed is found by following the
appropriate arc leaving the current acceptor state.
The stack mapping to the final state is used to gen-
erate complete hypotheses. At each time step, all
stacks are pruned to the beam size k and therefore
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Figure 1: Example of FSA for two constraints
C1 = ab and C2 = {x, y}.

the actual beam size for constrained decoding de-
pends on the number of acceptor states.

2.3 Decoding with Attentions
Since an acceptor encoding c single-token con-
straints has 2c states, the constrained search of
Anderson et al. (2017) can be inefficient for large
numbers of constraints. In particular, all unsatis-
fied constraints are expanded at each time step t
which increases decoding complexity from O(tk)
for normal beam search to O(tk2c). Hokamp
and Liu (2017) organize their grid beam search
into beams that group hypotheses with the same
number of constraints, thus their decoding time is
O(tkc). However, this means that different con-
straints will compete for completion of the same
hypothesis and their placement is determined lo-
cally. We assume that a target-side constraint can
come with an aligned source phrase which is en-
coded as a span in source sentence S and stored
with the acceptor arc label:

s0 s1 j > i, 0 ≤ i, j ≤ |S|
C [i,j)

Because the attention weights in attention-based
decoders function as soft alignments from the tar-
get to the source sentence (Alkhouli and Ney,
2017), we use them to decide at which position
a constraint should be inserted in the output. At
each time step in a hypothesis, we determine the
source position with the maximum attention. If it
falls into a constrained source span and this span
matches an outgoing arc in the current acceptor
state, we extend the current hypothesis with the arc
label. Thus, the outgoing arcs in non-intermediate
states are active or inactive depending on the cur-
rent attentions. This reduces the complexity from
O(tk2c) to O(tkc) by ignoring all but one con-
straint permutation and in practice, disabling vo-
cabulary loops saves extra time.

State-specific Attention Mechanism: Once a
constraint has been completed, we need to en-
sure that its source span will not be translated



again. We force the decoder to respect covered
constraints by masking their spans during all fu-
ture expansions of the hypothesis. This is done
by zeroing out the attention weights on covered
positions to exclude them from the context vector
computed by the attention mechanism.

Implications: Constrained decoding with
aligned source phrases relies on the quality of the
source-target pairs. Over- and under-translation
can occur as a result of incomplete source or target
phrases in the terminology.

Special Cases: Monitoring the source position
with the maximum attention is a relatively strict
criterion to decide where a constraint should be
placed in the output. It turns out that depending
on the language pair, the decoder may produce
translations of neighbouring source tokens when
attending to a constrained source span.1 The strict
requirement of only producing constraint tokens
can be relaxed to accommodate such cases, for ex-
ample by allowing extra tokens before (s1) or after
(s2) constraint C while attending to span [i, j),

s0

s1 s2

s3

V - C [i,j) C [i,j)

C [i,j)

C [i,j)

C [i,j) V [i,j)

Conversely, the decoder may never place the max-
imum attention on a constraint span which can
lead to empty translations. Relaxing this require-
ment using thresholding on the attention weights
to determine positions with secondary attention
can help in those cases.

3 Experimental Setup

We build attention-based neural machine trans-
lation models (Bahdanau et al., 2015) using the
Blocks implementation of van Merriënboer et al.
(2015) for English-German and English-Chinese
translation in both directions. We combine three
models per language pair as ensembles and further
combine the NMT systems with n-grams extracted
from SMT lattices using Lattice minimum Bayes-
risk as described by Stahlberg et al. (2017), re-
ferred to as LNMT. We decode with a beam size of
12 and length normalization (Johnson et al., 2017)
and back off to constrained decoding without at-
tentions when decoding with attentions fails.2 We

1For example, to produce an article before a noun when
the constrained source span includes just the noun.

2This usually applies to less than 2% of the inputs.

report lowercase BLEU using mteval-v13.pl.

3.1 Data

Our models are trained on the data provided for
the 2017 Workshop for Machine Translation (Bo-
jar et al., 2017). We tokenize and truecase the
English-German data and apply compound split-
ting when the source language is German. The
training data for the NMT systems is augmented
with backtranslation data (Sennrich et al., 2016).
For English-Chinese, we tokenize and lowercase
the data. We apply byte-pair encoding (Sennrich
et al., 2017) to all data.

3.2 Terminology Constraints

We run experiments with two types of constraints
to evaluate our constrained decoder.

Gold Constraints: For each input sentence, we
extract up to two tokens from the reference which
were not produced by the baseline system, favour-
ing rarer words. This aims at testing the perfor-
mance in a setup where users may provide correc-
tions to the NMT output which are to be incor-
porated into the translation. These reference to-
kens may consist of one or more subwords. Sim-
ilarly, we extract phrases of up to five subwords
surrounding a reference token missing from the
baseline output. We do not have access to aligned
source words for gold constraints.

Dictionary Constraints: We automatically
extract bilingual user dictionary entries using
terms and phrases from the reference translations
as candidates in order to ensure that the entries
are relevant for the inputs. In a real setup, these
entries would be provided by customers and
would be expected to be correct translations
without ambiguity. We apply a filter of English
stop words and verbs to the candidates and look
them up in a pruned phrase table to find likely
pairs. This results in entries as shown below:3

English German
ICJ IGH
The Wall Street Journal The Wall Street Journal
Dead Sea Tote Meer|Toten Meer

For evaluation purposes, we ensure that dictio-
nary entries match the reference when applying
them to an input sentence.

3Our dictionaries are available on request.



dev (lr) rep test15 test16 test17
eng-ger-wmt17
LNMT 24.9 (1.00) 443 28.1 34.7 27.0
+ 2 gold tokens 29.2 (1.14) 1141 33.4 40.9 32.3
+ 1 gold phrase 36.8 (1.09) 880 40.5 46.7 39.6

+ dictionary (v1) 26.4 (1.03) 610 29.6 36.4 28.8
+ dictionary (v2) 26.6 (1.02) 471 29.9 37.0 29.1
ger-eng-wmt17
LNMT 31.2 (1.01) 307 33.5 40.7 34.6
+ 2 gold tokens 34.6 (1.14) 745 37.7 44.8 38.5
+ 1 gold phrase 42.3 (1.08) 550 45.7 51.3 46.4

+ dictionary (v1) 32.4 (1.02) 353 34.7 41.8 36.2
+ dictionary (v2) 32.5 (1.01) 320 34.6 41.9 36.0

(a) Results for English-German language pairs

dev (lr) test17
eng-chi-wmt17
LNMT 30.8 (0.95) 31.0
+ 2 gold tokens 33.8 (1.10) 34.2
+ 1 gold phrase 40.6 (1.06) 41.2

+ dictionary (v1) 34.0 (1.01) 33.7
+ dictionary (v2) 33.9 (0.98) 34.1
chi-eng-wmt17
LNMT 21.2 (1.00) 23.5
+ 2 gold tokens 23.3 (1.13) 25.5
+ 1 gold phrase 30.1 (1.09) 32.3

+ dictionary (v1) 23.0 (1.06) 25.5
+ dictionary (v2) 23.4 (1.03) 25.4

(b) Results for English-Chinese language pairs

Table 1: BLEU scores and dev length ratios for decoding with gold constraints (without attentions) fol-
lowed by results for dictionary constraints without (v1) or with (v2) attentions. The column rep shows
the number of repeated character 7-grams within the same sentence, see Section 4.3.

4 Results

The results for decoding with terminology con-
straints are shown in Tab. 1a and 1b where each
section contains the results for gold constraints
followed by dictionary constraints.

4.1 Results with Gold Constraints
Decoding with gold constraints yields large BLEU
gains over LNMT for all language pairs. However,
the length ratio on the dev set increases signifi-
cantly. Inspecting the output reveals that this is
often caused by constraints being translated more
than once which can lead to whole passages being
retranslated. Phrase constraints seem to integrate
better into the output than single token constraints
which may be due to the longer gold context being
fed back to the NMT state.

4.2 Results with Dictionary Constraints
Decoding with up to two dictionary constraints per
sentence yields gains of up to 3 BLEU. This is
partly because we do not control whether LNMT

already produced the constraint tokens and be-
cause not all sentences have dictionary matches.
The length ratios are better compared to the gold
experiments which we attribute to our filtering of
tokens such as verbs which tend to influence the
general word order more than nouns, for example.

Decoding with or without attentions yields sim-
ilar BLEU scores overall and a consistent im-
provement for English-German. Note that decod-

ing with attentions is sensitive to errors in the au-
tomatically extracted dictionary entries.

Output Duplication The first three examples in
Tab. 2 show English↔German translations where
decoding without attentions has generated both the
target side of the constraint and the translation pre-
ferred by the NMT system. When using attentions,
the constraint is only translated once.

Constraint Placement The fourth example
demonstrates the importance of tying constraints
to source words. Decoding without attentions fails
to translate Zeichen as signs because the alterna-
tive sign already appears in the translation of Ze-
ichensprache as sign language. With attentions,
signs is generated at the correct position.

4.3 Output length ratio and repetitions

To back up our hypothesis that increases in length
ratio are related to output duplication, Tab. 1a col-
umn rep shows the number of repeated charac-
ter 7-grams within the same sentence, ignoring
stop words and overlapping n-grams. This con-
firms that constrained decoding with attentions re-
duces the number of repeated n-grams in the out-
put. While this does not take alignments to the
source into account nor does it capture duplicated
translations with unrelated source forms, it pro-
vides some evidence that the outputs are not just
shorter than for decoding without attentions but in
fact contain fewer repetitions and likely fewer du-
plicated translations.



eng-ger-wmt17 Example 1 Example 2
Source It already has the budget ... And it often costs over a hundred dollars to obtain the

required identity card.
Constraints Budget [4,5) Ausweis [12,14)

LNMT Es hat bereits den Haushalt... Und es kostet oft mehr als hundert Dollar, um die er-
forderliche Personalausweis zu erhalten.

+ dictionary (v1) Das Budget hat bereits den Haushalt... Und es kostet oft mehr als hundert Dollar, um den
Ausweis zu erhalten, um die erforderliche Person-
alausweis zu erhalten.

+ dictionary (v2) Es verfügt bereits über das Budget... Und es kostet oft mehr als hundert Dollar, um den
gewünschten Ausweis zu erhalten.

ger-eng-wmt17 Example 3 Example 4
Source Der Pokal war die einzige Möglichkeit , et-

was zu gewinnen .
Aber es ist keine typische Zeichensprache – sagt sie .
Edmund hat einige Zeichen alleine erfunden .

Constraints cup [1,2), chance [5,6) sign|signs [13,14)

LNMT The trophy was the only way to win some-
thing.

But it’s not a typical sign language – says, Edmund in-
vented some characters alone.

+ dictionary (v1) The cup was the only way to get something
to win a chance.

But it’s not a typical sign language – says, Edmund in-
vented some characters alone.

+ dictionary (v2) The cup was the only chance to win some-
thing.

But it is not a typical sign language – she says, Edmund
invented some signs alone.

Table 2: English↔German translation outputs for constrained decoding.

BLEU/speed ratio
eng-ger-wmt17 c=2 c=3 c=4
LNMT 26.7 1.00 26.7 1.00 26.7 1.00
+ dict (v1) 28.2 0.20 28.4 0.14 28.5 0.11
+ dict (v2∗) 27.8 0.69 28.0 0.66 28.1 0.59

+ A 28.0 0.65 28.2 0.61 28.2 0.54
+ B 28.4 0.27 28.6 0.24 28.7 0.21
+ C 28.5 0.21 28.6 0.19 28.7 0.17

Table 3: BLEU scores and speed ratios relative to
unconstrained LNMT for production system with
up to c constraints per sentence (newstest2017).
A: secondary attention, B, C: allow 1 or 2 extra to-
kens, respectively (Section 2.3). Dict (v2∗) refers
to decoding with attentions but without A, B or C.

4.4 Comparison of decoding speeds

To evaluate the speed of constrained decoding
with and without attentions, we decode newstest-
2017 on a single GPU using our English-German
production system (Iglesias et al., 2018) which in
comparison to the systems described in Section 3
uses a beam size of 4 and an early pruning strategy
similar to that described in Johnson et al. (2017),
amongst other differences. About 89% of the sen-
tences have at least one dictionary match and we
allow up to two, three or four matches per sen-
tence. Because the constraints result from dic-
tionary application, the number of constraints per
sentence varies and not all sentences contain the
maximum number of constraints. Tab. 3 reports

BLEU scores and speed ratios for different decod-
ing configurations. Rows two and three confirm
that the reduced computational complexity of our
approach yields faster decoding speeds than the
approach of Anderson et al. (2017) while incur-
ring a small decrease in BLEU. Moreover, it com-
pares favourably for larger numbers of constraints
per sentence: v2* is 3.5x faster than v1 for c=2
and more than 5x faster for c=4. Relaxing the
restrictions of decoding with attentions improves
the BLEU scores but increases runtime. However,
the slowest v2 configuration is still faster than v1.
The optimal trade-off between quality and speed
is likely to differ for each language pair.

5 Conclusion

We have presented our approach to NMT decod-
ing with terminology constraints using decoder at-
tentions which enables reduced output duplication
and better constraint placement compared to ex-
isting methods. Our results on four language pairs
demonstrate that terminology constraints as pro-
vided by customers can be respected during NMT
decoding while maintaining the overall translation
quality. At the same time, empirical results con-
firm that our improvements in computational com-
plexity translate into faster decoding speeds. Fu-
ture work includes the application of our approach
to more recent architectures such as Vaswani et al.
(2017) which will involve extracting attentions
from one or more decoding layers.
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