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Two methods for comparing single-cell expression datasets help address the 

challenge of integrating data across conditions and experiments. 

 

New single-cell molecular profiling techniques are rapidly transforming biomedical 

research across a diverse range of tissues and organisms. One of the main challenges 

in analysing these data arises from so-called “batch effects” that result from technical 

differences between samples and hamper robust comparisons between experiments. 

Publications from the Hemberg1 and Shen-Orr2 laboratories now present two 

methodologies for comparing cells between samples from different conditions, 

technologies and even species.  

 

Single-cell RNA sequencing (scRNA-seq) has made it possible to extract biological 

insights through the bioinformatic analysis of large numbers of individual cells. Many 

studies rely on dimensionality reduction techniques to project data onto two or three 

dimensions for visualisation. These methods reveal similarities or differences between 
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cells, but do not easily lead to quantifiable comparisons. In parallel, unsupervised 

clustering is often used to group single cells by the similarity of their gene expression 

profile, and has helped to decipher the heterogeneity present within populations, for 

example by identifying previously unknown cell types. A single sample commonly 

contains heterogeneous cell populations that may be at different stages of a directional 

process such as differentiation or response to a perturbation. scRNA-seq profiles have 

been used to investigate gene expression changes in such a process by 

computationally ordering cells along trajectories on a so-called ‘pseudotime’ axis that 

aims to reconstructs the process3.  

 

One of the most exciting applications of single-cell profiling is to compare gene 

expression between states to investigate how cells change across conditions. In 

particular, this has implications for understanding disease and identifying potential 

therapeutic targets. An emerging practice is for researchers to compare their data 

against reference samples, thus providing an important rationale for ongoing efforts to 

generate gold-standard datasets such as the Human Cell Atlas initiative 4. It is often 

desirable to combine scRNA-seq data from multiple experiments, yet differences due 

to sample origin, preparation and sequencing, rather than cell state, can make this 

challenging.  

 

Kiselev et al.1 present an approach for mapping cells from a new experiment onto an 

annotated reference (Fig. 1a). Their algorithm, scmap-cluster, calculates distances in 

gene expression space to match cells to their most similar cluster in the reference data. 

scmap first identifies a subset of features on which to perform calculations. 

Interestingly, the authors find that selecting genes with a higher than expected 



frequency of zero expression produces more accurate mappings than selecting highly 

variable or random genes, an observation that may be useful for other types of 

scRNA-seq data analysis. Whilst the algorithm attempts to match cells to a reference 

set, cells remain unassigned if they do not show similar gene expression patterns to 

the reference data. This is an essential consideration, as there will be an incomplete 

overlap in the cell types present for many comparisons. The authors have made a 

praiseworthy effort to render their method user-friendly by providing both an R 

package and a web version, and ensuring the algorithm runs quickly on large datasets. 

 

Since discrete clustering cannot readily capture continuous aspects of differentiation 

processes, Kiselev et al.1 also outline a nearest-neighbor approach to accurately 

compare cells to an unclustered (e.g. pseudotime ordered) reference dataset with the 

scmap-cell version of their algorithm.  

 

For more in-depth comparison of pseudotime orderings, Alpert et al.2 developed 

cellAlign. cellAlign uses dynamic time warping to align sections of two trajectories 

with shared expression patterns, thereby enabling the comparison of expression 

dynamics (Fig. 1b). Excitingly, cellAlign is not only able to compare whole 

transcriptomes, but can also utilize specific genes or gene modules to assess 

differences between conditions. Alpert et al.2 even analyze scRNA-seq data from pre-

implanation embryos to identify gene modules with different patterns of temporal 

behaviour across human and mouse development, demonstrating the ability of their 

algorithm to constrast data from very difference sources.  

 



Since scmap and cellAlign differ in their aim of either mapping or aligning data, the 

choice of approach will depend on the study in question. It is worth noting that neither 

method aims to “batch correct” data to enable downstream analysis such as 

dimensionality reduction of the integrated datasets. Such an approach is explored in 

papers from the Satija5 and Marioni6 labs and may be necessary for comparisons such 

as finding genes differentially expressed between conditions. Moreover, it will be 

interesting to see how pseudotime comparisons may be adapted for comparative 

analyses of pseudospace orderings7, where instead of being ordered by temporal 

progression, single cells are arranged by spatial coordinates inferred from the 

expression of positional landmark genes. 

 

The application for which mapping or alignment may be the most revealing, yet was 

unexplored in the scmap and cellAlign papers, is the assessment of perturbations on 

the transcriptional landscape, particularly in the context of disease. Analysing 

perturbed cell populations from patients or mouse models against their wild-type 

counterparts should give insight into which populations or stages of differentiation are 

most affected and in what way their gene expression changes. 

 

A major challenge when comparing data generated from different protocols is how to 

address the varying technical properties inherent to different methods, such as the 

huge variation in the number of genes detected per cell. Both publications briefly 

touch on this; the creators of scmap note that their method struggles to find the nearest 

neighbours of cells with zero expression in many genes (often due to dropout, or 

failed capture during library generation), and the cellAlign authors discuss the need 

for scaling gene expression due to technical differences in the data. How reliably 



comparisons between such technically different datasets can be made will certainly be 

explored and debated within the scRNA-seq field in future. Initiatives generating vast 

numbers of datasets requiring integration such as the Human Cell Atlas4 are certain to 

help drive further innovation in this area. 
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Figure caption: 

Computational methods match up data from multiple experiments. (A) The 

concept behind scmap. Individual or grouped items from a new dataset can be 

matched to exisiting groups from a reference dataset. (B) The concept behind 

cellAlign. Items arranged in ordered sequences can be matched to identify 

overlapping stages, even when the items originate from different sources such as 

species. 
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