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Abstract 

The liver, lung, pancreas and digestive tract all originate from the endoderm germ layer and 

these vital organs are targeted by a diversity of life threatening diseases affecting millions of 

patients. However, primary cells from endodermal organs are often difficult to grow in vitro. 

For this reason, the development of protocols for generating endoderm cells and their 

derivatives has been a major a focus in the human pluripotent stem cell field. Indeed, the 

possibility to produce a large quantity of these cells by taking advantage of the unique 

properties of pluripotent stem cells and their differentiation capacity, holds great promise for 

the development of new therapeutics against global health care challenges such as diabetes 

or a diversity of infectious diseases. Here we describe recent advances in methods for 

generating endodermal cell types from human pluripotent stem cells and their use for disease 

modeling and cell based therapy.   

 

 

Introduction  

The endoderm is one of the three primary germ layers and along with mesoderm and 

ectoderm, they give rise to all adult organs. Endoderm cells are first specified through the 

process of gastrulation during early embryonic life and give rise to the gastrointestinal tract 

(gut, liver, pancreas), the respiratory system (lung and trachea) and the thyroid  (Zorn and 

Wells, 2009). All these organs have vital functions and are susceptible to life threatening 

diseases. Nonetheless, most of the endodermal cells comprising these organs are challenging 

to grow in vitro, whilst the procurement of primary tissues is often difficult and ethically 

questionable, especially from healthy donors. Consequently, a diversity of basic studies, 
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disease modeling or regenerative medicine applications are currently greatly limited by the 

lack of high quality endodermal cells. The beta cells of the pancreas and the hepatocytes of 

the liver provide an exemplar of these difficulties. Beta cells regulate glucose levels in the 

bloodstream by producing insulin and represent the main cell type targeted by diabetes. 

Despite their importance, these cells are impossible to expand in vitro, thereby limiting the 

development of new therapies such as cell-based therapy. Similarly, a diversity of drugs can 

affect hepatocytes, leading to liver injury and ultimately liver failure. Thus, liver toxicity 

represents a leading cause in drug development attrition, and toxicology screen on 

hepatocytes is an essential part of the drug screening pipeline in the pharmaceutical industry. 

However, primary hepatocyte cells lose their metabolic activity after few hours in culture, 

display a strong functional variability and remain impossible to expand in vitro, thereby 

rendering difficult a systematic and large-scale high throughput screening approach.  

     For all these reasons, the production of endodermal derivatives has been a major objective 

in the human pluripotent stem cell (hPSC) field for the past 20 years (Thomson et al., 1998). 

Indeed, hPSCs can be grown almost indefinitely in vitro while maintaining their capacity to 

differentiate into the three primary germ layers, making them the perfect candidate for 

producing endodermal cells on a large-scale. Accordingly, a broad number of groups have 

developed protocols to differentiate hPSCs into endoderm derivatives. These major efforts 

have resulted in significant progress in our capacity to produce endoderm derivatives for 

translational applications. In addition, these differentiation protocols provide a unique 

opportunity to model and study human development, especially early organogenesis. The 

current review will describe the different protocols currently available, focusing on the 

conditions and the cocktail of growth factors which are commonly utilised to generate liver, 

pancreas, gut and lung cells. We will also explore the different applications of these cells, not 

only for disease modeling and drug screening, but also for cell-based therapy and 

developmental studies. 

 

 

Protocols to Generate Definitive Endoderm Cells from hPSCs 

A diversity of protocols is now available to differentiate hPSCs into a near homogenous 

population of endoderm cells, based on fundamental principles learnt from early development. 

Gastrulation has been broadly studied in a diversity of model organisms and the basic 

knowledge accumulated has firmly established that Nodal/Activin signaling, through its 

effector SMAD2/3, orchestrates this germ layer specification. Additional signaling pathways 

are involved in this process especially WNT and FGF, which are both required for the normal 

formation of the primitive streak (Tam and Loebel, 2007) and the induction of the key 
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endoderm marker SOX17 (Kanai-Azuma et al., 2002; Tam and Loebel, 2007). Following 

gastrulation, the endoderm layer is patterned by signaling originating from the extra-embryonic 

tissues and the adjacent germ layers into a primitive gut tube comprising the foregut, hindgut 

and midgut. From these different regions the embryonic organ buds originate, which will give 

rise to functional endoderm organs. In light of this knowledge, the protocols generated 

recapitulate these key events, resulting in efficient endoderm formation from hPSCs.  

     The most commonly used method relies on growing hPSCs at near confluence on mouse 

feeders or Matrigel, in media containing small quantity of foetal bovine serum combined with 

WNT3 and a high dose of Activin (Agarwal et al., 2008; Brolén et al., 2010; D’Amour et al., 

2005; Kubo et al., 2004; Sullivan et al., 2010). Alternative methods rely on more defined media 

containing not only a high dose of Activin, but also BMP4, FGF2, the GSK3β inhibitor 

CHIR99021 and the PI3-Kinase inhibitor LY294002 (McLean et al., 2007; Nostro et al., 2011; 

Teo et al., 2012; Touboul et al., 2010). Despite their apparent divergence, these protocols 

respect the fundamental principles learnt from early development. They are based on elevated 

activation of Activin signaling, which represents the pathway necessary for inducing endoderm 

specification in a broad number of species (Tam and Loebel, 2007; Zorn and Wells, 2009). Of 

note, Nodal, which is the natural growth factor controlling endoderm differentiation during 

mouse gastrulation, is rarely used as a recombinant protein due to its poor stability and high 

cost (Schier, 2003), while GDF8 can be used as a substitute for Activin (Rezania et al., 2014). 

Similarly, whilst TGF-β is often used to maintain pluripotency of hPSCs and activates the 

SMAD2/3 signaling pathway, it is a poor inducer of endoderm differentiation. Importantly, most 

protocols of endoderm differentiation also modulate WNT pathway either by addition of 

recombinant WNT protein or the inhibition of either GSK3-β or PI3-Kinase using small 

molecules (McLean et al., 2007; Touboul et al., 2010). Moreover, most protocols start from 

colonies as opposed to single cells, since the process of EMT is inherent to the process of 

differentiation. Concerning extra-cellular matrix, endoderm differentiation can be efficiently 

performed on recombinant fibronectin or vitronectin. However, subsequent differentiation often 

requires additional ECM proteins such as collagen for hepatocytes. Thus, most protocols rely 

on relatively complex ECM.  

     These protocols result in a population expressing SOX17/GATA6/GATA4/CXCR4, while 

being negative for SOX7/SOX2/OCT4/T. The expression of FOXA2, a marker commonly used 

to characterise endoderm in the mouse, is less reliable in human, since it induction seems to 

occur after SOX17, while in the mouse, FOXA2 is a very early marker of endoderm 

specification. Homogeneity of differentiation is often confirmed by flow cytometry analyses for 

the expression of the cell surface marker CXCR4. Importantly, the resulting endoderm 

progenitors described by some protocols can be maintained for a prolonged period of time, 

while maintaining their capacity to differentiate into a diversity of endodermal derivatives 
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including pancreas, liver, gut and lung (Gadue et al., 2005; Hannan et al., 2013a; Pagliuca et 

al., 2014). Overall, methods to generate endoderm cells from hPSCs are converging and there 

is now a clear consensus concerning the growth factors and the culture conditions necessary 

to direct hPSC differentiation toward this lineage (Table 1). 

 

 

Differentiation of hPSCs into Endoderm Derivatives  

 

Hepatocytes 

The liver is a unique organ by the broad spectrum of its function. The liver sustains reserves 

of iron, vitamins and minerals. It detoxifies alcohol, drugs and other chemicals as well as 

removing inhaled poisons such as exhaust or smoke. The liver also produces bile for digestion 

of lipids, albumin (Alb) which represents the most abundant protein in the plasma, and blood 

clotting factors. Finally, the liver has an essential metabolic activity by storing glycogen and 

lipids. Most of these functions are fulfilled by hepatocytes, which represent 80-90% of the cells 

of the liver. Due to their broad function and interest of the pharmaceutical industry, the 

production of hepatocytes has been a key focus in the hPSC field, resulting in the development 

of a diversity of protocols to achieve this goal. These methods follow a normal path of 

development starting with endoderm specification, followed by patterning of the endoderm into 

foregut using Activin. Hepatoblast-like cells are then produced by blocking Activin and adding 

BMP4/FGF which are known to control liver bud formation in vivo. The resulting progenitors 

are then differentiated into hepatocytes using a diversity of media frequently, if not 

systematically, supplemented with Hepatic Growth Factor (HGF) and Oncostatin M (OSM), 

two growth factors known to be involved in liver development and functional maturation 

(Agarwal et al., 2008; Brolén et al., 2010; Cai et al., 2007; Chen et al., 2012; Hannan et al., 

2013b; Mallanna and Duncan, 2013; Si-tayeb et al., 2010; Siller et al., 2015; Song et al., 2009; 

Sullivan et al., 2010; Touboul et al., 2010). The longer the cells are then grown in these 

conditions, the more their metabolic activity seems to increase and this phase of functional 

maturation can last up to 20-30 days with some protocols (Agarwal et al., 2008; Brolén et al., 

2010; Hannan et al., 2013b; Mallanna and Duncan, 2013). Hepatocytes produced from hPSCs 

express key transcription factors and functional markers such as HNF4α, HNF6, CEBPα, 

PROX1, GATA4 and ALB, AAT and CYP3A4 respectively. These hepatocyte-like cells (HLCs) 

were also shown to have liver-specific functions such as albumin secretion, glycogen 

synthesis, urea production, LDL uptake and limited cytochrome P450 activity (Agarwal et al., 

2008; Brolén et al., 2010; Cai et al., 2007; Hannan et al., 2013b; Mallanna and Duncan, 2013; 

Si-tayeb et al., 2010; Song et al., 2009; Sullivan et al., 2010). Nonetheless, HLCs are not 
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equivalent to primary adult hepatocytes and in fact more closely resemble foetal hepatocytes. 

Indeed, they express markers such as AFP and do not express adult CYP450 including 

CYP3A4 to the same extent as primary freshly isolated hepatocytes (Baxter et al., 2015). 

Thus, a broad number of approaches have been developed to further increase their metabolic 

function including the use of Vitamin C, 3D co-culture (Gieseck et al., 2014; Takebe et al., 

2014) and small molecules (Shan et al., 2014). Nonetheless, none of these methods appear 

to result in the production of hepatocytes displaying the full range of adult functionality, while 

the transfer of these methods between laboratories has been challenging. Consequently, 

differentiation protocols have not fundamentally changed over the past 5 years. This lack of 

progress can also be explained by the scarcity of knowledge regarding hepatic functional 

maturation which happens very progressively after birth. Indeed, this stage is particularly 

difficult to study in human for obvious ethical reasons while study in animal models remains 

limited. Consequently, we have little information regarding the signaling pathways and factors 

controlling hepatocyte maturation in vivo. Furthermore, culture media currently available to 

grow primary hepatocytes only allows the maintenance of metabolic functions for few days if 

not hours. Consequently, even a successful process of differentiation is unlikely to generate 

functional cells for more than few hours. Importantly, the lack of maturity of HLCs does not 

imply that these cells cannot be used to model disease or transplantation (See below). On the 

contrary, their foetal nature could provide them with advantageous properties of proliferation 

and plasticity. Nonetheless, the lack of metabolic activity denotes major limitations for drug 

toxicity screening especially in the context of the pharmaceutical industry. In summary, the 

production of hepatocyte-like cells from hPSCs can be now robustly achieved using methods 

broadly available and despite their imperfection, the resulting cells have a direct interest for a 

diversity of clinical applications. Nonetheless, the production of fully functional hepatocytes 

continues to be a major objective and a better understanding of liver development in human 

will be essential to bypass the limitation of the current protocols.  

 

 

Cholangiocytes 

Cholangiocytes represent the second cell type of the liver which has an endodermal origin. 

These cells form the epithelium of the biliary three and have a key function in bile transport, 

inflammation and liver repair. Both hepatocytes and cholangiocytes originate from 

hepatoblasts, a common progenitor found in the liver bud during early hepatic development 

(Shan et al., 2014). Thus, protocols for cholangiocyte production follow hepatocyte 

differentiation up to the production of hepatoblasts which are then differentiated into 

cholangiocyte progenitors by modulating Notch signaling and/or TGF-β. Subsequently, these 
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cells are grown in a 3D environment in the presence of growth factors such as 

EGF/HGF/FGF10 or in co-culture with cells expressing NOTCH. The resulting cholangiocytes 

express biliary markers such as CK18, CK19, SOX9, HNF1B, γ-glutamyl transferase (GGT1), 

NOTCH2, CFTR, SCR, SSTR2 and AQP1 (Dianat et al., 2014; Ogawa et al., 2015; 

Sampaziotis et al., 2015a). Most importantly hPSC-derived cholangiocytes display operational 

MDR1 receptor, CFTR chloride transporter activity, GGT secretion as well as  ALP activity 

(Ogawa et al., 2015; Sampaziotis et al., 2015a). Finally, they react to hormone stimuli and can 

transport bile acid. Transcriptomic analyses confirmed their biliary identity but also revealed 

that these cells continue to express foetal markers such as SOX9, suggesting that similarly to 

hepatocytes, hPSC-derived cholangiocytes are not equivalent to primary adult cells. Despite 

these limitations, these cells have been shown to model accurately genetic cholangiopathies 

such as Alagille’s Syndrome and polycystic liver disease (Sampaziotis et al., 2015a). In 

addition, cholangiocytes generated from hPSCs carrying a mutation in the CFTR gene have 

been proven useful to validate drugs for the treatment of Cystic Fibrosis in the liver (Ogawa et 

al., 2015; Sampaziotis et al., 2015a). Thus, similarly to hepatocytes, hPSC-derived 

cholangiocytes can be useful for translational applications as well as for basic biology studies.  

 

Pancreas 

Production of pancreatic β-cells from hPSCs has been explored extensively due to the great 

promise they hold for cell therapy against diabetes. Indeed, β-cells which secrete insulin upon 

glucose stimulation are the main target of the immune system in Type 1 diabetes, while there 

is growing evidence that their exhaustion/dedifferentiation has a major role in Type 2 diabetes. 

In parallel, transplantation of pancreatic islets which are the functional unit of the pancreas 

containing β-cells has been shown to be efficient in patients with end stage disease to restore 

controllable glycemia, and even in some cases to allow independence from insulin injection. 

Nonetheless, only a limited number of patients can benefit from this therapy since it relies on 

a large number of islets which can only be obtained from 2-3 cadaveric donors. Thus, major 

funding initiatives from industry, governmental and charity organisations have supported 

ambitious programs aiming to produce pancreatic cells from hPSCs. The combination of 

strong financial support and extensive existing knowledge on pancreatic development allowed 

the creation of differentiation protocols which are probably the most advanced in the endoderm 

field. These protocols are based on a stepwise differentiation which closely mimics embryonic 

development. In summary, culture conditions are changed every 2-4 days to attain a new 

stage of differentiation, marked by the expression of a specific combination of markers which 

have been functionally validated in model organisms. The first step after endoderm formation 

involves the induction of posterior foregut (FOXA2/HNF1B/HNF4A) using FGF7 (or KGF) 
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(D’Amour et al., 2006; Pagliuca et al., 2014; Rezania et al., 2014). Pancreatic progenitors 

(PDX1/NKX6.1/SOX9) are then obtained by adding Retinoic Acid and FGF7 while inhibiting 

BMP, TGF-β and SHH signaling (D’Amour et al., 2006; Pagliuca et al., 2014; Rezania et al., 

2014). Importantly, Activin/TGF-β can also be used to increase the number of cells expressing 

NKX6.1 (Nostro et al., 2015) which is essential to obtain truly multipotent pancreatic 

progenitors. Endocrine progenitors (PDX1/NGN3/NeuroD1) are then induced by inhibiting the 

TGF-β receptor ALK5 in the presence of thyroid hormone. Further differentiation into β-like 

cells (INS+) is obtained by growing endocrine progenitors in the presence of a combination of 

Notch, SHH inhibitors and the receptor tyrosine kinase AXL inhibitor (Pagliuca et al., 2014; 

Rezania et al., 2014). The resulting β-cells can secrete insulin upon glucose stimulation in 

vitro while they rescue animal model for diabetes. Importantly, inhibition of ALK5 seems to be 

essential for avoiding the production of multi-hormonal cells which are known to represent 

immature cells with limited function (Rezania et al., 2014). Despite these significant advances, 

the resulting cells display a glucose response comparable to those foetal cells. Furthermore, 

these protocols are often cell line dependent, meaning that they work more efficiently on the 

cell lines originally used for their development. Nonetheless, hiPSC-derived pancreatic cells 

have been proven useful for modeling  disease (see next section) and have enabled the 

creation of platforms for drug screening (Pagliuca et al., 2014). Finally, the biotech company 

Viacytes has pioneered a clinical trial to define the interest of pancreatic progenitors 

(PDX1/NKX6.1/SOX9) for cell based therapy (See below). Thus, pancreatic cells currently 

generated from hPSCs display a level of function which is likely to be sufficient for a diversity 

of applications including drug screening and regenerative medicine. Nonetheless, there is no 

doubt that the field is already working to further improve the functional profile of β-like cells 

currently available. 

 

 

Lung 

Pulmonary disease is the third leading cause of death worldwide and many of these conditions 

are currently without treatment. Despite this major healthcare challenge, production of lung 

cells from hiPSCs has only recently become a major focus with systematic studies performed 

to identify conditions to generate airway cells. The diversity of signaling pathways known to 

control lung endoderm specification, the cellular complexity of this organ as well as the close 

interplay with thyroid development has been a great challenge for the development of 

protocols for the production of lung cells. Nonetheless, several directed differentiation 

protocols have now managed to very efficiently produce lung and airway epithelial cells (Dye 

et al., 2015; Firth et al., 2014; Gotoh et al., 2014; Huang et al., 2013; Longmire et al., 2012; 
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McIntyre et al., 2014; Wong et al., 2012). These protocols start with patterning of endoderm 

cells into anterior foregut by inhibiting Activin and BMP signaling. Further stimulation of WNT, 

SHH, BMP4 and FGF7/10 signaling results in the acquisition of an identity of early lung 

epithelial progenitors expressing the master regulator NKX2.1. Alternatively, Wong and 

colleagues used a combination of FGF7, FGF10 and low concertation of BMP4 without direct 

modulation of WNT. The  resulting progenitors can differentiate into cells expressing markers 

of proximal airway epithelium including FOXJ1, CFTR and MUC16 after cultured in air-liquid 

interphase condition for 5 weeks,  (Wong et al., 2012). Further refinement of this protocol  has 

improved the production of ciliated, Clara and goblet cells in vitro and in vivo with the caveat 

that the cultures are contaminated with mesodermal and neuronal cell types (Huang et al., 

2013).  

     Despite these apparently divergent protocols, recent studies have clearly established that 

WNT signaling is essential to block thyroid cell specification expressing NKX2.1/PAX8, which 

are closely related to lung progenitors during early development (Serra et al., 2017). 

Furthermore, WNT was also shown to control the proximodistal patterning of lung endoderm 

(NKX2.1+/PAX8-). Of note, differentiation protocols often yield a heterogeneous mixture of 

lung and non-lung cell types while the lung epithelial cell types can range from basal stem 

cells of the proximal region to alveolar epithelial cells (AECs) from the distal region. This 

comes to importance when studying disease. For example, some pulmonary disorders affect 

specific lung epithelial cell types or regions but not others. The proximal region of the lung is 

most afflicted in Cystic Fibrosis and therefore the specific derivation of proximal lung epithelial 

from human pluripotent stem cells would be most suitable for disease modeling or drug 

screening in this instance. Consequently, recent protocols rely on cell sorting, taking 

advantage of cell surface makers CD47hi/CD26low to purify NKX2.1-expressing lung 

endoderm cells. Using this approach, McCauley and colleagues identified conditions of “low 

WNT levels” which favour the differentiation of these lung endoderm cells (NKX2.1+/SOX2+) 

into proximal lung cell fates while high WNT levels favour the production of progenitors 

(NKX2.1+/SOX9+) for distal airway cells (McCauley et al., 2017). Motile cilia were observed 

when these proximal lung epithelial cells were cultured in 3D with Notch inhibitors or in an air-

liquid interface (ALI). The authors also demonstrated the potential of these cells in Cystic 

Fibrosis disease modeling and drug screening by showing that these proximal cell types can 

form organoids in 3D culture conditions which are able of undergoing CFTR-dependent 

forskolin-induced swelling.  

     Importantly, the difficulty to isolate and then maintain the functional characteristics of 

primary lung cells in vitro, has limited the direct comparison necessary to establish the exact 

level of maturation of hiPSC-derived lung cells. Furthermore, simple and quantitative standard 

assays for evaluating the functionality of lung cells remain to be established. Evaluation of 



9 
 

mucin secretion and surfactant production could be systematically applied, while 

electrophysiology to measure short circuit current on cells grown in air liquid interface could 

also provide more qualitative functional measurement. Interestingly, methods based on new 

imaging technologies are currently under development for measuring cilia beat frequency and 

such approach could provide new perspective on phenotyping lung cells. Finally, animal 

models for lung injury have just become available to test engraftment and function of cells 

generated in vitro (Dye et al., 2016; McIntyre et al., 2014; Miller et al., 2017; Nikolić et al., 

2017). In this context, a recent study has described the generation of lung SOX9+ bud tip-like 

progenitor cells which have the capacity to differentiate into multiple lineages both in vitro and 

in vivo providing of proof of principle for engraftment of hPSC-derived cells following lung injury 

(Miller et al., 2017). 

     To conclude this part, the lung field has developed robust methods for directing the 

differentiation of hPSCs into a diversity of lung cells which will be very useful to uncover 

mechanisms controlling embryonic development and disease. The production of these cells 

could also open the possibility to cell based therapy applications which have been relatively 

unexplored until now. 

 

 

Gastrointestinal Tract 

The gastrointestinal tract has a complex and diverse set of functions such as digesting food, 

absorbing nutrients and energy as well as providing immune protection. There is a rising global 

incidence of diseases affecting the gastrointestinal tract a well as an increase of patients 

lacking gastrointestinal function altogether; there is therefore a high demand for effective 

models of human intestinal development, disease and regeneration to improve our 

understanding of their aetiology, and screening of potential therapeutics for inflammatory 

bowel disease and intestinal transplant for short gut syndrome. To address this objective,  

human intestinal organoids (HIOs) have been successfully generated from hPSCs using 

different approaches that mainly rely on driving differentiation of endoderm cells into 

mid/hindgut using WNT and FGF (Hannan et al., 2013a; Spence et al., 2011). The resulting 

cells are then grown in 3D culture conditions, as had been previously established for primary 

gut organoids (Sato et al., 2009). These organoids rely on EGF, R-Spondin and WNT signaling 

modulation, as well as extracellular matrix support from collagen and laminin rich gels such 

as Matrigel. Whilst Matrigel provides an excellent basement matrix for organoid growth, there 

is variation in the characteristics of the matrix, as well as contamination with various cytokines. 

Recent efforts have been made to switch to more reproducible and defined synthetic gels, 

improving the potential of these organoids to be used in regenerative medicine (Cruz-Acuña 
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et al., 2017). Importantly, the method used to reach the first step of the protocol has a major 

impact on the subsequent organoids generated. Indeed, methods allowing a near 

homogeneous population of endoderm cells results in gut organoids that closely resemble 

organoids derived from foetal tissue (Fordham et al., 2013) which can be grown almost 

indefinitely in vitro and which can acquire expression of functional markers over time 

(Forbester et al., 2016). On the other hand, the most established and characterised system 

by Wells and colleagues allows the production of endoderm cells contaminated by a small 

fraction of mesoderm cells. These cells, when grown in 3D conditions, form a mesenchyme 

layer supporting differentiation, organisation and functional maturation of gut cells. Of note, 

this co-culture system allows only a limited number of passaging and is thus not compatible 

with large scale amplification the cells. Nonetheless, hiPSC-derived intestinal-like structures 

are highly proliferative, express the characteristic markers of the intestinal epithelium including 

functional markers such as lysozyme and mucins, the intestinal transcription factors KLF5, 

CDX2 and SOX9 as well as the stem cell markers LGR5 and ASCL2 (Spence et al., 2011). 

The organoids contain the main cell types comprising the adult intestinal epithelium including 

enterocytes, goblet cells, Paneth cells and enteroendocrine cells. Functional analysis of the 

gene NGN3 in these organoids, showed that its knockdown results in loss of enteroendocrine 

cells whereas its overexpression leads to 5-fold higher levels of endocrine cells (Spence et 

al., 2011). This study provides a proof of principle that the intestinal organoids provide a 

powerful tool to study gene function and their role in disease development. Nonetheless, it is 

important to underline that HIOs still exhibit a gene expression profile similar to foetal cells, 

while the functionality of these organoids can be further increased by transplantation under 

the kidney capsule of immune deficient mice (Watson et al., 2014).  

     The initial organoid systems appeared to represent the proximal small intestine, with 

subsequent attempts to optimise protocols to derive other regions of the gastrointestinal tract. 

Gastric organoids were generated using WNT3A, CHIR99021, and Noggin to generate foregut 

from definitive endoderm, followed by FGF4, Noggin, and finally retinoic acid to generate 

gastric organoids that express key markers such as SOX2, PDX1, GATA4 and KLF5 

(McCracken et al., 2014). More recently, attempts were made to direct intestinal organoids to 

a more colonic nature (Munera et al., 2017), using BMP to generate organoids that express 

colonic epithelial markers and can produce colon-specific cell types after engraftment in the 

kidney capsule. However, transcriptome wide analysis has shown limited similarity to in vivo 

tissue, and there is still much scope for optimisation of all systems to greater physiological 

maturity. This lack of maturity of the model can also be turned to advantage, allowing further 

differentiation of the systems to specific intestinal regions, and exploring development 

(Finkbeiner et al., 2015; Tsai et al., 2017). 
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     Overall, the development of protocols of hPSCs-derived gut organoids has been 

remarkable by its rapid progress and its diverse applications in disease modeling and 

developmental studies, and represents a highly promising tool in regenerative medicine. 

However, further optimisation of the model is needed, to more closely resemble mature region-

specific areas of the gastrointestinal tract, particularly on a transcriptome and epigenome wide 

level (Table 2 and Figure 1).  

 

 

Endoderm Differentiation of hPSCs as an in vitro Model of Development 

While translational applications have been the main driver to develop protocols for 

differentiating hPSCs into endoderm, these methods have also been useful to uncover 

molecular mechanisms directing this early cell fate decision during development. Indeed, in 

vitro hPSC differentiation recapitulates developmental processes and waves of expression of 

key transcription factors, thereby providing a unique opportunity for studying mechanisms 

impossible to study otherwise, especially in human. This aspect is particularly important in 

view of the recent observations that despite significant conservation, the mechanisms 

controlling cell fate decisions could also show divergence even between mammalian species 

such as human and mouse. As an example, recent reports have shown that GATA6 is 

necessary for endoderm differentiation and pancreatic development in hPSCs (Fisher et al., 

2017; Shi et al., 2017; Tiyaboonchai et al., 2017) while heterozygous mutation in humans 

results in pancreatic agenesis. On the other hand, this mutation has no effect on pancreas 

development in the mouse. Only the combined absence of GATA6 and GATA4 seems to affect 

mouse pancreatic organogenesis (Carrasco et al., 2012; Xuan et al., 2012). Interestingly, 

GATA6 could be controlled by the WNT pathway through its interaction with LEF1 in human 

endoderm cells (Sun et al., 2017) suggesting additional divergence at the signaling pathway 

level. Thus, transcriptional networks controlling early endoderm differentiation could vary 

between species. hPSC endoderm differentiation has also been used to perform studies 

impossible or challenging with model organisms. As an example, ChIP-seq analyses have 

revealed the extend of the network controlled by SMAD2/3 during endoderm differentiation  

and also their cooperation with the transcription factor EOMES and epigenetic modifiers 

JMJD3 (Brown et al., 2011; Kim et al., 2011). Recent studies also confirm that pluripotency 

factors such as OCT4 cooperate with signaling pathways to enable the expression of 

endoderm markers (Ying et al., 2015). Interestingly, comparative analyses between in vitro 

data and studies in the mouse, suggest that EOMES function in endoderm could be conserved 

between species (Teo et al., 2011). Further analyses have uncovered the cross talk between 

PI3-Kinase, WNT and TGF-β (Singh et al., 2012), while other studies have uncovered the 

epigenetic regulations directing endoderm differentiation including the mechanisms by which 
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SMAD2/3 could direct the activity of MLL complexes through its interaction with DPY30. 

Interestingly, genetic studies in the mouse suggest that similar interplays between DPY30 and 

SMAD2/3 could also take place in vivo (Bertero et al., 2015) thereby demonstrating that 

hPSCs can be useful to inform evolutionary conserved mechanisms controlling gastrulation.  

     On the other hand, hPSC differentiation into endoderm can be exploited to uncover novel 

mechanisms which are either masked by functional redundancy in vivo and/or are only 

relevant for human development. As an example, detailed molecular analyses has revealed 

that endoderm specification is controlled by interplays between SMAD2/3 and the cell cycle 

regulators Cyclin D/CDK4/6 (Pauklin and Vallier, 2013). Furthermore, the same cell cycle 

regulators seem to orchestrate the recruitment of transcriptional regulators and epigenetic 

modifiers on endoderm genes (Pauklin et al., 2016). These mechanisms suggest that the cell 

cycle machinery directly orchestrates cell fate decisions in hPSCs. However, knockout of 

these cell cycle regulators in the mouse embryo has no effect on gastrulation, thereby 

suggesting these mechanisms could be either more important in vitro or human specific. 

     Importantly, hPSCs are also frequently used to uncovered mechanisms controlling 

development of endoderm organs. In vitro differentiation has been applied to study the function 

of a diversity of transcription factors and signaling pathways controlling pancreatic (Cebola et 

al., 2015; Kee et al., 2015; Zhu et al., 2016)  or hepatic development (DeLaForest et al., 2011). 

Similarly, hPSCs have been used to uncover the signaling pathways controlling lung or 

intestinal specification from endoderm in human (Chen et al., 2017; Huang et al., 2013; 

McCauley et al., 2017; Serra et al., 2017; Snoeck, 2015). Thus, hPSCs offer unprecedented 

opportunities to study human organogenesis. 

     Taken together, these studies have uncovered new molecular mechanisms regulating 

human endoderm formation and its derivatives, and thus demonstrate the importance of hPSC 

as a model system to not only validate known molecular mechanisms, but also to uncover new 

aspects of embryonic development.   

 

 

Disease Modeling Using Endoderm Derivatives 

The remarkable advances in the development of protocols for generating a repertoire of 

endoderm derivatives in vitro has been associated with translational applications which can 

be divided in 2 groups: Disease modeling/drug screening and cell based therapy (Figure 2). 

 

Genetic Disorders 

A broad number of inherited diseases has been modelled using endodermal derivatives. Of 

particular interest, the liver received great attention in recent years due to various genetic 
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disorders, alcohol induced and non-alcoholic fatty liver disease, hepatotropic infections and 

drug-mediated toxicity. Accordingly, a diversity of reports have shown that hepatocytes 

derived from hiPSCs can be used to model a variety of disorders including inherited metabolic 

disorders (IMDs) such as α1-antitrypsin deficiency (A1ATD), familial hypercholesterolemia 

(FH), glycogen storage disease type 1a (GSD1a) and Wilson’s disease (WD) (Cayo et al., 

2012; Sampaziotis et al., 2015b; Yusa et al., 2011; Zhang et al., 2011). Successful modeling 

of monogenetic disorders has also been achieved with hiPSC-derived cholangiocytes (Ogawa 

et al., 2015; Sampaziotis et al., 2015a) and lung cells for Cystic Fibrosis (Wong et al., 2012). 

Importantly, those culture systems have also been used to screen drugs for hepatic 

maturation, hepatoxicity (Hannoun et al., 2016), control of cholesterol levels (Cayo et al., 

2017), Cystic Fibrosis (Sampaziotis et al., 2015a; Wong et al., 2012), α1-antitrypsin deficiency 

(Choi et al., 2013)  or even neonatal diabetes (Zeng et al., 2016). 

     HPSC-derived intestinal organoids also present a great opportunity for exploring intestinal 

pathophysiology using genetically modified PSC lines. For example, deriving iPSCs from 

patients with dyskeratosis congenita (DC) and gene correction by CRISPR/Cas9, enabled 

disease modeling and pathway interrogation using the organoid model (Woo et al., 2016). 

Similarly, hiPSC-derived intestinal organoids have been used to model Hirschsprung's 

disease caused by a mutation in the gene PHOX2B. In this last study, hiPSCs lines with 

mutations in PHOX2B were differentiated into neural crest cells and combined with HIOs. 

Further transcriptional analysis revealed downregulation of genes relevant to muscle 

development in organoids carrying the genetic anomaly (Workman et al., 2016). These results 

provide of proof of concept that HIOs could be useful to further shed light on the molecular 

mechanisms driving disease.  

     Finally, pancreatic cells have been used by a broad number of studies to model a genetic 

form of diabetes (MODY) or pancreatic agenesis (Teo et al., 2013). Overall these reports show 

that hPSC-derived pancreatic cells can be used to model genetic disorders affecting 

pancreatic development including mutations in HNF1b (Teo et al., 2016), GATA6 (Fisher et 

al., 2017; Shi et al., 2017; Tiyaboonchai et al., 2017), PDX1 (Kee et al., 2015; Zhu et al., 2016), 

NGN3 (Zhu et al., 2016) and β-cell function (Zeng et al., 2016). Importantly, such a model 

could be used advantageously to uncover the mechanisms by which haploinsufficiency 

induces diabetes in humans and will ultimately help to functionally validate the diversity of 

genetic variants associated with diabetes by GWAS studies. 

     Accordingly, several consortia have generated large scale banks of hiPSC lines (Soares et 

al., 2014) to study human genetic diversity in a dish. Of particular interest, the NextGen 

consortium (Warren et al., 2017a) has shown that a large cohort of hiPSC lines differentiated 

into hepatocytes could allow the identification of new expression Quantitative Trait Loci (eQTL) 

involved in lipid metabolism (Pashos et al., 2017) and also to validate the function of genetic 
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variants identified by Genome Wide Association Studies (GWAS) (Warren et al., 2017b). Of 

note, hiPSC lines have also been generated from patients with Type 1 (Chen et al., 2009) and 

Type 2 (Ohmine et al., 2012) diabetes without revealing a clear phenotype after differentiation. 

Nonetheless, these studies were based on a limited number of cell lines while large scale 

experiments could be informative in uncovering novel genetic mechanisms driving diabetes. 

Taken together, these studies demonstrate the feasibility of using endoderm derivatives to not 

only model monogenetic disorders affecting endodermal organs, but also to study genetic 

mechanisms controlling the onset and penetrance of complex disorders.  

 

 

Infectious Disease   

Endodermal organs are also the target of major infectious diseases such as malaria and 

hepatitis. Thus, modeling these diseases using their cellular target such as liver cells has 

attracted a lot of attention in recent years. Accordingly, several groups have shown that hiPSC-

derived hepatocytes can support the Hepatitis C virus (HCV) life cycle including replication, 

release of infectious virions and an inflammatory response to the infection (Carpentier et al., 

2014; Schwartz et al., 2012). Interestingly, microarray analyses of non-permissive cells and 

permissive cells for infection, has revealed upregulation of known cofactors supporting virus 

infection and downregulation of antiviral genes, providing a platform for further identification 

of key genes involved in survival of the virus, and potential therapeutic applications (Wu et al., 

2012). hPSC-derived hepatocytes were also successfully infected with HBV (Shlomai et al., 

2014) or Plasmodium parasites which cause malaria (Ng et al., 2015). The common caveat 

with these studies is the low infection and replication rate of the pathogens. This limitation 

could be attributed to immaturity of the host hepatocytes, highlighting the importance of further 

improvement of current differentiation protocols. HIOs have also been used to model the 

interface of the intestine with infectious agents such as interaction of Salmonella enterica 

serovar Typhimurium with intestinal epithelium (Forbester et al., 2015).  This study shows that 

the bacteria could infect hiPSC-derived intestinal cells while provoking a change in expression 

profile indicating the initiation of a pro-inflammatory response. Additionally, HIOs have been 

used to study more physiological colonisation of the gut, and how this might affect 

development, taking advantage of the relative immaturity of the model (Woo et al., 2016). 

Similarly, hPSC-derived gastric organoid infection by H. pylori results in the rapid association 

of the virulence factor CagA with the c-Met receptor inducting epithelial cell proliferation 

(McCracken et al., 2014). These data clearly establish the interest of hPSC-derived gut cells 

to model host-pathogen interaction. Finally, there is no doubt that hPSC-derived lung cells will 

soon be used as a model for infections of the lung tissue.  
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     Overall, hPSC-derived endodermal cells have demonstrated their importance and capacity 

to model a diverse set of diseases and certainly represent a complementary if not an 

advantageous alternative to previous systems. Nonetheless, these platforms are just starting 

to be exploited to uncover new mechanisms of disease and the transfer of this technology to 

more disease-oriented laboratories will certainly accelerate their exploitation for clinical 

application. 

 

 

Cell-based Therapy 

The second major translational application of endoderm derivatives is cell-based therapy. 

Indeed, multiple diseases affecting organs originating from the endoderm layer could be 

treated if not cured using cell replacement therapy. Accordingly, primary hepatocytes have 

already been transplanted into nearly 100 patients to treat a variety of inherited liver diseases 

including A1ATD, glycogen storage disorders (GSD), Crigler-Najjar syndrome and factor VII 

deficiency. Unfortunately, cell-based therapy of the liver is limited by the scarce number and 

quality of available donor cells. Therefore, a broad number of studies have analysed the 

capacity of hPSC-derived hepatocytes to colonise the liver and restore vital functions in animal 

models for liver failure. Interestingly, these studies have shown variable results depending on 

the type of liver injury. For instance, liver colonisation and rescue of the fumarylacetoacetate 

hydrolase (Fah)-mice which provide a model for inherited metabolic disorders, remains 

extremely challenging with hPSC-derived hepatocytes, while they represent the gold standard 

for primary adult hepatocyte transplantation. Other models such as the uroplasminogen 

activator (uPA) mice which mimic acute liver failure have been successfully engrafted with 

hPSC-derived hepatocytes but the persistence of the transplanted cells was limited to few 

weeks (Touboul et al., 2010). Finally, the best results have been obtained with liver injuries 

induced by chemical modeling of liver cirrhosis such as tetrachloride or paracetamol treatment. 

In these experiments, hPSC-derived hepatocytes were able to colonise more than 5-10% of 

the liver while improving mice survival (Cai et al., 2007; Chen et al., 2015; Liu et al., 2011; 

Tolosa et al., 2015).  

     Considered together, these results demonstrate that hPSC-derived hepatocytes could be 

used in cell based therapies targeting specific liver pathology. Indeed, these cells could be a 

useful therapy in the context of acute liver failure induced by drug induced liver injury for 

example. Nonetheless, such application will require a large number of cells which could be 

challenging to produce in GMP conditions. In addition, the injection of such number of cells 

will have to be done in the portal vein and thus could result in cells engrafting in other organs. 

Thus, risks associated with uncontrolled growth and teratoma formation will have to be 
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carefully monitored. Finally, such approach might not work for a majority of end stage liver 

diseases which involve important remodelling of the liver architecture due to fibrosis/cirrhosis. 

     For these reasons, alternative approaches to intra-hepatic transplantation are currently 

explored including the transplantation of bags or patches containing liver cells (Stevens et al., 

2017).  As an example, hPSC-derived hepatoblasts combined with mesenchymal stem cells 

and endothelial cells in a 3D patch of Matrigel have been shown to rescue TK-NOG mice 

(Takebe et al., 2014). Thus, extra-hepatic transplantation could also provide an interesting 

alternative to treat liver failure. However, such approach has also its own limitations since the 

3D patch requires extensive spontaneous vascularisation to be plugged to the blood flow, 

while the absence of connection with the biliary system will be problematic to evacuate toxic 

bile. Thus, while promising, cell-based therapy using hiPSC-derived liver cells still requires 

new innovations which could involve the in vitro generation of mini-livers using decellularized 

organs (Pla-Palacín et al., 2017). In addition, a step by step clinical strategy with systematic 

testing in animals will help to address the challenges associated with safety and intra-hepatic 

injection. 

     Concerning HIOs, these endodermal derivatives have also been shown to grow 

successfully on tube shaped PGA/PLLA scaffolds and integrate in vivo (Finkbeiner et al., 

2015) thereby advancing the use of these organoids as potential therapies for intestinal 

regeneration. Recently, HIOs with a functional enteric nervous system were generated by 

combining the HIOs with hPSC-derived neural crest cells. These organoids after in vivo 

transplantation formed neuroglial structures and had electrochemical coupling that regulated 

waves of propagating contraction. Despite the successful engraftment of the cells, their 

phenotype appears to be immature and more similar to the foetal gut, indicating that further 

optimisation is required (Workman et al., 2016).  

     The other endodermal organ which has been shown to benefit from cell based therapy is 

the pancreas. Indeed, islet transplantation (see introduction) has already established the 

interest of such approach for treatment of diabetes. In parallel, several groups have shown 

that pancreatic cells generated from hPSCs can alleviate diabetes in a mouse model (Jiang 

et al., 2007; Pagliuca et al., 2014; Rezania et al., 2014). Based on these promising results, 

the biotechnology company Viacyte has developed a major program aiming to transplant 

hESC-derived pancreatic progenitors encapsulated in a bag in patients with advanced Type 1 

diabetes. The use of pancreatic progenitors allows the production of functional cells in vivo 

thereby avoiding the lack of functional maturation associated with in vitro differentiation, while 

the encapsulation device protects cells against immune rejection and precludes risks 

associated with abnormal growth. Extensive animal model experiments have demonstrated 

the efficacy of this approach and the first human clinical trial is currently ongoing. This trial 

which is one of the most advanced using hPSC derivatives has enrolled 20 patients to confirm 
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the safety of this approach and to evaluate the quantity of cells necessary for maximum 

efficacy. Interestingly, recent information seems to suggest that the encapsulation device 

could present some challenges. Indeed, the encapsulation device requires extensive 

vascularisation without inducing fibrosis of surrounding tissues to enable long term functioning 

of the pancreatic cells. Nonetheless, this trial represents the first of its kind and there is no 

doubt this program and other initiatives such as Semma therapeutics will drive the field 

towards the development of novel therapies against diabetes.  

     To conclude this part, endodermal derivatives have generated promising results in 

preclinical models for cell based therapy applications while pancreatic cells have already 

reached the clinic. Nonetheless, additional studies are still needed to improve encapsulation 

method and also to produce a large quantity of cells in conditions compatible with the clinic.  

 

 

Current Challenges for Basic Studies and Clinical Applications 

Variation Between hPSCs Lines  

Variability in capacity of differentiation between hPSC lines is a major challenge and while the 

origin of this limitation remains unclear, genetic mechanisms appear to be a leading cause 

(Ortmann and Vallier, 2017). Nonetheless, endoderm differentiation seems to be particularly 

affected by this phenomenon. Indeed, while current protocols have been proven to work in 

multiple labs, endoderm differentiation remains strenuous, mainly due to the inductive nature 

of this process. Contrary to neuroectoderm specification which results from the inhibition of 

signaling pathways opposing differentiation, endoderm specification is driven by the inductive 

activity of Activin/Nodal signaling, which plays a central role in establishing the entire 

transcriptional network characterising endoderm cells. This role is obscured by the essential 

and apparently contradicting role of Activin signaling in maintaining pluripotency (Pauklin and 

Vallier, 2015). Thus, any factors affecting the level of Activin signaling or its efficacy can impact 

on the differentiation efficiency and increase contamination by undifferentiated cells. 

Furthermore, multiple factors can influence endoderm specification some of which are difficult 

to control. Firstly, cell density and size of plated colonies can interfere with the necessary EMT 

process characterising endoderm differentiation. Of note, this EMT also precludes 

differentiation from single cells and thus easy quantification of cell population.  Secondly, the 

stability and quality of recombinant growth factors can interfere with the inductive nature of 

Activin. Thirdly, the composition of the extracellular matrix can interfere with differentiation. 

For example, Matrigel contains high levels of TGF-β, which can interfere with Activin/Nodal 

signaling. Lastly, the endogenous levels of key growth factors including Nodal which level of 

expression could vary between different hiPSC lines (Ortmann and Vallier, 2017). 
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Consequently, all these parameters need to be optimised in each lab and for each individual 

hPSC line to obtain a robust and homogeneous differentiation. Of note, the development and 

more importantly the standardisation of chemically defined culture such as the E8 culture 

system is also helping to decrease these variability issues, while allowing a better control of 

differentiation conditions. In addition, protocols for deriving self-renewing endodermal 

progenitors (Cheng et al., 2012) and foregut stem cells (Hannan et al., 2013a) could help to 

bypass the limited differentiation capacity of some hPSCs lines. Indeed, these multipotent 

endodermal cells can be isolated from heterogeneous differentiation and then expended 

almost indefinitely thereby bypassing the need of constantly differentiating hPSCs.  

 

 

Functional Maturation 

Despite the advances in generating these cell types in vitro, the hPSC-derived cells display a 

foetal signature as opposed to their mature adult counterparts. This lack of functionality 

represents a limitation especially for specific in vitro applications such as toxicology screens 

or modeling of chronic disorders. Importantly, the lack of basic knowledge concerning the 

mechanisms controlling organ maturation especially in human, have hindered the further 

optimisation of current protocols. Consequently, new developments are often based on a trial 

and error approach. In addition, an increasing number of studies now utilises the development 

of 3D culture systems where multiple cell types can be cultured together. Indeed, most 

endoderm cell types work in a cooperative way, receiving signals from neighbouring cells in a 

3D environment. Of particular interest, endothelial and mesenchymal cells often provide 

important support for cellular function of endoderm derivatives. Accordingly, several groups 

have established 3D co-culture system to differentiate liver cells  (Dye et al., 2015; Gieseck et 

al., 2014; Ogawa et al., 2015; Sampaziotis et al., 2015a; Takebe et al., 2014) or pancreatic  β-

cells (Chmielowiec and Borowiak, 2014) and  lung organoids  (Franzdóttir et al., 2010). 

Nonetheless, such systems seem to improve function of the endodermal cells without 

conferring full maturation. Furthermore, 3D culture systems are more complex to set up while 

cells of interest are more difficult to access for phenotyping analyses, thereby precluding high 

throughput applications. GMP conditions can also be difficult to achieve despite recent 

progress in the development of artificial Matrigel based on PGA/PLLA scaffolds (Finkbeiner, 

2015). Using simpler systems that generate a pure population of endoderm derivatives 

enables a greater focus on specific biological aspects and direct comparison to primary tissue. 

These challenges highlight the need to perform further basic research to unravel the factors 

and biology involved in maturing functional cell types in endodermal organs.  
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     A solution to these challenges could be provided by transdifferentiation or forward 

programming approaches. These methodologies have been applied successfully to bypass 

the requirements for functional maturation in vitro for pancreas, intestine and liver cells 

(Benthuysen et al., 2016; Huang et al., 2014; Miura and Suzuki, 2017). Of particular interest, 

Du and colleagues used up to 7 hepatic factors including HNF1A, HNF4A and HNF6 along 

with the maturation factors ATF5, PROX1 and CEBPA to generate hiHeps from fibroblasts. 

The resulting cells display the hallmarks of primary hepatocytes including expression of phase 

I and phase II drug-metabolising enzymes as well as phase III drug transporters. Furthermore, 

these cells can repopulate the liver in vivo, expressed albumin and showed CYP enzyme 

activity (Du et al., 2014). These encouraging results and provide a proof of principle that such 

approach could bypass the need of laborious and lengthy culture systems of differentiation. 

Nonetheless, these methods are generally very complex, rely on proprietary media difficult to 

obtain and work specifically on embryonic fibroblasts. In addition, there are specific aspects 

associated with endodermal cells which make the transdifferentiation approach particularly 

challenging when compared to other cell types such as neurons. Indeed, endoderm cells are 

often quiescent while proliferative intermediates equivalent to neuronal stem cells are difficult 

to identify or to expand. Furthermore, endoderm cells are often epithelial cells that depend on 

strong cell to cell interactions, precluding single cell isolation or purification. Thus, 

transdifferentiation methods need to be extremely efficient or include oncogenes promoting 

proliferation with the risk of affecting basic cellular biology and normal function of the cells. 

Finally, there is currently no culture system to grow primary endodermal derivatives such as 

hepatocytes or β-cells. Thus, even extremely efficient methods of reprogramming could only 

produce cells losing rapidly their function. 

     To conclude, generating fully functional cells from hPSCs remains a challenge which can 

be alleviated only partially by 3D culture systems and transdifferentiation approaches. Only a 

better understanding of the mechanisms orchestrating functional maturation of endodermal 

organ will enable to improve current protocols of differentiation. 

 

 

Conclusions and Perspectives 

The field of stem cell biology and regenerative medicine has made considerable progress over 

the last decade in developing protocols for the production of a diversity of endoderm 

originating cell types from hPSCs. We can now produce liver, pancreas, gut (intestinal, 

stomach, colon), lung and thyroid cells (Agarwal et al., 2008; Cai et al., 2007; Dye et al., 2015; 

Jacob et al., 2017; McCauley et al., 2017; Ogawa et al., 2015; Sampaziotis et al., 2015a; Si-

tayeb et al., 2010; Snoeck, 2015; Song et al., 2009; Sullivan et al., 2010). Our knowledge of 
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basic developmental biology has been essential for the generation of these protocols. 

Importantly, methods of differentiation are now converging based on common standards for 

cell characterisation and culture systems. Consequently, hPSC endodermal derivatives are 

starting to be used by a growing number of groups to uncover novel mechanisms either 

controlling development or disease.  

     The main obstacle in the field of disease modeling and regenerative medicine remains the 

lack of functionality of the different cell types generated. This is partly due to our limited 

understanding of the mechanisms driving organ maturation in humans, especially as there is 

growing evidence that the molecular events that drive these processes could diverge between 

species (Snoeck, 2015). Thus, further basic studies are crucial for the development of novel 

approaches for the generation of fully functional cells from hPSCs. More specifically, it will be 

essential to identify signaling pathways and transcription factors that drive functional 

maturation of endoderm cells such as hepatocytes and β-cells.  

     Importantly, many organs in the body such as the intestine, muscle and hematopoietic 

system have resident adult stem cell populations necessary for tissue homeostasis and repair. 

Thus, organoids generated from primary tissues have been proposed as an alternative to 

hPSCs for producing liver, pancreatic, gut and lung cells in vitro. Many labs have described 

the generation of organoids from primary tissue including the intestine, liver and pancreas 

(Broutier et al., 2016; Rookmaaker et al., 2015). These systems can also aid in disease 

modeling (Schwank et al., 2013) and drug screening (Dekkers et al., 2013). However, the 

capacity/origin of other primary systems still requires further characterisation. For example, 

hepatocyte like cells produced from liver organoids can be used for modeling disease but their 

functionality remains limited (Broutier et al., 2017; Huch et al., 2015). The same applies to 

pancreatic organoids which originate from the pancreatic duct and which have a limited natural 

capacity of differentiation toward β-like cells. Beyond these technical aspects, primary 

organoids and hiPSC-derived endodermal organs provide a complementary system. Indeed, 

hPSC-derived cells can be used to model embryonic development and early organogenesis, 

while primary organoids could provide a platform to study functional maturation of specific cell 

types by comparison of foetal vs adult organoids derived from the same organ. In addition, 

hPSCs allow the study of disease progression while organoids provide information on end 

stage disease. Finally, hPSCs from the same donor can be differentiated into a diversity of 

cell types which is extremely challenging from organoids. Thus, the two systems could 

advantageously complement each other to study disease and development. 

     To conclude, the advances made in producing endodermal cell types is offering new 

opportunities to investigate developmental regulations and to uncover disease mechanisms 

impossible to study before. Moreover, endoderm derived cell types hold unique promises for 

regenerative medicine of diseases currently incurable. Nonetheless, key challenges remain to 
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be addressed to fulfil this potential. Therefore, the constant effort from the stem cell field must 

continue not only on clinical applications but also on basic studies aiming to understand basic 

characteristics of endodermal organ development. 
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Figure Legends 

Figure 1. Endoderm Derivatives Generated from hPSCs 

Schematic representation of differentiation of hPSCs into endoderm cell types and signaling pathways 

required for their generation. Key transcription factors expressed by each lineage is also outlined. 

 

Figure 2. Endoderm Derivatives for Clinical Application and Disease Modeling 

Schematic overview of translational application of hPSCs-derived endoderm cell types. hPSC-derived 

endoderm cells can be used to model genetic disorders, infectious disease, validate genes associated 

with disease and drug screening. Additionally, they can be used for cell therapy.  
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Table 1. Protocols to Generate Endoderm Cells from hPSCs 

Factors used  Markers Expressed Cells Generated Reference 

FBS, Activin A SOX17, FOXA2, 

GATA4, CXCR4 

Hepatocytes, 

Pancreatic cells 

(Agarwal et al., 2008; 

D’Amour et al., 2005, 2006) 

FCS, Activin A, 

FGF2 or WNT3A 

SOX17, HNF3β, 

CXCR4, HNF4α, α1-

antitrypsin and αFP 

Hepatocytes (Brolén et al., 2010) 

SR, Activin A  SOX17, FOXA2, Hepatocytes (Kubo et al., 2004) 

Activin A, 

LY294002 

SOX17, FOXA2, 

GSC, GATA4, 

GATA6 

In vivo transplantation 

showed expression of 

hepatic, lung and 

intestinal markers 

(McLean et al., 2007) 

Activin A, BMP4 SOX17, FOXA2,  

CXCR4 

Pancreatic progenitors (Teo et al., 2012) 

Activin A, 

LY294002, 

FGF2, BMP4 

SOX17, FOXA2, 

GSC, GATA4, N-Cad 

Hepatocytes (Touboul et al., 2010) 

Activin A, bFGF, 

BMP4, VEGF 

SOX17, FOXA2 Pancreatic cells (Nostro et al., 2011) 
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Table 2.  Markers/Function Displayed in Endoderm Derivatives Generated from hPSCs 

Cell Type Markers Expressed Function Displayed Reference 

Hepatocytes Fetal hepatocytes: HNF4α, HNF6, 

CEBPα, PROX1, ASGPR1, AFP 

 

Adult hepatocytes: HNF4α, ALB, 

AAT, CYP3A4, CK8, CK18 

 Albumin secretion 

 Glycogen storage 

 Urea metabolism 

 LDL uptake 

 Cytochrome P450 

activity 

(Agarwal et al., 2008; Brolén et al., 

2010; Cai et al., 2007; Hannan et al., 

2013b; Mallanna and Duncan, 2013; Si-

tayeb et al., 2010; Siller et al., 2015; 

Song et al., 2009; Sullivan et al., 2010; 

Touboul et al., 2010) 

Cholangiocytes Cholangiocyte progenitors: SOX9, 

HNF1b, CK19 

 

Adult Cholangiocytes: CK7, CFTR, 

SCR, SSTR2, AQP1, AE2 

 Rhodamine 123 

transport by MDR1 

receptor 

 CFTR activity 

 GGT secretion 

 ALP activity 

 Transport of bile acid 

 Hormonal response  

(Dianat et al., 2014; Ogawa et al., 2015; 

Sampaziotis et al., 2015a) 

Pancreatic β-

cells 

Pancreatic progenitors: PDX1, 

NKX6.1, SOX9, FOXA2, HNF1B, 

HNF4A  

 

Beta cells: PDX1, NKX6.1, NGN3, 

INS, GCG, SST 

 Insulin secretion upon 

glucose stimulation 

 

(Cheng et al., 2012; Chmielowiec and 

Borowiak, 2014; D’Amour et al., 2006; 

Jiang et al., 2007; Pagliuca et al., 2014; 

Rezania et al., 2014) 

Lung cells Proximal/Airway progenitors: 

NKX2.1, FOXA2, SOX2, P63 

 

Proximal Airway cells: SCGB1A1, 

SCGB3A2, FOXJ1, P63, KRT5, 

MUC5AC 

 

Distal/Alveolar progenitors: 

NKX2.1, FOXA2, SOX9, FOXP2, 

ETV5, SFTPC 

 

Distal/Alveolar cells: SFTPC, 

PDPN, AQP5, HOPX 

 Apical localization and 

functionality of CFTR 

 Surfactant protein B 

(SP-B) uptake and 

release 

 Presence of lamellar 

bodies 

 Surfactant protein C 

(SP-C) secretion 

 Ciliogenesis and motile 

cilia 

(Dye et al., 2015; Firth et al., 2014; 

Ghaedi et al., 2013; Gotoh et al., 2014; 

Huang et al., 2013; Jacob et al., 2017; 

Longmire et al., 2012; McCauley et al., 

2017; McIntyre et al., 2014; Mou et al., 

2012; Wong et al., 2012) 

 Gut Intestinal stem cells: LGR5, ASCL2 

 

Differentiated intestinal cell types: 

VIL, MUC2, LYZ, CHGA 

 

 

 

 

Stomach progenitors: SOX2, 

PDX1, LGR5, SOX9, GATA4 

 

Differentiated stomach cell types: 

MUC5AC, MUC6, TFF1/3, GKN1, 

TFF2  

 Presence of apical 

microvilli 

 Functional peptide 

transport of enterocytes 

 Mucin secretion by 

goblet cells 

 

 

 Pathophysiological 

response to H. Pylori 

infection  

(Finkbeiner et al., 2015; Fordham et al., 

2013; Munera et al., 2017; Spence et 

al., 2011; Watson et al., 2014; 

Workman et al., 2016) 

 
 
 
 
 
 
(McCracken et al., 2014) 

 

 

 


