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Abstract. The ability of diagrams to convey information effectively in
part comes from their ability to make facts explicit that would otherwise
need to be inferred. This type of advantage has often been referred to as a
free ride and was deemed to occur only when a diagram was obtained by
translating a symbolic representation of information. Recent work gen-
eralised free rides to the idea of an observational advantage, where the
existence of such a translation is not required. Roughly speaking, it has
been shown that Euler diagrams without existential import are observa-
tionally complete as compared to symbolic set theory. In this paper, we
explore to what extent Euler diagrams with existential import are ob-
servationally complete with respect to set-theoretic sentences. We show
that existential import significantly limits the cases when observational
completeness arises, due to the potential for overspecificity.

1 Introduction

Diagrams are often seen as a useful tool in aiding our understanding of infor-
mation, particularly in contrast to symbolic or textual notations. One of many
reasons for this can be attributed to the ability of diagrams to convey facts in
accessible manner, including facts that would otherwise need to be inferred from
alternative representations. Such facts can be thought of as observable from the
diagrammatic representation but inferrable from the alternative representation.

Previously, we introduced the theory of observational advantages [16], gen-
eralising the idea of a free ride [14]. In the case of free rides, one starts with a
collection of statements, say Q ⊆ P and P ∩ R = ∅, and translates them into a
semantically equivalent diagrammatic form, such as in Figure 1. The translation
must ensure that the original statements can all be observed from the diagram.
It can readily be seen, or observed, from Figure 1 that Q ⊆ P (through curve
containment) and P ∩R = ∅ (through curve disjointness). In addition, it can also
be observed that Q∩R = ∅, again through curve disjointness. This information,
Q ∩R = ∅, is a free ride from the diagram given the original statements. In the
case of observational advantages, the requirement for a translation is removed:
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Fig. 1. No existential import and a free ride. Fig. 2. Overspecificity issues.

the two representations must only be semantically equivalent, implying that all
free rides are observational advantages but not vice versa.

The observational power of diagrams has long been recognised, with Hyper-
proof incorporating an observation-style inference rule in a proof system involv-
ing both diagrams and first-order logic [2]. Dretske’s work, commonly described
as “somebody’s seeing that something is the case” [5], informed the development
of the Euler/Venn inference system, where the authors called for the distinctive
treatment of observation [18]. By formalising this insight into the benefit of dia-
grams, we can identify the set of statements that are observable, as opposed to
inferrable, from a given statement.

In [16] we presented a formal framework for studying observational advan-
tages and applied it to Euler diagrams (without existential import [3]4) and
set-theoretic sentences, limited to making subset and equality assertions. We
proved that Euler diagrams were observationally complete: given any finite col-
lection of set-theoretic sentences, S, from the class just described, there exists
an Euler diagram, d, from which any set-theoretic sentence, σ, inferrable from S
can be observed. This is a significant result, because Euler diagrams are widely
studied from the perspective of inference [4, 10, 13], demonstrating that diagrams
can be rich in observational advantages. An obvious question arises: if Euler dia-
grams are instead taken to have existential import, are they still rich in observa-
tional advantages? Given that many approaches exist to asserting non-emptiness
(see [11]), including existential import, it is important to answer this question.

We extend our previous work to Euler diagrams with existential import and
set-theoretic sentences which can also express the non-emptiness of a set and
non-subset relations between sets. This allows us to show that there are restricted
instances of when a finite set, S, of set-theoretic sentences has an equivalent
Euler diagram, d, with existential import from which any set-theoretic sentence,
σ, inferrable from S can be observed. This is due to the overspecificity of Euler
diagrams with existential import.

As an example, consider Q ⊆ P , P ∩ R = ∅, P\Q 6= ∅, R = S and Q * S.
One possible visualisation of this using Euler diagrams with existential import is
in Figure 2. Clearly the four statements are represented in the diagram; focusing
on P\Q 6= ∅, this corresponds to the zone inside just the curve P (so outside

4 In Euler diagrams without existential import, zones can represent empty sets. By
contrast, under existential import all zones in the diagram represent non-empty
sets [7]. Peirce denotes non-emptiness of a set with ⊗-sequences [12] (also used by
Shin [15] and further developed by Choudhury and Chakraborty [4]). Other notations
use graphs to denote elements in sets [6, 8, 9].



Q, R and S), which represents a non-empty set due to the existential import
assumption now placed on the diagram’s semantics. However, the diagram repre-
sents too much information such as S 6= ∅: forcing zones to represent non-empty
sets leads to this overspecificity problem [14, 17]. Indeed, under the existential
import semantics, there is no single Euler diagram that represents just these
four statements and nothing more. In the rest of this paper, all Euler diagrams
are assumed to be interpreted under the existential import semantics.

We provide the necessary and sufficient conditions under which a set of set-
theoretic sentences, formed using ⊆, *, = and 6=, can be visualised as an Euler
diagram with existential import. We show that such a diagram is observation-
ally complete. The conditions demonstrate that existential import may not only
restrict the existence of an observationally complete diagram, but may prevent
a semantically equivalent diagram to exist at all. Our results show that Euler
diagrams with existential import suffer from overspecificity, which hugely limits
their advantages over competing notations. This insight sets this paper apart
from earlier work: it is the first to formally reveal that diagrams can have (sub-
stantial) limitations in exchange for the power to express a wider variety of
information (such as 6⊆ and 6=). Consequently, designers and users of diagrams
should pay careful attention when defining their syntax and semantics if one of
their goals is to harness their observational power.

The paper is structured as follows. Section 2 discusses the idea of a meaning-
carrying relationship and its role in observation. The syntax and semantics of
Euler diagrams and the fragment of set theory that we consider are given in
Section 3. We provide results on the model theory of these two systems in Sec-
tions 4 and 5 respectively, which are the necessary basis for understanding the
limitations of Euler diagrams with existential import. Section 6 establishes the
limited set of cases when observational completeness arises. We discuss these
results and their implications in Section 7 and conclude in Section 8.

2 Observation and Meaning-Carriers

Central to the notion of observability is an understanding of how a representation
of information conveys meaning through meaning-carrying relationships, which
is discussed at some length in [16]. Here, due to space constraints, we provide a
brief discussion along with various definitions from [16] that are essential for the
remainder of this paper. As the context of this paper is on set theory and Euler
diagrams, we provide examples from those domains.

A meaning-carrying relationship is a relation on the syntax of a statement
that carries semantic value, evaluating to either true or false. This is similar to
Shin’s notion of a representing fact in her seminal work on Venn diagrams [15].
Meaning-carriers play an important role in both her work and ours. In set-
theoretic sentences, such as P ⊆ Q, there are single meaning-carrying relation-
ships. In P ⊆ Q, the meaning-carrier is that P is written to the left of ⊆ and
Q to the right. Likewise, any set-theoretic statement formed using *, =, and



6= has just a single meaning-carrier: the set written on the left has the asserted
relationship with that written on the right.

A single Euler diagram can have numerous meaning-carrying relationships
which are given by the spatial relationships between the curves. In Figure 2, the
curves S and R are on top of one another, asserting that S = R. These meaning-
carriers in the diagram give rise to the observable set-theoretic sentences. From
Figure 2, we can observe Q ⊆ P , Q ∩ R = ∅, and S = R, amongst many other
things. Due to existential import, we can also observe S 6= ∅ and P\Q 6= ∅.

One has to understand which syntactic relationships are meaning-carriers in
order to define observability. In particular, one statement, σ1, is observable from
another, σ2, if some meaning-carrying relationship in σ2 corresponds directly
to σ1. For example, the containment of one curve, Q, by another, P , in an
Euler diagram (Figure 2) is a meaning-carrier, allowing us to observe a subset
relationship: Q ⊆ P . Likewise, when we have existential import, the presence of a
region is a meaning-carrier: it represents a non-empty set. So, a set arising from a
region, such as the zone inside P and Q in Figure 2, is non-empty: P ∩Q 6= ∅. We
can also observe from the diagram P ∩Q = Q, since the region which represents
P ∩Q happens to be exactly the same region as that which represents Q.

Importantly, observability must respect semantics too: if a statement is ob-
servable then it must be semantically entailed (i.e., the observed statement must
be true whenever the statement from which it is observed is true). We will de-
fine when a set-theoretic sentence can be observed from an Euler diagram later5.
For now, we assume this definition is given and present a general definition of
observability from a set of statements:

Definition 1. Let Σ be a finite set of statements and σo be a statement. Then
σo is observable from Σ iff σo is observable from some statement, σ, in Σ. The
set of statements that are observable from Σ is denoted O(Σ) [16].

We can now define what it means to be observationally complete:

Definition 2. Let Σ and Σ� be finite sets of statements. Then Σ is observa-
tionally complete with respect to Σ� if Σ� ⊆ O(Σ) [16].

Intuitively, the definition of observational completeness can be interpreted as
follows: Σ is a representation of information (such as a single diagram or a set
of set-theoretic sentences) and Σ� is a set of statements whose truth we wish to
establish. If we can simply observe those statements to be true from Σ then Σ
is observationally complete with respect to Σ�.

Definition 3. Let Σ and Σ̂ be finite, semantically equivalent sets of statements.
Let σ be a statement. If σ is not observable from Σ and σ is observable from Σ̂
then σ is an observational advantage of Σ̂ given Σ [16].

Using the requirement that observable statements must be semantically en-
tailed, we see that any statement, σ, which is an observational advantage of Σ̂
given Σ is semantically entailed by Σ.

5 It is possible to define observability for other types of diagrams and statements too.



3 Set Theory and Euler Diagrams with Existential Import

To develop the theory of observation and observational advantages in the case of
set theory and Euler diagrams with existential import, we require a formalisation
of both systems. Since a ready comparison of statements needs to be made across
notations, the set of labels used to denote sets will be common to both set theory
and Euler diagrams, as will their interpretation.

Definition 4. Define L to be a set whose elements are called labels. Two special
symbols, ∅ and U , are not in L [16].

Definition 5. An interpretation is a pair, I = (4, Ψ), where 4 is a set and
Ψ is a function, Ψ : L ∪ {∅, U} → P4, that maps labels to subsets of 4 and
ensures that Ψ(∅) = ∅ and Ψ(U) = 4 [16].

3.1 Euler Diagrams with Existential Import

We now introduce the syntax and semantics of Euler diagrams with existential
import. The syntax remains unchanged from [16] and is included here for ease
of reference. The semantics, however, differ due to the requirement that zones
must represent non-empty sets. To begin, we formally define zones and regions.

Definition 6. A zone is a pair of finite, disjoint sets of labels, (Li, Lo), drawn
from L. A finite set of zones is a region.

In Figure 2, there are four zones. The zone inside just P is ({P}, {Q,R, S})
and the zone outside all the curves is (∅, {P,Q,R, S}). This diagram uses four
labels, so we write L = {P,Q,R, S}, where L denotes the diagram’s label set.
The diagram’s set of zones will be denoted Z, so in this case

Z = {({P}, {Q,R, S}), ({P,Q}, {R,S}), ({R,S}, {P,Q}), (∅, {P,Q,R, S})}.

Formally, an Euler diagram is a set of labels together with a set of zones:

Definition 7. An Euler diagram, d, is a pair, (L,Z), where L is a finite
subset of L, and for all zones, (Li, Lo), in Z it is the case that Li ∪ Lo = L.
Given d = (L,Z), we sometimes write L(d) and Z(d) for L and Z respectively.
Given a finite set, D, of Euler diagrams we define L(D) to be

⋃
d∈D

L(d).

To define the semantics of Euler diagrams, it is useful to identify the zones
that could be present in the diagram given the labels used, but which are in fact
missing. Intuitively, missing zones represent the empty set.

Definition 8. Let d = (L,Z) be an Euler diagram. The missing zones of d
are elements of MZ (d) = {(Li, L\Li) : Li ⊆ L}\Z.

We now extend the definition of an interpretation to identify the sets repre-
sented by zones and regions:



Definition 9. Let I = (4, Ψ) be an interpretation. An extension of Ψ to map
zones and regions to sets is defined as follows:

1. for each zone, (Li, Lo), Ψ(Li, Lo) =
⋂

l∈Li

Ψ(l) ∩
⋂

l∈Lo

Ψ(l), and

2. for each region, r, Ψ(r) =
⋃

(Li,Lo)∈r
Ψ(Li, Lo).

Our next task is to define the circumstances under which an interpretation
is a model for (i.e., agrees with the intuitive meaning of) an Euler diagram. As
well as missing zones representing empty sets we also have to account for the
existential import requirement: present zones represent non-empty sets:

Definition 10. Let d = (L,Z) be an Euler diagram and I = (4, Ψ) be an
interpretation. Then I satisfies d and is a model for d whenever Ψ(z) 6= ∅ for
each zone z in Z and Ψ(z) = ∅ for each zone z in MZ(d).

3.2 Set-Theoretic Sentences

We now extend the work in [16] on set-theoretic sentences to allow statements
to be made with 6= and *, as well as = and ⊆. Firstly, we define set-theoretic
expressions, which are syntactic representations of sets formed from the ‘basic
sets’ represented by labels in L:

Definition 11. The following are set-theoretic expressions or, simply, set-
expressions: (i) U and ∅ are both set-expressions, (ii) every label in L is a set-
expression, and (iii) if s1 and s2 are set-expressions then so are (s1∩s2), (s1∪s2),
(s1\s2), and s1 [16].

Given labels P , Q and R, the following are some examples of set-theoretic
expressions (omitting unnecessary brackets): P , P ∩ Q, Q ∪ R, P\(Q ∪ R) and
(P ∩Q). Often we will blur the distinction between syntax and semantics, talking
of ‘the set P ∩Q’ when strictly speaking we mean the set represented by P ∩Q;
given an interpretation, (4, Ψ), this set is Ψ(P )∩Ψ(Q). Set-theoretic expressions
merely construct sets from the basic ones. We can then make assertions about
the relationship between set-theoretic expressions using ⊆, *, =, and 6=:

Definition 12. Given set-expressions s1 and s2 the following are set-theoretic
sentences: s1 ⊆ s2, s1 6⊆ s2, s1 = s2, and s1 6= s2. Sentences of the form s1 ⊆ s2
and s1 = s2 are positive whereas those of the form s1 6⊆ s2 and s1 6= s2 are
negative.

When we want to give set-expressions or set-theoretic sentences names, we will
use ≡. For example, to refer to P ∩Q and R ⊆ P ∩Q by the names s1 and s2,
we write s1 ≡ P ∩Q and s2 ≡ R ⊆ P ∩Q. This is to avoid overloading =. It is
also helpful to us to have access to set of the labels, denoted L(s), used in any
given set-theoretic sentence, s: L(s) is defined in the obvious recursive way. We
extend this to a finite set, S, of set-theoretic sentences: L(S) is

⋃
s∈S

L(s), that is,

the set of all labels appearing in members of S.



Now, to reiterate, every set-theoretic sentence only has one meaning-carrier:
the set-expression on the left is in the asserted relationship with the set-expression
on the right. This leads us to the definition of the semantics of set-theoretic sen-
tences. The labels over which set-expressions are formed are already interpreted
as sets (Definition 5). We extend this to cover the interpretation of more com-
plex set-expressions in order to identify when an interpretation ‘agrees with’ the
intuitive meaning of (i.e., is a model for) sentences.

Definition 13. Let I = (4, Ψ) be an interpretation. An extension of Ψ to map
set-expressions to sets is defined as follows. For each set-expression, s,

1. if s ∈ L ∪ {U, ∅} then Ψ(s) is already defined,
2. if s ≡ (s1 ? s2), where ? ∈ {∩,∪, \}, then Ψ(s) = Ψ(s1) ? Ψ(s2), and
3. if s ≡ s1 then Ψ(s) = Ψ(s1) = Ψ(U)\Ψ(s1).

Definition 14. Let s be a set-theoretic sentence. Let I = (4, Ψ) be an inter-
pretation. Then I satisfies s and is a model for s under the following circum-
stances:

1. if s ≡ s1 ⊆ s2 then Ψ(s1) ⊆ Ψ(s2),
2. if s ≡ s1 6⊆ s2 then Ψ(s1) 6⊆ Ψ(s2),
3. if s ≡ s1 = s2 then Ψ(s1) = Ψ(s2), and
4. if s ≡ s1 6= s2 then Ψ(s1) 6= Ψ(s2).

Let S be a finite set of set-theoretic sentences. Then I satisfies S and is a
model for S provided I is a model for each set-theoretic sentence in S.

3.3 Semantic Relationships

The final prerequisite for studying the observational advantages of Euler dia-
grams over set-theoretic sentences relies on us tying up their semantic relation-
ships, beyond just mapping their (common) labels to sets in interpretations. We
generically refer to Euler diagrams and set-theoretic sentences as statements.

Definition 15. Let σ1 and σ2 be statements. If σ1 and σ2 have the same models
then they are semantically equivalent. If finite sets of statements, Σ1 and Σ2,
have the same models then they are semantically equivalent.

Definition 16. Let Σ be a finite set of statements and let σ be a statement.
Then Σ semantically entails σ, denoted Σ � σ, provided every model for Σ
is also a model for σ. If σ is semantically entailed by, but not in Σ, then σ is
properly semantically entailed by Σ.

Lastly, since our focus is on the observational completeness of Euler diagrams
with respect to set-theoretic sentences and the conditions under which this can
be achieved, it is useful for us to introduce notation for the set of all set-theoretic
sentences that are properly entailed given the labels used:



Definition 17. Let S be a finite set of set-theoretic sentences. Define SL(S)
� to

be the set of set-theoretic sentences that are properly semantically entailed by S
such that each s ∈ SL(S)

� ensures L(s) ⊆ L(S).

We can think of the labels used – that is, those in L(S) – as being the sets
of interest, since these are the sets about which S provides information. Then

we can view SL(S)
� as containing precisely the set-theoretic sentences that make

true statements about the sets of interest, but which are not explicitly given in
S. In other words, these are the statements that we can and must infer from S.

4 Model Theory: Euler Diagrams with Existential Import

A major consideration for us is to identify when, given a set of set-theoretic
sentences, S, there exists a semantically equivalent Euler diagram, d. This is a
prerequisite for identifying whether d is observationally complete with respect
to S. Our strategy for this is to provide insight into what the models of Euler
diagrams ‘look like’. Unsurprisingly, this section establishes that the models for
Euler diagrams with existential import are those for which all of the present
zones represent non-empty sets and the missing zones represent empty sets. As
it will be beneficial to us later, we define a relation on interpretations inspired
by this insight:

Definition 18. Let L ⊆ L be a set of labels and I1 = (41, Ψ1) and I2 =
(42, Ψ2) be interpretations. Then I1 and I2 are L-approximate, denoted I1 ≈L

I2, provided for every zone (Li, Lo) where Li ∪ Lo = L, Ψ1(Li, Lo) = ∅ iff
Ψ2(Li, Lo) = ∅.

Intuitively, two interpretations are L-approximate if one never assigns the
empty set to a zone formed over L when the other does not. Clearly, ≈L is an
equivalence relation on the set of interpretations.

Theorem 1. Let d = (L,Z) be an Euler diagram. Then the set of models, M(d),
for d is an equivalence class of interpretations under ≈L. In particular, I =
(4, Ψ) is in M(d) iff for each zone, zp, in Z(d), we have Ψ(zp) 6= ∅ and for each
zone, zm, in MZ (d) we have Ψ(zp) = ∅.

Theorem 1 demonstrates the highly constrained nature of models for Eu-
ler diagrams with existential import: they are single equivalence classes of L-
approximate interpretations, forcing present zones to represent non-empty sets.
There is no possibility for representing uncertainty when it comes to the non-
emptiness of a set. By contrast, if the existential import requirement is removed
(so a present zone can be empty or not) then the model sets are unions of equiva-
lence classes: the models are given by MZ1

∪...∪MZ2n
where: Z1 to Z2n are the 2n

subsets of Z, and MZi
is the equivalence class of interpretations where for each

zone, zp in Zi, we have Ψ(zp) 6= ∅ and for each zone, zm in (Z(d)\Zi) ∪MZ (d)
we have Ψ(zp) = ∅.



5 Model Theory: Set-Theoretic Sentences

In order to identify when a set of set-theoretic sentences, S, has a semantically
equivalent diagram, d, we start by appealing to Theorem 1. This theorem tells
us that S only has such a diagram if its models are also a single equivalence
class under ≈L. Clearly, such an equivalence class determines a set of zones
that represent (non)empty sets. It is therefore useful to introduce the idea of
determining set-emptiness:

Definition 19. Let S be a finite set of set-theoretic sentences. We say S deter-
mines set-emptiness if the set of models, M(S), for S forms an equivalence
class of interpretations under ≈L(S).

For example, consider the following:

S1 = {P 6⊆ Q,Q 6⊆ P},
S2 = {P 6⊆ Q,Q 6⊆ P, P ∩Q = ∅}, and
S3 = {P 6⊆ Q,Q 6⊆ P, P ∩Q = ∅, P ∪Q 6= ∅}.

Note L(S1) = L(S2) = L(S3) = {P,Q}. Among these, only S3 determines
set-emptiness. S1 does not, since it can be satisfied by both, an interpretation
assigning the empty set to zone ({P,Q}, {}), and one assigning a non-empty
set to it, for example. These interpretations are not L(S1)-approximate, so S1
does not determine set-emptiness. With the addition of sentence P ∩ Q = ∅,
the set of models for S2 no longer has interpretations that ‘disagree’ on the
zone ({P,Q}, ∅) (every model assigns the empty set to it), yet models can still
disagree on zone (∅, {P,Q}). Adding another sentence, P ∪Q 6= ∅, to give S3
makes all models agree on the zones that can be formed over {P,Q}: they assign
the empty set to (∅, {P,Q}) and non-empty sets to ({P}, {Q}), ({Q}, {P}), and
(∅, {P,Q})); a semantically equivalent Euler diagram is given in Figure 3. Thus,
determining set-emptiness is rather a high demand to place on the case of set-
theoretic sentences: only very limited sets of set-theoretic sentences determine
set-emptiness. By contrast, determining set-emptiness is not placing such a high
demand on Euler diagrams. Indeed, every single Euler diagram determines set-
emptiness. We obtain the following lemma:

Lemma 1. Let S be a set of set-theoretic sentences. Then S has a semantically
equivalent Euler diagram only if S determines set-emptiness.

This lemma indicates the extent of the overspecificity of Euler diagrams,
relative to set-theoretic sentences. The phenomenon of overspecificity has been
pointed out in [17] and further investigated in [14] in connection to a wider
variety of diagrams. However, the impact of the phenomenon in a specific dia-
grammatic system has never been formalised. Our approach illustrates how it
can be investigated.

Our next goal is to characterise the sets of set-theoretic sentences that meet
the demand of determining set-emptiness. To begin, we notice that positive set-
theoretic sentences provide information about the emptiness of sets; P ⊆ Q tells



Fig. 3. Translating set-theoretic sentences. Fig. 4. Relevant zones.

us that P\Q = ∅ and R = S tells us that R\S = ∅ and S\R = ∅. Moreover,
negative set-theoretic sentences provide information about the non-emptiness of
sets; P * Q expresses P\Q 6= ∅ and R 6= S implies R\S 6= ∅ or S\R 6= ∅. It is
therefore useful to distinguish the positive and negative cases:

Definition 20. Given a set of set-theoretic sentences S, we define S+ and S−
to be the set of all positive and negative members of S, respectively.

So, positive sentences provide information about empty zones whereas nega-
tive sentences provide information about non-empty zones. This leads to the idea
of a relevant zone, which relies on a translation of a set-theoretic sentence to a
region which is determined by the sets of interest. For example, given L = {P,Q}
as the sets of interest, the expression P\Q corresponds to the zone ({P}, {Q})
since, informally, ({P}, {Q}) represents the set of things in P that are not in Q,
that is, P\Q. Likewise, the expression P – again given L = {P,Q} – corresponds
to the region {({P}, {Q}), ({P,Q}, ∅)}: the elements in P can be either in P\Q,
corresponding to ({P}, {Q}), or in P ∩Q, corresponding to ({P,Q}, ∅).

Definition 21. Let s be a set-expression and let L be a set of labels such that
L(s) ⊆ L. The translation of s given L into a region, denoted T (s, L), is defined
recursively:

1. if s ≡ ∅ then T (s, L) = ∅,
2. if s ≡ U then T (s, L) = {(Li, Lo) : Li ∪ Lo = L ∧ Li ∩ Lo = ∅},
3. if s ∈ L then T (s, L) = {(Li, Lo) ∈ T (U,L) : s ∈ Li},
4. if s ≡ (s1 ? s2), where ? ∈ {∩,∪, \}, then T (s, L) = (T (s1, L) ? T (s2, L)),

and
5. if s ≡ s1 then T (s, L) = (T (U,L)\T (s1, L)).

Using the translation of set-expressions to regions, we can now see how to
translate set-theoretic sentences to regions too. For instance, P ⊆ Q is true
whenever Ψ(P ) ⊆ Ψ(Q). In terms of zones formed over P and Q, the sentence
P ⊆ Q is true whenever

Ψ({({P}, {Q}), ({P,Q}, ∅)}) ⊆ Ψ(({Q}, {P}), ({P,Q}, ∅)). (*)

Figure 4 illustrates P ⊆ Q and we see that the zone ({P}, {Q}) is missing.
Therefore (*) is true, and the zone ({P}, {Q}) is relevant in this case.

Definition 22. Given a set-theoretic sentence s and a set of labels L such
that L(s) ⊆ L, we define the relevant set of zones of s given L, denoted
RZ(s, L), in the following way:



1. If s is of the form s1 = s2 or s1 6= s2, RZ(s, L) = (T (s1, L)\T (s2, L)) ∪
(T (s2, L)\T (s1, L)),

2. If s is of the form s1 ⊆ s2 or s1 6⊆ s2, RZ(s, L) = T (s1, L)\T (s2, L)).

So, continuing with the example above, we have

RZ(P ⊆ Q, {P,Q}) = {({P}, {Q})}

and, whenever P ⊆ Q, we know that ({P}, {Q}) represents the empty set. So,
the relevant set of zones of a set-theoretic sentence, s, is ‘relevant’ to s in that the
zones help to determine when s is satisfied by an interpretation. The following
lemma makes this point more precise.

Lemma 2. Let s be a set-theoretic sentence and I = (4, Ψ) be an interpreta-
tion. Let L be a set of labels such that L(s) ⊆ L. Then

1. if s is positive then I is a model for s iff Ψ(RZ(s, L)) = ∅,
2. if s is negative then I is a model for s iff Ψ(RZ(s, L)) 6= ∅ for some zone

z ∈ RZ(s, L).

Our next goal is to identify conditions under which any set of set-theoretic
sentences, S, determines set-emptiness. To produce such conditions, it is impor-
tant to have an understanding of what the models for S ‘look like’. We can gain
such insight by considering the models for S+ and S− separately, informed by
Lemma 2, noting that the models for S must model both S− and S+.

The set of relevant zones, in the case of positive set-theoretic sentences, gives
us information about which zones must represent the empty set. In this sense,
the positive set-theoretic sentences in S partially characterise the models for S.
By Lemma 2, an interpretation, I = (4, Ψ), is in M(S+) (the set of models
for S+) iff, for each s in S+, Ψ(RZ(s, L(S)) = ∅. Therefore, I = (4, Ψ) is in
M(S+) provided ⋃

s∈S+

Ψ(RZ(s, L(S)) = ∅.

For ease of notation, we define the empty zones of S to be elements of

EZ(S) =
⋃

s∈S+

RZ(s, L(S))

and the Venn zones of S to be elements of

VZ(S) = {(Li, L(S)\Li) : Li ⊆ L(S)}.

The empty zones represent empty sets in all models for S. The remaining zones
in the Venn zone set may or may not represent empty sets. Now, we have some
information about non-emptiness, provided by S−, but it need not completely
determine whether any given zone is necessarily non-empty in a model. This is
where S− must be considered carefully.



From Lemma 2, we know that an interpretation, I = (4, Ψ), is in M(S−) iff,
for each s− in S−, Ψ(z) 6= ∅ for some z ∈ RZ(s−, L(S)). For S to determine set-
emptiness, therefore, we seek conditions on S− that are necessary and sufficient
to ensure that each zone in VZ(S)\EZ(S) represents a non-empty set.

In this context, we aim to identify sets of zones that partially characterise
some of the models for S−: given a set of zones, Z, under what conditions is the
set of interpretations that map the zones in Z to non-empty sets a set of models
for S−? As a first step, we introduce the idea of a choice function, which assigns
relevant zones to negative set-theoretic sentences. Importantly, assigned zones
cannot be empty zones.

Definition 23. Let S be a finite set of set-theoretic sentences. A choice func-
tion, c : S− → VZ(S)\EZ(S) for S, maps negative set-theoretic sentences in S
to zones such that for each s− ∈ S−, c(s−) ∈ RZ(s−, L(S)).

Clearly, given an arbitrary S there need not exist a choice function. This
occurs when there is a negative set-theoretic sentence in S such that all of its
relevant zones are in EZ(S). Under such circumstances, it is obvious that S
has no models and is, therefore, inconsistent. However, given an arbitrary choice
function, c, the zones in VZ(S)\EZ(S) to which c maps set-theoretic sentences
(i.e., the set of zones that is the image of c) partially characterises some of the
models for S−: all interpretations where these zones represent non-empty sets
are models for S−. Intuitively, any given model for S− is classified by some
choice function.

So far, we have characterised all of the models for S+ and the models for
S−. In a build-up to our set of necessary and sufficient conditions that identify
when S defines set-emptiness, we establish when S is satisfiable, using choice
functions. We start by building an interpretation using a choice function.

Definition 24. Let S be a finite set of set-theoretic sentences for which there
exists a choice function, c : S− → VZ(S)\EZ(S). We define the choice inter-
pretation for S given c to be the interpretation IcS = (4, Ψ) as follows:

1. the universal set, 4, is the image of c, that is:

4 = {z ∈ VZ(S)\EZ(S) : ∃s− ∈ S− c(s−) = z}, and

2. for each l ∈ L, we define

Ψ(l) =

{
{(Li, Lo) ∈ 4 : l ∈ Li} if l ∈ L(S)
∅ otherwise.

Lemma 3 establishes that the choice interpretation is a model for S:

Lemma 3. Let S be a finite set of set-theoretic sentences for which there exists
a choice function, c : S− → VZ(S)\EZ(S). The choice interpretation, IcS =
(4, Ψ), for S given c is a model for S.



Lemma 3 builds on our insight into what sets of models ‘look like’ for S. We
have seen that choice functions can be used to define models. Importantly, the
absence of a choice function implies the absence of models: S is unsatisfiable.

Choice functions with different images correspond to models that are not
L(S)-approximate. In particular, if there is a non-surjective choice function then
there are necessarily models for S that are not L(S)-approximate. This semantic
intuition is captured syntactically via choice functions in Theorem 2.

Theorem 2. Let S be a finite set of set-theoretic sentences. Then S determines
set-emptiness iff there exists a choice function for S and all choice functions for
S are surjective.

Thus, Theorem 2 is what is needed to meet our major goal for this section: the
provision of necessary and sufficient conditions for determining set-emptiness.
The models for such an S are characterised by the following theorem:

Theorem 3. Let S be a finite set of set-theoretic sentences that determines set-
emptiness. Let I = (4, Ψ) be an interpretation. Then I is a model for S iff

1. the empty zones of S all represent the empty set: Ψ(EZ(S)) = ∅, and
2. the remaining zones all represent non-empty sets: for all z ∈ VZ(S)\EZ(S),

Ψ(z) 6= ∅.

6 Observational Completeness

We now set out to identify an Euler diagram that is observationally complete
given a set-emptiness defining S. Focusing first on the requisite Euler diagram, d,
for S, we need d to have the same models as S. That is, d’s present zones (which
represent non-empty sets) should correspond to VZ(S)\EZ(S), since these are
precisely the zones that represent non-empty sets in all models for S. Likewise,
the zones not in d should correspond to those in EZ(S), since these represent
empty sets in all models for S. We have already seen an example of the Euler
diagram for a given set of set-theoretic sentences in Figure 3, given S3 on page 9.

Definition 25. Let S be a finite set of set-theoretic sentences that determines
set-emptiness. The Euler diagram for S, denoted dS , is

dS = (L(S),VZ(S)\EZ(S)).

Importantly, S and dS are semantically equivalent, which follows from Theo-
rems 1 and 3:

Theorem 4. Let S be a finite set of set-theoretic sentences that determines set-
emptiness. Then S and dS are semantically equivalent.

We must now consider what it means for a sentence to be observable from
an Euler diagram, generalising [16]. To do this, we need to translate regions
to set-expressions. Intuitively, regions translate to multiple set-expressions. For



instance, in Figure 4, the region comprising the single zone inside the curve P
corresponds to various set-expressions, including P and P ∩ Q, since this zone
represents both the set P and the set P ∩ Q; indeed, in this case P = P ∩ Q.
For our purposes here it is sufficient to have an intuitive understanding of what
set-expressions can arise from regions, along the lines of the example just given6.
Using this intuitive approach, we can now define observability:

Definition 26. Let d be an Euler diagram and let s ≡ s1 ? s2, where ? ∈
{⊆,*,=, 6=}, be a set-theoretic sentence. Then s ≡ s1 ? s2 is observable from d
provided there exist regions r1 and r2 of d such that

1. r1 ? r2,
2. s1 is a translation of r1, and
3. s2 is a translation of r2.

Finally, we have one of our key results:

Theorem 5. Let S be a finite set of set-theoretic sentences that determines set-

emptiness. Then {dS} is observationally complete with respect to SL(S)
� .

7 Discussion

Our results on Euler diagrams with existential import demonstrate that there
are severe limitations due to overspecificity, at least from the perspective of
observational advantages. This is potentially problematic since diagrams, by
their very nature, are believed to excel as representations of information due
to their ability to make facts explicit that would otherwise need to be inferred.

To recap, an Euler diagram, d, with existential import is only semantically
equivalent to a finite set, S, of set-theoretic sentences when S determines set-
emptiness. This is a serious limitation, arising because the models for d are
a single equivalence class under the L-approximate relation. The crux of the
problem is that such diagrams require complete certainty over whether zones
represent empty sets. By contrast, most sets of set-theoretic sentences do not
make this demand on their model sets and are, in this case, more expressive than
their diagrammatic counterpart.

This suggests that diagrams which allow uncertainty to be expressed, and
thus avoid overspecificity, are more likely to have observational advantages over
competing notations. Indeed, suppose that the existential import requirement is
removed and, instead, Peirce’s ⊗-sequences are used to express non-emptiness.
We conjecture that any finite set, S, of set-theoretic sentences (as in Defini-
tion 12) will be semantically equivalent to some diagram, d. Moreover, we expect

d to be observationally complete with respect to SL(S)
� . Such diagrams do not

suffer from overspecificity issues and have models that are unions of equivalence
classes under the L-approximate relation, just like sets of set-theoretic sentences.

6 It is straightforward, yet lengthy, to define a translation from regions to set-
expressions; due to space constraints, we refer the reader to [16].



Fig. 5. Exploiting ⊗-sequences to overcome overspecificity limitations.

To illustrate, consider again S1 = {P * Q,Q * P}. Whilst no Euler diagram
with existential import can express this information, we could use an Euler
diagram with ⊗-sequences instead to define non-emptiness (left of Figure 5).
From the diagram, we can observe, for instance, that P\Q 6= ∅ due to ⊗ inside
P but outside Q. The diagram on the right of Figure 5 illustrates how we can
depict S2 = {P * Q,Q * P, P ∩Q = ∅}. It will be interesting to extend the work
in this paper to determine whether this alternative system of Euler diagrams is
indeed observationally complete for any given S. Importantly, in this alternative
system, the zones containing no ⊗ symbol can represent either empty or non-
empty sets, thus removing the overspecificity arising from existential import.

8 Conclusion

The ideas of observation, observational advantages and observational complete-
ness enable us to formally compare different representations of information. It is
considered advantageous if a representation of information simply allows us to
observe other statements of interest to be true. Therefore, this suggests that de-
signing notations that allow many observations to be made, especially compared
to competing representations, is sensible. In the case of diagrams, free rides and
observational advantages are seen as a major feature that indicates how and
when they may be more efficacious than symbolic or textual notations.

We demonstrated that overspecificity makes diagrams less observationally ad-
vantageous. As in the case of Euler diagrams with existential import, overspeci-
ficity often means there is no corresponding diagram for a given representation
of information. This is clearly undesirable and leads us to posit that diagrams
should be carefully designed in order to ensure that they do not have overspecifity
issues and also support the observability of information. Indeed, our results in-
dicate an advantage of set-theoretic language: it can express information freely,
whether the information is strong enough to determine set-emptiness or not.
Euler diagrams with existential import are disadvantageous in that respect.

There is still much work to be done, however, to ascertain the extent to
which observational advantages are also cognitive advantages. We think it is im-
portant to understand the net cognitive value of observability. There is certainly
cognitive cost associated with observing statements, but to what extent is this
cost ‘lower’ than the alternative task of inferring information instead? The net
cognitive value of a statement observable from a diagram depends on the cost
of recognising a meaning-carrying relationship and also on the set of available
operations to translate this meaning-carrier into an alternative representation.



This research needs to be, in the future, connected to a psychological and com-
putational model of the perceptual operations available to people alongside the
formal investigations that we have begun. Preliminary work in [1] is exploring
this important cognitive aspect, and it will be interesting to see how it develops.
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