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Abstract

Background: dementia risk conferred by apolipoprotein-E (APOE) and angiotensin-1-converting enzyme (ACE) polymorphisms
have been reported for the MRC Cognitive Function and Ageing Study (CFAS) at 6-year follow-up. We concentrate on
incident dementia risk over 10 years.
Methods: participants come from MRC CFAS, a multi-centre longitudinal population-based study of ageing in England
and Wales. Three follow-up waves of data collection were used: 2, 6 and 10 years. Logistic regressions were undertaken to
investigate associations between APOE (n=955) and ACE (n=856) alleles/genotypes and incident dementia. Two types of
control groups were used: non-demented and highly functioning non-demented. Results were back-weighted.
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Results: compared to APOE ε3, ε2 conferred protection of odds ratio (OR)=0.3 (95% confidence interval, CI=0.1–0.6)
and ε4 risk of OR=2.9 (95% CI=1.7–4.9) for incident dementia. Compared to ε3/ε3, the ε3/ε4 and ε4/ε4 genotypes
conferred risks of OR=3.6 (95% CI=1.8–7.3) and OR=7.9 (95% CI=1.6–39.2), respectively. The ε3/ε2 genotype pro-
tected against dementia (OR=0.2, 95% CI=0.1–0.7), and ε2/ε2 had a similar protective effect but with wide CIs (OR=
0.3, 95% CI=0.1–1.7). Restricting the control group accentuated these differentials. The effects of ACE alleles/genotypes
on incident dementia risk were small.
Conclusions: APOE but not ACE is associated with late-onset incident dementia in the population. Using longer term
follow-up with proper adjustment for attrition and incident cases increases estimates of risk.

Keywords: apolipoprotein-E, angiotensin-1-converting enzyme, population, dementia, old

Introduction

Apolipoprotein-E (APOE) and angiotensin-1-converting enzyme
(ACE) polymorphisms have received a great deal of atten-
tion in relation to dementia risk (e.g. [1, 2]). APOE, found
on chromosome 19, is involved in lipid transport in the body
[3]. There are three alleles—ε2, ε3, ε4—with ε3 being the
most common [1]. APOE is associated with many neuro-
pathological features of Alzheimer’s disease (AD), the
most common form of dementia, including plaque and tan-
gle formation, β-amyloid deposition and cholinergic
dysfunction (e.g. [4]). Two meta-analyses have reported that
in population-based studies those with the ε4/ε4 genotype
as compared to those with the ε3/ε3 are 12–13 times more
likely to develop AD [1, 5]. Results are less consistent re-
garding individual alleles, with not all population-based
studies reporting that the ε4 allele confers a risk of AD/de-
mentia or the ε2 allele a protective effect [6–16].

ACE appears to be involved in blood pressure regulation
and electrolyte balance [17]. It is found on chromosome 17
and there are two allele types, D (a deletion) and I (an inser-
tion), relating to intron 16. Neuropathological studies have
been inconsistent as to whether ACE is associated with neu-
ropathological features of AD (e.g. [18, 19]). One recent
meta-analysis of clinical/necropsy (i.e. non-population-
based) samples reported that the D/D genotype conferred
a protective effect on AD (odds ratio, OR=0.8; 95%
confidence interval, CI=0.8–0.9), the I/D genotype a risk
(OR=1.1, 95% CI=1.0–1.2) while the I/I had had no effect
on AD—with referents being the combination of remaining
genotypes [2]. Another meta-analysis on clinical/necropsy
samples (i.e. not population-based) reported that the I allele
conferred a 1.1 risk (95% CI=1.0–1.2) for AD compared to
the D allele; however, this association was non-significant
when adjusting for Hardy–Weinberg equilibrium deviations
and non-Caucasian ancestry [1]. There have been few pop-
ulation-based studies of ACE and of these they have
generally reported no or small associations between the
ACE polymorphism and AD [19–21].

As stated above, there is a great deal of evidence for
APOE being associated with AD or dementia, and the evi-
dence concerning ACE is not so consistent. Whether the
effects and/or the sizes of such effects reported previously

are relevant in a population context is uncertain. This is be-
cause the majority of previous research has been conducted
on selected clinic/necropsy samples which do not represent
the population most at risk of dementia. Accordingly, the
current study aimed to assess incident late-onset dementia
risk as conferred by APOE and ACE polymorphisms in a
population-based sample with a long follow-up (10 years).

These analyses update previous analyses completed on
the Medical Research Council Cognitive Function and
Ageing Study (CFAS) sample in relation to APOE [22] and
ACE [23]. This paper extends these analyses in that it
includes another follow-up wave of data collection, increas-
ing the follow-up time from 6 to 10 years which increases
the number of incident dementia cases by around 60%. Re-
sults were weighted back to the original MRC CFAS
sample, to fully take account of drop-out, which has recent-
ly become a standard technique. Notably, these previous
papers on the MRC CFAS sample reported that the ε4
APOE allele conferred a small risk for all dementia [22]
whilst the ACE polymorphism did not confer any demen-
tia risk [23].

Methods

Sample

MRC CFAS has been fully described in Brayne et al. [24] and
will only be briefly described here. It is a large longitudinal
population-based multi-centre study on ageing and dementia
in England and Wales, with participants aged ≥65 at base-
line. Sampling was based on geographical areas using general
practitioner registration details. The initial response rate was
82%, and there has been a drop-out rate of 13–29% be-
tween follow-up waves due to death, moving away or
refusal [25, 26]. Four of the six study centres were used in
these analyses: East Cambridgeshire, Gwynedd, Newcastle
and Nottingham. The remaining two centres, Oxford and
Liverpool, collected and analysed blood samples at different
times and according to a different study protocol and are
thus not included here.

In relation to the four centres included, there were 10,264
participants aged ≥65years (stratified by equal numbers
aged 65–74 and >75) at baseline (‘prevalence screen’)

APOE and ACE polymorphisms and dementia risk in the older population over prolonged follow-up

105



beginning in 1991. The study employed a two-phase design,
with a more comprehensive assessment given to a subsam-
ple (n=2,034) at baseline (‘prevalence assessment’) stratified
by age and cognitive function (biased toward those older and
those with worse cognitive function). There have been mul-
tiple re-screens and re-assessments to detect incident
dementia, of which the current study employs those at 2
(wave 2), 6 (wave 3) and 10 (wave 5) years. For this analysis,
the 2-year follow-up included only those in the prevalence
assessment subsample (n=1,052), the 6-year follow-up in-
cluded those in the prevalence assessment subsample and
another subsample of those part of the incidence screen
(n=1,335), and the 10-year follow-up included all study par-
ticipants still alive (n=2,452). The MRC CFAS study design
is illustrated in Figure 1.

Blood or a buccal swab was collected at wave 3, 6 years
into the study, with 62% (n=1,070 or n=945 excluding
prevalent dementia at baseline) of participants who were in-

cluded in the wave 3 interview consenting. It is these
participants who consented to give genetic material that
are included in these analyses. They had a mean age of
73.8 (SD=6.5) at baseline; 60% women. Ethnic background
was asked in a subset of the sample, of which 99% reported
being of white British background.

Measures

A computer-automated version of the Geriatric Mental State
known as the Automated Geriatric Examination for Com-
puter Assisted Taxonomy (AGECAT) was used to assess
the presence of dementia at interview by trained interviewers
from professions allied to health. Those with an AGECAT
organicity rating of O3 and above (score range 0–5) were
classified as demented.

The Mini-Mental State Examination (MMSE) was used
to obtain further evidence of cognitive impairment (score

Figure 1. An illustration of the MRC CFAS study design and the number of participants seen at each screen/assessment relative to
the four centres used in the current study. The grey shading indicates assessments that were used to define cases of incident
dementia.
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range from 0 to 30). The MMSE was employed to create
two different control groups: ‘non-demented’ and ‘highly
functioning (HF) non-demented’. The non-demented group
included participants not classified as demented (i.e. an AGE-
CATorganicity rating of≤O2). The HF non-demented group
was not demented and also displayed no cognitive impair-
ment, as defined as an MMSE of ≥26. By excluding those
with an MMSE <26, cases with mild cognitive impairment
(MCI) or low baseline cognitive ability are mostly excluded.
MCI is a prodrome of dementia that has been shown to pre-
dict conversion to dementia [27] and appears to relate to
APOE status [28]. Thus, by excluding those with MCI, those
cases most likely to convert to dementia are dropped. How-
ever, those with naturally low baseline cognitive abilities are
also excluded when using this MMSE cut-off, which reduces
the representativeness of the sample to the population. Con-
trol groups similar to the HF non-demented group are
commonly employed in genetic studies, including those using
the MRC CFAS sample [22, 23]. However, the complete non-
demented group most closely resembles the general popula-
tion of individuals without dementia.

APOE and ACE genotyping was carried out in line with
Wenham et al. [29] and Evans et al. [30], respectively, blind to
clinical status. Ambiguous results were re-run up to three
times, after which they were recorded as ‘unknown’. APOE
genotype was determined in 955 participants and ACE in
856 participants (excluding those with prevalent dementia
at baseline).

Ethics statement

MRC CFAS has multi-centre research ethics committee’s ap-
proval and ethical approval from the relevant local research
ethics committees.

Analysis

Logistic regression analyses were undertaken to examine the
associations between APOE/ACE polymorphisms and inci-
dent dementia (with dementia as the outcome). Prevalent
dementia cases at baseline were excluded from analyses as
these participants who went on to consent to DNA collec-
tion 6 years later are atypical dementia cases in terms of
length of illness without death. Incident dementia was as-
sessed at 2, 6 and 10 years (corresponding to waves 2, 3
and 5, respectively). Analyses were adjusted for wave, age
group at interview (65–74, 75–84, 85–94 and 95+), educa-
tion (low education ≤9 and high education >9 years) and
social class. If education information was missing, it was
coded as ‘low education’. If social class information was
missing, it was coded as ‘social class missing’. ACE analyses
were also adjusted for APOE genotype. Analyses were run
relative to APOE and ACE genotype and allele status. The
ε3 allele and ε3/ε3 genotype were employed as the reference
groups in APOE analyses, and the D allele and I/D geno-
type were employed as the reference groups for ACE.
Allelic analyses were undertaken with the assumption that
the two alleles from each case were independent.

Each analysis was repeated with both control groups
(non-demented and HF non-demented controls); however,
analyses relating to the non-demented control group were
focused on. Adjusted as well as adjusted and weighted re-
sults are presented. Back weighting was employed to
provide a population estimate which takes into account
the MRC CFAS sampling procedure and those who dropped
out prior to the respective case finding interview. Those se-
lected for the more comprehensive prevalence assessment
were older and more likely to be cognitively impaired,
though all cognitive abilities were represented. Further,
those who dropped out were more likely to be cognitively
impaired and older than those that did not [25]. Thus, both
the sampling procedure and drop-outs influence the age of
the sample. Given genetic associations with dementia, par-

Table 2. ORs and 95% CIs for associations between APOE
allele/genotype and dementia

Comparison using
non-demented controls

Comparison using HF
non-demented controls

Adjusteda Adjusteda and
weightedb

Adjusteda Adjusteda and
weightedb

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Allele
ε2 0.6 0.3–0.9 0.3 0.1–0.6 0.6 0.3–1.1 0.2 0.1–0.5
ε3 1.0 1.0 1.0 1.0
ε4 2.2 1.6–3.0 2.9 1.7–4.9 2.4 1.6–3.5 3.2 1.8–5.6

Genotype
ε2/ε2 0.5 0.0–5.7 0.3 0.1–1.7 0.1 0.0–6.0 0.1 0.0–0.4
ε2/ε3 0.6 0.3–1.1 0.2 0.1–0.7 0.7 0.3–1.4 0.3 0.1–0.8
ε2/ε4 0.6 0.2–2.3 0.2 0.0–1.3 1.2 0.3–5.4 0.6 0.2–2.1
ε3/ε3 1.0 1.0 1.0 1.0
ε3/ε4 2.3 1.5–3.6 3.6 1.8–7.3 2.1 1.3–3.5 3.1 1.4–6.5
ε4/ε4 5.0 1.9–13.0 7.9 1.6–39.2 9.1 3.0–27.2 18.1 4.9–67.0

aFor age group, sex, education and social class.
bFor study design and drop-out.

Table 3. ORs and 95% CIs for associations between ACE
allele/genotype and dementia

Comparison using
non-demented controls

Comparison using HF
non-demented controls

Adjusteda Adjusteda and
weightedb

Adjusteda Adjusteda and
weightedb

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Allele
I 0.9 0.7–1.2 1.1 0.5–2.3 1.2 0.9–1.6 1.3 0.8–2.2
D 1.0 1.0 1.0 1.0

Genotype
I/I 0.9 0.6–1.4 0.5 0.3–1.0 0.9 0.6–1.4 0.5 0.3–1.0
I/D 1.0 1.0 1.0 1.0
D/D 1.2 0.8–1.8 0.8 0.5–1.4 1.2 0.8–1.8 0.8 0.5–1.4

aFor age group, sex, education, social class and APOE genotype.
bFor study design and drop-out.
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ticularly with APOE, are stronger in the young as compared
to the old [31]; not weighting back would most likely incor-
rectly estimate genetic associations.

Results

Table 1 displays the distribution of APOE and ACE geno-
types and allele frequencies for cases and controls (both
non-demented and HF non-demented) relative to 2-, 6-
and 10-year follow-ups.

Table 2 displays the ORs and CIs—adjusted (for age
group, sex, education and social class) as well as adjusted
and weighted—for APOE genotype and allele status. It
can be seen that the ε4 allele conferred a significant risk
of dementia (OR=2.9, 95% CI=1.7–4.9) and the ε2 allele
a significant protective effect (OR=0.3, 95% CI=0.1–0.6)
relative to the non-demented control group (ε3 referent).
Regarding APOE genotypes, the ε3/ε4 and ε4/ε4 genotypes
conferred significant risks for dementia (OR=3.6, 95% CI=
1.8–7.3 and OR=7.9, 95% CI=1.6–39.2, respectively) rel-
ative to the non-demented control group. The ε2/ε3 was
associated with a decreased OR=0.3 (95% CI=0.1–0.7),
with the ε2/ε2 genotype conferring a similar protective ef-
fect of OR=0.3 with a wide 95% CI (0.1–1.7), though only
one individual with ε2/ε2 had dementia. Allele and genotype
effects were generally more extreme for the HF non-de-
mented control group comparisons.

Table 3 displays the ORs and 95% CIs—adjusted (for
age group, sex, education and social class) as well as adjusted
and weighted—for ACE genotype and allele status. From
Table 3, it can be seen that the ACE I allele conferred a
small dementia risk and the I/I and D/D genotypes a small
degree of protection; however, all estimates are consistent
with no effect.

Discussion

Dementia risk in the population is associated with APOE
but not ACE. Effects were generally larger when employing
the high functioning non-demented as compared to the total
population of non-demented individuals. This is likely to be
due to the exclusion of those with MCI who are at high risk
of converting to dementia [27]. This finding suggests that
highly selected control groups which are typically employed
in genetic association studies are likely to lead to the overes-
timation of effect sizes, and their relevance to the population
must be interpreted with caution. However, although effects
were generally more extreme, 95% CIs from analyses em-
ploying either type of control group overlapped, which
suggests a consistency in the direction of effects.

As expected, effects were also larger when they were
weighted back to the original population sample, which ac-
counted for the sampling procedure and drop-outs in the
study, both of which influence the age of the sample. As
introduced previously, APOE genotype affects age at de-
mentia onset [31] and thus not weighting is likely to lead

to incorrect estimates. This finding has important implica-
tions for future population-based genetic studies.

The study is not without limitations. Longitudinal follow-
up studies have drop out between waves. However, the sta-
tistical method of back weighting accounted for any bias this
along with attrition (due to drop-out) within the centres in-
cluded may have introduced [25]. The AGECAT diagnostic
algorithm was used to classify participants as demented or
non-demented. Although it would have been preferential
to have participants individually assessed by a clinician, this
was not possible for such a large sample, and AGECAT
classifications are closely related to diagnoses made by psy-
chiatrists with the Diagnostic and Statistical Manual IIIR
[32, 33]. The study also assessed dementia in general rather
than specific clinical diagnoses of AD, which adds weight to
the relevance of findings to the population but does not
provide information regarding risk relative to specific sub-
types of dementia such as AD.

Results reinforce the importance ofAPOE alleles in terms
of dementia risk in the population, with previous population-
based studies being somewhat inconsistent [6–10, 12], per-
haps due to smaller sample sizes, the inclusion of prevalent
dementia and/or short follow-up times. RegardingAPOE ge-
notype, the ε3/ε4 and ε4/ε4 genotypes were consistently
associated with incident dementia risk—conferring four to
eight times the risk (relative to the non-demented control
group). This result is similar to two meta-analyses on popula-
tion studies that reported the ε4/ε4 genotype was associated
with 12–13 times greater AD risk [1, 5]. There was a protec-
tive effect of the ε2/ε2 genotype which is similar to a meta-
analysis by Farrer et al. [5] who reported the AD risk conferred
by ε2/ε2 to be OR=0.9 (95% CI=0.3–2.8).

It is possible that those with anAPOE ε2 allele died before
being eligible for entry into the study, given their increased
mortality at younger ages [34], and thus the protective effect
found could be an artefact of survival. However, the impact of
these effects is concerned with those who survive into the age
when dementia becomes most prevalent, in old age. APOE
results from this study are more extreme than those previous-
ly reported on the MRC CFAS sample [22] most likely due to
the longer follow-up time and use of back weighting.

Previous studies have reported that the ACE I allele
confers a risk for incident dementia [1] and that the I/I and
D/D genotypes protect against dementia relative to the I/D
genotype [2, 19]. Our results were consistent, with small
effects seen in these directions. This result is in line with
small effect sizes or null results from population-based studies
[19–21, 23], suggesting that the ACE effect is at best weak.

Results from the current study reiterate the importance of
APOE in relation to incident dementia risk in the population.
The current study was large and addressed many of the meth-
odological issues in previous population-based genetic
association studies: long follow-up time, exclusion of preva-
lent dementia at baseline and weighting back to the original
population. Differences between non-demented and HF
non-demented control group comparisons also highlighted
how control selection affects genetic association estimates.
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It should be noted that despite the large sample size and
long follow-up time it would still be desirable for these to be
increased in future studies. Only around 20% of cases of
incident dementia in the MRC CFAS sample displayed an
ε4 allele (as compared to around 12% of the non-demented
regardless of control group), so it remains neither necessary
nor sufficient, supporting suggestions that many other envi-
ronmental and biological (including genetic) factors are
involved in the clinical manifestation of dementia. From
these results, it does not appear that ACE substantially
raises the risk of incident dementia.

Key points

• APOE associated with incident dementia in the old.
• ACE does not substantially raise the risk of incident

dementia.
• Control selection affects genetic association estimates.
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