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The not‐at‐random fully conditional specification (NARFCS) procedure pro-

vides a flexible means for the imputation of multivariable missing data under

missing‐not‐at‐random conditions. Recent work has outlined difficulties with

eliciting the sensitivity parameters of the procedure from expert opinion due

to their conditional nature. Failure to adequately account for this conditioning

will generate imputations that are inconsistent with the assumptions of the

user.

In this paper, we clarify the importance of correct conditioning of NARFCS sen-

sitivity parameters and develop procedures to calibrate these sensitivity param-

eters by relating them to more easily elicited quantities, in particular, the

sensitivity parameters from simpler pattern mixture models. Additionally, we

consider how to include the missingness indicators as part of the imputation

models of NARFCS, recommending including all of them in each model as

default practice.

Algorithms are developed to perform the calibration procedure and demon-

strated on data from the Avon Longitudinal Study of Parents and Children, as

well as with simulation studies.

KEYWORDS

ALSPAC, FCS, MICE, MNAR, multiple imputations
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

reative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the

by John Wiley & Sons Ltd.

wileyonlinelibrary.com/journal/sim 1

https://core.ac.uk/display/162913019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0001-6761-6270
http://orcid.org/0000-0001-5561-485X
http://orcid.org/0000-0002-6718-7661
mailto:daniel.tompsett@mrc-bsu.cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/sim.7643
http://wileyonlinelibrary.com/journal/sim


2 TOMPSETT ET AL.
1 | INTRODUCTION

Missing data are a common problem in any clinical study. The subsequent loss of information can lead to a reduction in
power and biased estimates of clinical effects under many statistical analyses. Methods to deal with the problem of miss-
ing data include inverse probability weighting,1 Heckman‐type selection modelling,2 maximum likelihood estimation,3

and imputing the missing data points via principled statistical methods.
Much of the early work on missing data analysis can be traced back to Rubin,4,5 which presented a classification of

missing‐data mechanisms. Missing data are classed missing at random (MAR) if the probability of missingness depends
only on the observed data and not the unobserved data. If missingness does depend on the unobserved data, it is classed
as missing not at random (MNAR). When a single variable Y is incomplete, MAR assumes that the missing values of Y do
not differ systematically from the observed values of Y, given values of the other variables in the dataset. When multiple
variables are incomplete, MAR is a property of the data as a whole6: The probability of a particular pattern of missing
data depends only on the variables observed in that pattern. Imputation techniques under specific MNAR conditions
are becoming increasingly important in practice, as many clinical datasets lack sufficiently detailed covariate informa-
tion to render the MAR assumption plausible.

By their nature, the MAR and MNAR properties are untestable from the observed data; however, the assumption that
data are MAR is historically popular. This is in major part due to the relative simplicity of imputation techniques that
assume MAR, which can be performed by joint imputation (all variables at once) via a multivariate normal model7 or
by fully conditional specification (FCS).8 However, such methodology often gives biased results if the data are MNAR.
Missing‐not‐at‐random imputation methods, which impose specific departures from MAR, are chiefly handled using
joint modelling techniques under pattern mixture models (PMs) and are a well‐documented subject. 9 However, such
models come with significant additional complexity compared with those under MAR. As a result, the typical objective
of MNAR imputation is to perform a sensitivity analysis (SA) to departures from MAR. This involves contrasting the
results of a relevant analysis using MNAR imputed data with the same analysis using MAR imputed data, in order to
determine if the analysis under MNAR is associated with a substantial change in conclusions.

Missing not at random SA has previously been performed by comparing a series of competing, fully identified models
for the missing data.10 More principled SA11 is performed by defining a single MNAR model with one of more uniden-
tified parameters, known as sensitivity parameters, allowing the distribution on specific variables to vary between miss-
ing and observed data points. Standard SA is then conducted by performing analysis on the imputed data over plausible
ranges of these parameters. An alternative technique for SA is a tipping point analysis.12 Here, the sensitivity parameter
is incrementally increased in magnitude until a qualitative change in inference arising from the analysis occurs, known
as the tipping point. One then consults opinion on whether such a departure from MAR is plausible.

Typically, data are imputed under the multiple imputation (MI) technique, which involves imputing multiple ver-
sions of the data and then fitting the analysis model on each multiply imputed dataset. The results of each analysis, spe-
cifically the estimated effects and standard errors, are then “pooled” using Rubin rules,5 which permit analysis that
reflects the uncertainty caused by replacing missing values with imputations.

The subject of this paper is the not‐at‐random fully conditional specification (NARFCS) imputation procedure of
Leacy.13 The procedure is similar to the multiple imputation by chained equations (MICE), or FCS procedure of van
Buuren et al,8 and shares the same major advantage in that each variable can be modelled by its natural distribution.
However, the key difference is that the imputation models include the missingness indicators of the incomplete vari-
ables, which allows imputations to be meaningfully different from those one would obtain under FCS and MAR.

There exist methods to apply FCS under MNAR assumptions in van Buuren et al8 and Resseguier et al14 and the “MI
procedure” in the statistical software SAS.15 However, these do not include formally defined imputation models. This
made it difficult to understand precisely the nature of the sensitivity parameters that were being used. NARFCS consti-
tutes a formalisation of such methods, by defining MNAR imputation models for the chained equations approach. In
particular, NARFCS is well suited to imputation of MNAR data with nonmonotone missingness patterns.16

This paper has 3 broad aims. The first is to emphasise the exact nature of the sensitivity parameters of the NARFCS
procedure, quantities that are conditional on the variables of the data, and how this makes them difficult to elicit (which
is obtain plausible values using expert opinion) with current methods. Specifically, we show how misunderstanding the
conditional nature of the NARFCS sensitivity parameters can lead to surprising imputations with an example from van
Buuren et al.8 Secondly, we propose standard procedures as to how to include missingness indicators in the NARFCS
imputation models, for which there is currently no guidance. Thirdly, we show a method to choose NARFCS sensitivity
parameters by relating them to more elicitable sensitivity parameters from other PMs. This method is illustrated with an
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example using real data investigating the association between IQ scores in children and young adults and gender, and by
simulation.

We describe the main dataset used in the paper in Section 2 and then detail the FCS and NARFCS procedures in
Section 3, as well as methods to elicit a sensitivity parameter, and the associated problems in Section 4. We explore
the nature of the NARFCS sensitivity parameters in Section 5 and develop methods to choose NARFCS sensitivity
parameters in Section 6. A short discussion on the inclusion of missingness indicators, with recommendations, is given
in Section 7. The methods of the paper are demonstrated on real data in Section 8 and by simulation in Section 9. Finally,
the work of the paper is concluded and possible future work is considered in Section 10.
2 | DATASETS

The methodology of this paper will be demonstrated on a sample of participants from the Avon Longitudinal Study of
Parents and Children (ALSPAC).17 Detailed information about ALSPAC is available on the study website (http://
www.bristol.ac.uk/alspac), which includes a fully searchable dictionary of available data (http://www.bris.ac.uk/
alspac/researchers/data‐access/data‐dictionary). Pregnant women resident in the former Avon Health Authority in
south‐west England, having an estimated date of delivery between 1/4/91 and 31/12/92, were invited to take part,
resulting in a core enrolled sample of 14 541. Of the 13 988 singletons/twin offspring alive at 1 year, a small number
of participants withdrew consent (n = 24) leaving a starting sample of 13 954. Ethical approval for the study was obtained
from the ALSPAC Law and Ethics committee and local research ethics committees.

We are interested in 3 variables, gender (0 = Male, 1 = Female), and the IQ of the participants was measured at ages 8
and 15 years, denoted as IQ8 and IQ15, respectively. Data on gender are complete, but data on IQ contain significant miss-
ing information, with data for IQ8 missing on 6921 (49.6%) individuals and for IQ15 on 9239 (66.2%) individuals. Our
model of interest examines the association between gender and IQ at age 15:

IQ15 ¼ β0 þ β1Gender þ ϵ:

We are primarily interested in illustrating the methods of this paper; however, there is also an interest in exploring how
IQ scores can affect missingness patterns between males and females. We analyse the data twice. In the first analysis,
missing IQ data are imputed using FCS, assuming the data are MAR. However, we expect the missing data from both
IQ variables to systematically differ from the observed. We therefore perform a second analysis when the data are
imputed using NARFCS, demonstrating the methods in this paper. In each case, IQ at age 8 is used as an auxiliary var-
iable in the imputation models in order to better inform imputations for IQ at age 15. The objective is to compare the
results of both analyses to assess whether the effect of gender on IQ is vulnerable to departures from MAR as a demon-
stration of the need for imputation under MNAR conditions.
3 | THE FCS AND NARFCS PROCEDURES

3.1 | Fully conditional specification

The FCS procedure of van Buuren et al,8 sometimes referred to as MICE, is a popular imputation method. Suppose we
have p random variables Y=(Y1,…,Yp) containing data on n individuals, in which data on some individuals is missing,
corresponding binary missingness indicators M=(M1,…,Mp) (with Mj=1 if missing and 0 otherwise) and q completely
observed variables X=(X1,…,Xq). Denote −j as the set of all values, less the jth element. In FCS, imputations are obtained
1 variable at a time, based on a series of conditional imputation models:

PðYjjX ;Y− jÞ j ¼ 1; ⋯; p:

These univariate models can be defined to reflect the variable type of each Yj and are specified as generalised linear
models (GLM). We start by imputing in an arbitrary fashion, and then “cycle” through the imputation models. In each
cycle, the imputation models for each variable are fitted by regressing on the remaining variables of the model (with their
currently imputed values), and imputations are drawn from the resultant posterior predictive distribution of the variable.
These cycles are then repeated a number of times until imputations stabilise.
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We will impute the ALSPAC data under FCS using the following imputation models:

EðIQ8jIQ15;GenderÞ ¼ α10 þ α11IQ15 þ α12Gender;

EðIQ15jIQ8;GenderÞ ¼ α20 þ α21IQ8 þ α22Gender: (1)

Multiple versions of the data are imputed in this way as per MI, and analysis is performed using Rubin rules. For
more detail on FCS and MI, we refer to the tutorial in White et al. 18
3.2 | The NARFCS Procedure

The NARFCS procedure permits MNAR imputation based on the chained equations methodology, on which FCS is
based. The general procedure is as follows (further details can be found in Leacy 13).

1. Define a series of fully conditional distributions for each Yj, involving all remaining Yj, X, and all Mj (see Section 7):

PðYjjX ;Y−j;Mj;M−jÞ j ¼ 1; ⋯; p:

Represent each distribution as a GLM, regressing Yj on the remaining variables.
2. For each model, choose values for the sensitivity parameters. These are the coefficients of any terms involving Mj in

the GLM for Yj in the above models. These quantities are inestimable from the data, and thus values for them must
be set by the user. How to set such values is a key point of the paper with methods developed in Section 6.

3. Then, draw imputations for the data using the chained equations algorithm, where in each cycle, we set

PðYjjX ;Y−j;Mj ¼ 1;M−jÞ

as the univariate imputation models of the procedure. To fit these models in each cycle, fit the estimable portion of
the model (that is all terms not involving Mj) via regression. This fits the model

PðYjjX ;Y−j;Mj ¼ 0;M−jÞ:

Then, add to the fitted coefficients of this model the elicited values for the sensitivity parameters (see below) to
obtain the fitted imputation models. Then, draw imputations using this model as one would in typical FCS.

We note that imputing under NARFCS setting all sensitivity parameters to zero is not equivalent to imputing under
standard FCS due to the presence of the M−j terms in the models. The MNAR imputations created by NARFCS depart
from the standard MAR analysis in 2 ways. First, they incorporate terms for the missingness indicator of the variable
being imputed, the coefficients of which are sensitivity parameters that cannot be estimated from the data, as they quan-
tify systematic differences between individuals with missing and observed data on that variable. Second, they incorporate
the missingness indicators of other incomplete variables as auxiliary predictors. Including the M−j terms is discussed in
Section 7. Departures from the standard MAR analysis performed by FCS can still be performed by comparing the results
of a NARFCS analysis to those of a standard FCS analysis.

We will impute the ALSPAC data under NARFCS using the following linear regression imputation models—as above

EðIQ8jIQ15;Gender;MÞ ¼ β10 þ β11IQ15 þ β12Gender þ β13M15 þ δ8M8;

EðIQ15jIQ8;Gender;MÞ ¼ β20 þ β21IQ8 þ β22Gender þ β23M8 þ δ15M15; (2)

where M=(M8,M15) is the missingness indicators for IQ8 and IQ15, respectively. There are 2 sensitivity parameters for
these models, δ15 and δ8. To fit the imputation model for IQ8, for example, we fit all the estimable parameters of the
model (everything but theM8 term) and add δ8 to the fitted intercept. NARFCS can be implemented using modifications
to existing software packages for MICE. In this paper, we will perform NARFCS using an extension to the R package
“mice,”8 detailed in Moreno‐Betancur et al19 and currently available on GitHub under the URL “https://github.com/
moreno‐betancur/NARFCS.”
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4 | SENSITIVITY PARAMETERS AND ELICITATION

Principled SA requires choosing values, or ranges of values, to vary the sensitivity parameters of the MNAR imputation
models. The interpretation of a sensitivity parameter varies based on the imputation model, but is defined as a specified
difference in distribution between the missing and observed individuals on a variable. This is typically a difference in
mean for continuous variables, or the difference in odds ratio, of observing a positive response for binary variables.
Hence, the greater the magnitude of the sensitivity parameter, the more we suppose the missing data depart from MAR.

These chosen values must be plausible for the SA to be relevant. We therefore need to elicit them from expert opin-
ion. This may be achieved either by asking questions to experts or by deriving values based on relevant previous work.
Eliciting from an expert directly is notably challenging. An example of the question one might ask is

“Suppose I have two typical groups in the study, individuals in one group gave us information about themselves [on
the selected variable], and those in the other did not did not. Suppose the average for the group who did was x, what do
you think this value would have been for the group who did not give us this information?”

The key is that the variable, and the information about how the two groups compare are clinically familiar to experts.
Such questions usually ask an expert to compare 2 “typical” participants, as this has the effect of eliciting their views
independent of all other variables. Experts tend to be more knowledgeable about a variable at the population level rather
than on specific groups of people who are matched in certain aspects. Eliciting information on any rarely studied vari-
able or conditional on groups of individuals rarely considered in typical studies is rarely possible, as elicitation requires
experts to have intimate knowledge of the subject.

By definition, NARFCS sensitivity parameters are the specified differences between imputed and observed values of a
variable, conditional on all remaining variables of the data and their missingness indicators. We therefore refer to them
as conditional sensitivity parameters, or CSPs, to distinguish them from sensitivity parameters of almost all other PMs in
common use. Most sensitivity parameters are marginal on at least some of the remaining variables12 and hence referred
to as marginal sensitivity parameters (MSP).

Direct elicitation of a CSP is typically not feasible, as this conditional nature forces one to elicit information about
groups of people who are matched in ways that are not commonly analysed, if at all. This makes typical elicitation nearly
impossible for NARFCS.

For example, in our NARFCS models for ALSPAC, the CSP δ15 is the average difference in IQ at age 15 between a
responder and a nonresponder, given they are matched on gender, their IQ at age 8, and their missingness pattern for
gender and IQ at age 8. While experts may be comfortable conditioning on well‐studied baseline sociodemographic var-
iables such as age and gender, analysis of IQ on groups who happen to have the same IQ score at a previous time is not
well studied, nor is conditioning on groups of people with the same patterns of missingness.

Similarly, if a tipping point analysis was conducted with NARFCS as in Leacy,13 the tipping point for the CSP does
not have a clear clinical interpretation, so it is hard to assert if the tipping point value is even a plausible difference
between missing and observed in reality and cast doubt on an analysis under MAR.
5 | NATURE OF THE NARFCS SENSITIVITY PARAMETERS

Because of the difficulties in eliciting values for a CSP, there is a danger that the user is tempted to elicit values for an
MSP instead to put into NARFCS, or that an expert asked for their views will ignore, or misunderstand the conditional
nature of the groups they are being asked about. In this section, we show that this can generate imputations inconsistent
with the assumptions of the user, as imputed data with differences between the observed and imputed conditional on a
variable will display differences marginal on that variable that are a different value.

To explore these issues, we consider the following PM for 2 continuous incomplete variables Y=(Y1,Y2) with
missingness indicators M=(M1,M2). We assume this is the true model for the data.

Y jM∼N
μ10 þ μ11|{z}M1 þ μ12M2

μ20 þ μ21M1 þ μ22|{z}M2

0
@

1
A;

σ21 ρσ1σ2
ρσ1σ2 σ22

 !0
@

1
A: (3)

We note that the sensitivity parameters of the PM, μ11, and μ22 highlighted by under brackets are MSPs and are the
average difference in mean of Y1 and Y2, respectively, between an observed and missing individual, marginal on the
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other Yj (but conditional on its missingness indicator). We seek to obtain NARFCS imputation models that are an equiv-
alent model for the data as the PM. The CSPs of such a NARFCS model would then be the sensitivity parameters we
would need to use when imputing under NARFCS, in order to obtain marginal differences between missing and
observed individuals consistent with the MSPs. Clearly, the equivalent NARFCS models for the data are the PMs implied
full conditional distributions. These are given as

Y 1jY 2;M1;M2∼N μ1j2;Σ1j2
� �

;

Y 2jY 1;M1;M2∼N μ2j1;Σ2j1
� �

;

where

μ1j2 ¼ EðY 1jY 2;M1;M2Þ ¼ μ10 þ μ11M1 þ μ12M2 þ ρσ1

σ2
ðY 2− μ20− μ21M1− μ22M2Þ

¼ μ10−
ρσ1

σ2
μ20

� �
þ ρσ1

σ2
Y 2 þ μ11−

ρσ1
σ2

μ21|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0
@

1
AM1 þ μ12−

ρσ1

σ2
μ22

� �
M2 (4)

μ2j1 ¼ EðY 2jY 1;M1;M2Þ ¼ μ20 þ μ21M1 þ μ22M2 þ ρσ2

σ1
ðY 1− μ10− μ11M1− μ12M2Þ

¼ μ20−
ρσ2

σ1
μ10

� �
þ ρσ2

σ1
Y 1 þ μ21−

ρσ2
σ1

μ11

� �
M1 þ μ22−

ρσ2

σ1
μ12|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

0
@

1
AM2 (5)

and

σ21j2 ¼ ð1− ρ2Þσ21; and σ22j1 ¼ ð1− ρ2Þσ2
2:

We see that the CSP and MSP differ algebraically. For Y1, the CSP and MSP are given byμ11−
ρσ1

σ2
μ21 and μ11, respectively

(highlighted by under braces). The consequence is that data for Y1, imputed under this NARFCS model, will show mean

differences from the observed marginal on Y2
ρσ1

σ2
μ21 units higher than the posited CSP. In short, if we elicited values for

the CSP without correctly conditioning on Y2, that is, we interpreted the CSP as the MSP, we would usually get imputa-
tions that will not show the marginal differences we assumed. It is hence critical to account for the conditional nature of
the CSP.

To demonstrate our point, we refer to the following example in van Buuren et al.8 It demonstrated an early ver-
sion of MNAR FCS imputation on the Leiden 85+ Cohort Data. Systolic blood pressure (SBP) was imputed under a
normal linear NARFCS model including some baseline covariates (X), diastolic blood pressure (DBP), and
missingness indicator (MSBP) with sensitivity parameter δ as follows. This corresponds to a NARFCS procedure with
model.

EðSBPjX ;DBP;MSBPÞ ¼ XΨ1 þ ψ1DBP þ δMSBP:

Diastolic blood pressure was imputed under a regular FCS model and, as such, included only X and SBP:

EðDBPjX ; SBPÞ ¼ XΨ2 þ ψ2SBP:

It was noted that the mean difference in SBP, marginal on DBP, between imputed and observed was much larger
than the specified values of δ. This was discussed in van Buuren20 and attributed to the cyclic nature of the chained
equations algorithm compounding and hence inflating the effect of δ over multiple cycles. A remedy was suggested

to scale imputed data for SBP by a dampening factor of
ffiffiffiffiffiffiffiffiffiffiffi
1− r2

p
, where r2 was the proportion of variance explained

by the imputation model.
We are now in a position to show, however, that the cause of this apparent inflation is that δ is a CSP, which condi-

tions on DBP. Let us return to the NARFCS models of Equations 3, 4, and 5. To obtain NARFCS models that behave like
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those in this example, we set μ12=μ22=0, and the coefficient of M1 in the NARFCS model for Y2 to zero, that is,

μ21−
ρσ2

σ1
μ11 ¼ 0. This means the full conditional distributions then become

EðY 1jY 2;M1;M2Þ ¼ ðμ10−
ρσ1

σ2
μ20Þ þ

ρσ1
σ2

Y 2 þ ðμ11−
ρσ1

σ2
μ21ÞM1;

EðY 2jY 1;M1;M2Þ ¼ ðμ20−
ρσ2

σ1
μ10Þ þ

ρσ2
σ1

Y 1:

These correspond to the NARFCS models used in van Buuren et al,8 with Y1=SBP, Y2=DBP, terms involving X

absorbed into the intercept terms, and δ ¼ μ11−
ρσ1
σ2

μ21. As μ12=0, from Equation 3, we see that the MSP for Y1, μ11

is now the mean difference between observed and imputed marginal on Y2 and M2, which is the quantity 20 compared
with δ. Note that

μ21 ¼
ρσ2

σ1
μ11:

Substituting this value into the CSP for Y1(SBP) then gives

δ ¼ μ11−
ρσ1
σ2

μ21 ¼ μ11− ρ2μ11 ¼ ð1− ρ2Þμ11:

Hence, differences between observed and imputed data on SBP, conditional and marginal on DBP, naturally differ by a
factor of (1−ρ2). This explains the discrepancy described in van Buuren,20 which was in fact the natural difference
between δ, the CSP, and the marginal mean of SBP. This was interpreted as incorrect imputations. We can now see
the suggested dampening factor is an effect similar to the natural difference between this MSP and the CSP without
the square root.
6 | PERFORMING SA USING NARFCS

6.1 | Basic strategy

The specification of NARFCS sensitivity parameters must account for their conditional nature, but in doing so, they
become almost impossible to elicit from experts with conventional methods (Section 4). However, Section 5 demon-
strates that we could relate a CSP to the MSP of another model, which is easier to elicit. In this section, we detail strat-
egies to perform SA based on this idea.

In standard SA, plausible values or ranges for the sensitivity parameters are elicited from experts. When a range is elic-
ited, plausible values are taken over that range. For each value, the data are imputed via MI and analysed via Rubin rules.
The results of each analysis are then compared to assess if there is a substantial change in conclusions between them.

As elicitation of a plausible value or range of values of a CSP is particularly difficult, we propose the following basic
strategy.

1. Define the NARFCS imputation models for each variable, clearly defining the CSPs we need to determine.
2. Define a set of PMs, one for each incomplete variable, in which the sensitivity parameters are MSPs, marginal on at

least some of the variables of the model. These MSPs should have a clear clinical interpretation, and by extension be
elicitable from expert opinion. We will call these the MSP models.

3. Elicit plausible values or ranges for the MSPs.
4. For each variable, identify the relationship between the MSP and the CSP, and infer the value/range of the CSP cor-

responding to the elicited MSP value/range. This is the “calibrated” value/range of the CSP.
5. Perform standard SA using the inferred values/ranges of the CSPs.

Note we do not impute the data under the MSP models. The calibrated value of a CSP is such that if we fit the MSP
models to the NARFCS imputed data with this CSP, the imputations show differences from the observed consistent with
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the elicited MSP. This lets us relate the CSP to other quantities, which are easier to understand and elicit. Performing
step 4 is the main challenge. We describe 3 algorithms that can perform step 4 for any choice of NARFCS and MSP
models in steps 1 and 2. Algorithm 1 is designed for elicited ranges of MSP values, and algorithms 2 and 3 for elicited
single values of the MSP. R codes can be found in the supplementary material, which will perform all 3 of these
algorithms.

The “one‐at‐a‐time” assumption
We note that calibration of the CSPs is substantially simpler if we can make the assumption that the relationship

between the CSP and MSP of one variable is unaffected by the values of the CSPs for any other variable. That is to
say, we can calibrate the CSPs “one at a time.”We believe that this assumption is valid in the case of normally distributed
missing data with relatively simple choices of MSP models and NARFCS imputation models. In most other cases, such as
with binary data and imputation models taking the form of logistic regression models, we believe this assumption is not
valid, but there are no formal proofs. In practice, this assumption is easier to verify empirically rather than theoretically,
and we will explain how to perform this verification with algorithms 1 and 2 below.
6.2 | Calibration and SA for elicited ranges of MSPs

It is most common to elicit plausible ranges, rather than single points, for the MSP values. This is probably the easiest
way to perform NARFCS SA with calibrated CSPs, as we can perform steps 4 and 5 of the basic strategy using the follow-
ing algorithm.

Algorithm 1.

i. Perform steps 1 to 3 of the basic strategy, eliciting for the MSPs ranges of plausible values.

ii. Define a test range for the CSP of each variable, and take points in regular intervals over each range as test values. See

below as to how to do this.
iii. Create a series of test vectors representing every combination of the test values for the CSPs defined in step (ii).
iv. For every test vector, fix the random number seed, and impute the data using the NARFCS models in step 1, with CSPs

as given in the test vector. Then, fit the MSP models of step 2 via pooled regression to the imputed data, and estimate
the parameters corresponding to the MSPs. Use the same random number seed each time.

v. With the same multiply imputed dataset in (iv), estimate the “effect of interest” and “corresponding confidence inter-
vals and P values.” Do this by fitting to the imputed data your substantive model via Rubin rules or otherwise.

vi. Check, either graphically or otherwise, that the ranges of the estimated values for the MSPs you obtain include their
elicited ranges from step (i).

vii. If step (vi) is not satisfied for one or more variables, repeat steps (i) to (v) with wider test ranges of the relevant CSPs, or
center the ranges at a different value, until step (vi) of this algorithm is satisfied.

viii. To perform SA, simply graph (or tabulate) the estimated values for the effect of substantive interest against the esti-
mated MSP values you obtained, and mark the elicited ranges.

Comments on algorithm 1
The above algorithm allows one to assess the evolution of your effect of interest, and its P value for NARFCS

imputed data showing differences between imputed and observed individuals consistent with elicited ranges for
the MSPs.

However, the algorithm can be intensive computationally. For example, with 2 CSPs each taking 10 test values,
the algorithm must run MI 100 times. For this reason, we suggest at step (ii) to pick fairly wide ranges for the CSP.
This width will depend on the scale of the variable, but we recommend centring it on the elicited range of the MSP
and taking test values at fairly large intervals so you obtain no more than 10. Ideally, you would want at least a few
test vectors to fall within your elicited MSP ranges. If the widths between your test values are too wide for this, you
can rerun the algorithm using the results from the first run to obtain more test vectors that fall in the range you are
interested in.

Using graphical methods to analyse the results becomes difficult when are more than 2MSPs. However if the one‐at‐a‐
time assumption is valid, SA can simply plot the estimated MSPs against the effect of interest for each variable
independently, offering easier to read results. We can validate this assumption by tabulating the test points (CSPs) and
estimated MSPs of algorithm 1, and seeing if the difference between the CSPs and MSPs of one variable noticeably change
when the CSPs of other variables are changed.
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6.3 | Tipping point analysis

A tipping point analysis using NARFCS was conducted in Leacy.13 By regularly increasing the magnitude of your CSPs in
regular increments, each time imputing the data and noting a P value or confidence interval for Rubin pooled regression
on the effect of interest, one can identify values for the CSPs whereby a qualitative change in conclusions about that
effect occurs. These CSP values are the “tipping points” of the analysis. This can be performed automatically with algo-
rithm 1 above, through sensible choices for the test ranges of each CSP and simply observing the P values of the signif-
icance tests you obtain.

Performed this way we can express the tipping points as MSP values, which are easier to understand and as such allow
us to assert whether the tipping points represent plausible departures fromMAR. This can either be left up to the reader, or
an elicitation exercise can be undertaken to investigate the extent to which expert opinion finds the tipping points plausi-
ble. Note that these experts, and indeed the investigators obtaining their opinions, should not knowwhat the tipping points
are in advance; else, we could easily introduce bias in the way questions are formed and the opinions they give.
6.4 | Calibration for specific elicited MSP values

Algorithm 1 is fairly comprehensive for elicited ranges of MSPs; however, in some cases, it is of interest to perform SA at
specific values of a sensitivity parameter. This can occur when the sensitivity parameters are derived based on a calcu-
lation using data from previous works, as we will do in Section 8 of this paper. Other times, elicitation exercises obtain a
set of plausible values from experts, rather than a plausible range, such as in Wallace et al.21, Table S8 Even when a plau-
sible range for an MSP is elicited, interest may lie specifically at the lower and upper limits of the range.

For this, a means is needed to identify the calibrated CSP at particular values of an MSP, for which algorithm 1 is not
suited. Interpolation of the results of algorithm 1 between the 2 CSPs that have corresponding MSPs closest to the elicited
value is an option but may be imprecise if the distance between them is large, or if the relationship between the MSP and
CSP is nonlinear. In this section, we describe 2 algorithms designed for the calibration of elicited points of MSPs.

Algorithm 2. all CSPs at once

A p‐dimensional search, identifying the calibrated CSPs for all the elicited MSPs at once, can be performed by
repeated application of a similar algorithm to algorithm 1.
i. Perform steps 1 to 3 of the basic strategy.
ii. Perform steps (ii) to (iv) of algorithm 1.
iii. Choose a tolerance for each MSP, and identify the test vector (if one is identified) whose corresponding MSP estimates lie

within the specified tolerances. Take the test vector as the calibrated CSPs, and observe the estimated MSP, effect of
interest, and test of its significance as your SA.

iv. If no test vector is valid, repeat steps (ii) and (iii) with different test ranges for the CSP or test values taken in closer inter-
vals. Alternatively increase your tolerances for the estimated MSPs. See below as to how to repeat steps (ii) and (iii).

It is very unlikely that a single run of algorithm 2 will yield acceptably accurate calibrated CSPs. The lower your tol-
erances for step (iii) are, the more accurate your CSP calibration. However, this requires one to take smaller intervals
between test points in step (ii) to locate a valid test vector. Typically, the distances between test points need to be the
same values as your tolerances to identify a valid test vector, which with most accepted levels of tolerance will dramat-
ically increase computational time if done with 1 run of the algorithm.

We instead propose first running the algorithm with wide test ranges with large intervals between test points and tol-
erances. Using the results of this algorithm, identify the CSPs whose estimated MSPs come closest to the elicited values.
Then, rerun the algorithm with these as the limits of the test ranges for the CSPs and take smaller intervals between test
values. Continue this until you obtain a test vector within appropriate tolerances. We note that it may be possible to find
multiple CSPs that display imputed data with the correct values for the MSPs.

Algorithm 3. calibrating point CSPs one at a time

Since algorithm 2 amounts to repeated application of algorithm 1, computation time may be lengthy. However,
if after the first application it becomes clear that the one at a time assumption is valid (as explained below algo-
rithm 1), we can use the following more efficient algorithm to calibrate the CSPs for specific elicited values of the
MSPs one variable at a time.
i. Perform steps 1 to 3 of the basic strategy.
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ii. Decide on an initial range to vary the CSP of the chosen variable. This range should be wide and typically include the
elicited value of the corresponding MSP. Take points in regular intervals over these ranges. We refer to these as “test
values.”

iii. Fix the CSPs for the remaining variables at sensible values, such as the elicited value of the corresponding MSP.
iv. Fix a random number seed, then perform NARFCS under the models in step 1 with a test value of the CSP from

step (ii). Use this same random seed every time you return to this step.
v. Using the multiply imputed data resulting from step (iv), fit the relevant MSP model of step using Rubin rules, and

estimate the parameter that corresponds to the MSP.
vi. Repeat steps (iv) and (v) for every test value of the CSP over the interval in step (ii).
vii. Determine the 2 test values for which the estimated MSPs of step (v) are the closest to the elicited value (lesser and

greater than). Then, return to step (ii) with these test values as the lower and upper bounds of the initial range and
repeat.

viii. Repeat steps (ii) to (vii) until convergence of the 2 estimated MSPs in step (vii) to within a specified tolerance. Then,
take the test value whose estimated MSP is closest to the elicited value as the calibrated CSP.

Repeat this algorithm for each CSP in turn. Then, perform SA using these calibrated CSPs when you impute. We
again note that algorithms 1 to 3 can be performed using R code that we have included as supplementary material.
7 | INCLUSION OF MISSINGNESS INDICATORS IN NARFCS MODELS

Besides the elicitation of sensitivity parameter values, the other outstanding issue with NARFCS pertains to how one
should include the missingness indicators in the univariate NARFCS imputation models. Previous works (van Buuren
et al8 and Resseguier et al14) are examples of NARFCS where the imputation models for each variable include only its
own missingness indicator. There is currently little to no guidance as to which missingness indicators to include in each
of the models, or how this might affect the accuracy of imputations.

We recommend that the NARFCS imputation model for each incomplete variable Yj should include the missingness
indicator for the incomplete variableMj (the effect of which is the CSP), as well as the missingness indicator of any other
incomplete variable Mk whose effect in the imputation model can be estimated from the observed data.

This reasoning is to ensure that all (or as much as possible) of the correlation between variables is captured as part of
the imputation model. As we are imputing based on a series of conditional models, there is a realistic possibility that a
variable Yi will become correlated with some other Mj, once it has been conditioned on the corresponding Yj. In other
words, it is plausible that the true full conditional distribution of a variable will depend on the missingness indicators
of other variables. Our interest is not in determining the association between the missingness indicators and substantive
variables but in capturing any correlations between them. As such, their omission in the NARFCS models may lead to a
loss in information from which to inform imputations and possible bias. If the procedure models an unnecessary condi-
tional dependence relationship between the Y and M, it should not have a negative impact on imputations.

When no pair of variables have a monotone missing data pattern, all of the associations between missingness indi-
cators and substantive variables (that are not specified as sensitivity parameters) can be estimated from the observed
data. This is since there exist observed data points in every missingness pattern for the data. In this case, every NARFCS
imputation model should include every missingness indicator. When this is not the case, such as in longitudinal or single
drop out data, some of these associations can no longer be estimated, and we prefer to remove such associations from the
NARFCS models.

The NARFCS procedure in R19 will automatically remove variables (not specified as sensitivity parameters) from the
imputation models that cannot be estimated. Hence, when using the software, the user should include all the
missingness indicators by default and note any that the procedure removes. We are currently investigating how best
to include missingness indicators in the longitudinal data setting.
8 | EXAMPLE: ALSPAC DATASET

8.1 | Overview

We now conduct our analysis of the ALSPAC dataset that was introduced in Section 2. Recall that we will perform 2
analyses, the first using FCS and the second using NARFCS. The imputation models for these analyses can be found
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in Section 3 as Equations 1 and 2, respectively. For each, we will fit the analysis model using Rubin rules and model the
association between Gender on IQ15 to assess if this effect is vulnerable to departures from MAR.

We expect the data on these 3 variables to be MNAR, and hence that NARFCS imputation may be more appropriate.
We then need to choose values for the 2 sensitivity parameters of the model δ8 and δ15. Hence, we apply the methodology
of Section 6. We calibrate the CSPs of both IQ variables so that imputations are in line with MSPs, μ8 and μ15, interpreted
as the mean difference in IQ between observed and imputed, marginal on all other variables. These come from the 2 MSP
models

EðIQ8jM8Þ ¼ μ8;0 þ μ8M8;

EðIQ15jM15Þ ¼ μ15;0 þ μ15M15: (6)

We choose a value for μ15 as −7.3; that is, we expect missing IQ15 to be 7.3 points lower on average. This is a derived
calculation based on the work of Cornish et al.22, p. 942 The mean of IQ in the observed data (31%) of the data was 94.4,
and after imputation, the mean of the total IQ was 89.4. The latter was a weighted average of observed IQ, and imputed
IQ, accounting for 69% of the data, imputed using MAR‐based methods but accounting for the data being MNAR by
including linked educational attainment data as an auxiliary variable, which strongly predicted missingness in IQ. We
then calculated that the mean of the imputed data, assumed to be MNAR, was approximately 87.1. The difference
between observed and imputed is therefore 7.3. For simplicity, we also set the value of μ8 to −7.3.

We now calibrate the CSPs as detailed in Section 6 using algorithm 3, having predetermined that the one‐at‐a‐time
assumption is valid. We set an initial range for both δ8 and δ15 as [−20,0], taking points 1 unit apart. For step (iii), we
set the CSP for the other IQ variable to−10 and set the tolerance as 0.001. In this algorithm, NARFCS was performed with
10 cycles and 10multiply imputed datasets. This gave us calibrated CSP values δ8≈−0.556 and δ15≈−1.780. In fact, plotting
the MSP and CSP values shows that their relationship is linear, and approximately δ15≈μ15+5.520 and δ8≈μ8+6.744.
8.2 | Results

We now impute the data under both FCS and NARFCS procedures. In both procedures, we generate 10 multiply
imputed data sets, with 10 cycles, and fit 2 models to the data under Rubin rules. Firstly, we fit the analysis model as
shown in Section 2, for both the FCS and NARFCS imputed data, and observe the coefficient of gender. Secondly, we
fit the PMs of Equation 6 from which the MSPs were derived, to check if the NARFCS imputed data show the correct
marginal differences from the observed. This gave the following results.

Table 1 shows that gender has a weakly significant association with the 15 year IQ score of individuals, when imput-
ing under MAR. Though the effect size (−0.87) appears quite small, it is based on analysis of a large sample size of the
dataset. The inference is that females in the dataset have a lower IQ than males by an average of 0.87 points, though the
most likely explanation for this is bias due to missing data not being imputed under the correct assumption. We do not
expect missing data on IQ to be MAR, and this analysis is intended as a benchmark to assess departures form MAR when
imputing under NARFCS.
TABLE 1 Analysis of ALSPAC Dataset By Rubin's Rules Under FCS and NARFCS

Method Model Fitted Parameters est 95% CI

FCS Analysis Model Intercept 91.64 90.10 92.12

Gender (1=Female) ‐0.87 ‐1.73 ‐0.02

NARFCS Analysis Model Intercept 87.42 86.52 88.33

Gender (1=Female) ‐0.61 ‐1.21 ‐0.01

NARFCS PM for IQ8 Intercept 104.16 103.77 104.54

M8 ‐7.30 ‐9.19 ‐5.41

NARFCS PM for IQ15 Intercept 91.96 91.59 92.34

M15 ‐7.30 ‐8.55 ‐6.05



TABLE 2 Results of tipping point analysis

δ15

‐1.0 ‐2.0 ‐3.0 ‐4.0 ‐5.0

δ8 0.0 −0.652∗ −0.599 −0.546 −0.493 −0.440

‐0.5 −0.652∗ −0.599 −0.546 −0.493 −0.440

‐1.5 −0.652∗ −0.599 −0.546 −0.493 −0.440

‐2.5 −0.652∗ −0.599 −0.546 −0.493 −0.440

‐3.5 −0.652∗ −0.599 −0.546 −0.493 −0.440

∗An effect where p<.05.
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Analysis under the NARFCS imputed data shows that the magnitude of the association between IQ and gender has
been cut by close to a third. Furthermore, the intercept term, that is, the mean of male IQ, has also been reduced by 4
points. In both analysis, the 95% CI implies that the association between gender and IQ is weak, particularly for the anal-
ysis under NARFCS.

Another possible explanation for the observed association under the MAR analysis could be that males with lower IQ
scores are less likely to participate than females with low IQ scores. To test this, we could consider a future analysis that
imputes under NARFCS with different sensitivity parameters for each gender, in order to reflect that missing males and
females may depart from the MAR assumption differently.

The final 2 models indicate that the imputed data are consistent with the elicited values of the MSPs, inferring a suc-
cessful calibration of the CSPs. Note the same random seed was used both for the calibration procedure and imputation
for the substantive analysis. In practice, this is not necessary, and one would expect some random variation when the
random seeds differ.
8.3 | Tipping point analysis

We can combine our calibration procedure with a tipping point analysis using algorithm 1. Similar exercises, using other
imputation methods, can be seen in Moreno‐Betancur et al. 23,24

We will perform an analysis using NARFCS in the same way as in the results section for pairs of values of δ8 and
δ15. We will set values for δ8 at −0, −0.5, −1.5, −2.5, and −3.5 units and values for δ15 at −1, −2, −3, −4, and −5
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FIGURE 1 Contour plot of significance tests (P value) for the pooled effect of gender on IQ15. The red dot indicates the calibrated values of

the conditional sensitivity parameters used in section 8.2, and the red contour (.05) indicates the point where values for δ15 below the contour

will yield an analysis with p<.05 [Colour figure can be viewed at wileyonlinelibrary.com]
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units. For all 25 subsequent pairs, we report the association between gender and IQ15 as in section 8.2. We also pres-
ent a contour plot of the (pooled) P value, testing the statistical significance of this association for each pair. This
gave the following results.

Both Table 2 and Figure 1 suggest that the association between gender and IQ15 is very insensitive to changes in the
departure from MAR in IQ8, in both the magnitude, and its significance. This is expected as our analysis model does not
include IQ8. The association is however sensitive to changes in the departure fromMAR in IQ15. There is a notable reduc-
tion in the effect size of gender as δ15 is increased, with the effect size almost halved compared with the MAR analysis
when δ15=−5. If we base our tipping point on the 95% significance test, then conclusions are changed whenever δ15≤−2,
and hence, −2 is the tipping point. The effect size at this tipping point (−0.599) has been reduced by around 31% compared with
the same effect under the MAR analysis.

A tipping point of −2 corresponds to a value in terms of μ15 of approximately −7.52; hence, we conclude that the
association between gender and IQ score at age 15 is vulnerable to departures from MAR, in particular when missing
individuals have a (marginal) average IQ score approaching 7.5 points less than observed individuals. Given how close
this tipping point is to the derived value of μ15, we would suggest such a departure is plausible in reality and that the
analysis using MAR imputation may be misleading.
9 | SIMULATION STUDY

As a final exercise, we will perform a simulation study. We will assess the accuracy of the CSP calibration procedure of
Section 6 and look to demonstrate how not correctly conditioning the CSP may also lead to bias.

We simulate 1000 datasets with n = 1000 data points under the bivariate normal PM of Equation 3 in Section 5. The
missingness indicatorsM1 andM2 are independently generated from Bernoulli distributions with probabilities .3 and .25,
respectively, and we set

μ01 ¼ 10; μ11 ¼ − 2; μ12 ¼ 1; σ1 ¼ 2; μ02 ¼ 20; μ21 ¼ 1; μ22 ¼ − 3; σ2 ¼ 4; ρ ¼ 0:6:

We then set the relevant data points to missing based on the values of theMi. Recall that the equivalent NARFCS models,
given as the full conditional models of Equation 3, were derived in Equations 4 and 5. As such, the true MSP values of the

PM are μ11=−2 and μ22=−3, and the true CSP values are− 2−
ρσ1
σ2

¼ − 2− 0:3 ¼ − 2:3 and− 3−
ρσ2

σ1
¼ − 3− 1:2 ¼ − 4:2.

We perform 3 analyses on the simulated data, in each we will impute under a variation of the NARFCS models of
Equation 3 with m=10 imputed datasets.

• The true NARFCS models: We impute using exactly the NARFCS models of (3), including the true values of the CSPs.
This is the “perfect” situation in theory, although not practically possible. It presents the benchmark performance for
the remaining simulations.

• Input the MSPs μ11 and μ22 directly into NARFCS as though they were CSPs. This is one of the likely errors one may
commit in practice.

• We use the correct NARFCS models, set the MSPs at their true value, and calibrate CSPs using algorithm 3 of
Section 6. This is the strategy we recommend in practice.

To assess the accuracy of each procedure, we will measure the bias, empirical standard error, and 95% coverage of 2
target parameters, the overall means E(Y1) and E(Y2), which have true values:

EðY 1Þ ¼ 10− 2∗ 0:3þ 0:25 ¼ 9:65; EðY 2Þ ¼ 20þ 0:3− 3∗ 0:25 ¼ 19:55:

This is achieved by fitting linear models to the imputed data for Y1 and Y2 involving only an intercept. We additionally
include the maximum Monte Carlo error for each of these estimates. This gave the following results.

Table 3 shows that each analysis displays low Monte Carlo error, as we would expect with 1000 simulations. Also as
expected, the first simulation obtains unbiased estimates of the marginal means that are well within the empirical stan-
dard error as well as close to nominal coverage.



TABLE 3 Results of simulation study

Method Parameter True Value Bias Empirical SE Coverage, 95%

True E(Y1) 9.65 0.000 0.080 96.1

E(Y2) 19.55 0.000 0.151 95.0

Insert MSPs E(Y1) 9.65 0.090 0.078 79.3

E(Y2) 19.55 0.301 0.147 49.3

Calibrated CSPs E(Y1) 9.65 0.000 0.083 95.0

E(Y2) 19.55 0.002 0.153 95.1

Max MC error 0.005 0.003 1.581

Abbreviations: CSP, conditional sensitivity parameter; MC, Monte Carlo; MSP, marginal sensitivity parameter.
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Inputting the MSP values directly into NARFCS causes significant bias and drop in coverage for both target param-
eters. Noting that the performance is much worse for E(Y2), where the difference between the true CSP and MSP is
larger, suggests that the bias is worsened the more the CSP value is misspecified.

Estimation of the true CSP value via the calibration procedure has performed well against the benchmark. The esti-
mates show little evidence of bias, and coverage remains close to its nominal value. A minor increase in empirical stan-
dard error compared to the benchmark “true” simulation implies some loss in precision as expected, which could be
alleviated by increasing the number of cycles the NARFCS procedure uses during calibration.
10 | DISCUSSION

The overall goal of this paper is to allow NARFCS to be correctly implemented by the user with ease, in order to aid in
the wider adoption of NARFCS as a practical imputation method for multivariate missing data. Elicitation of the CSP
values represented a significant stumbling block to its wider use; however, the work of this paper addresses this issue
without too much additional complexity. In fact, the work of this paper permits the use of NARFCS to assess the depar-
ture from MAR based on sensitivity parameters with any conditional nature.

An immediate future aim is to adapt the R code found in the appendix, which performs the calibration algorithms,
into formal functions as part of an R package. This will make choosing CSP values for NARFCS as simple as defining the
MSP models with the desired MSPs, eliciting values for these MSPs, and determining the corresponding CSP values by
using the functions. There is also future interest in combining the work on NARFCS and this paper with the work in
Yuan15 possibly as part of the MI procedure to allow for better use of NARFCS with SAS.

Future work could determine the situations in which the one‐at‐a‐time assumption, required for algorithm 3 and
defined in Section 6, is appropriate theoretically, without the need to validate it empirically with algorithms 1 or 2. With
this assumption, we can approach calibrating p CSPs as a series of p‐independent problems. This means we can calibrate
large numbers of CSPs without any additional complexity. Furthermore, in algorithm 1, we need only to graph the
parameter of interest against each MSP individually.

Practical use of these methods in real life applications should also be a main area for future work. In particular, we
look to apply these methods to cases involving binary, and a mixture of binary and continuous data. One major area for
which NARFCS may be of use is longitudinal PMs. Such models were explored in Ratitch et al,16 in which imputations
for a variable at a particular time point were allowed to depend on imputations of the variable at previous time points.
Such models are partially conditional, and Ratitch et al16 suggested the need for methods to impute under such models,
for which NARFCS, paired with the calibration method, may be well suited.

As a final note, we can generalise the methods found in Section 6. So far, it has been used to establish a relationship
between an MSP and CSP or to plot a valid range of MSP values against a quantity of interest. Instead, one could estimate
the relationship between any summary statistic, such as a known marginal mean from another source, and a quantity of
interest as follows.

• Impute Ymis|Y obs using the NARFCS procedure over a range for the CSP.
• Estimate the parameter of interest β̂ðY totalÞ via Rubin rules on the imputed datasets.
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• Estimate some interpretable summary from the imputed datasets ŜðY totalÞ. Ensure the ensuing range is of practical
interest to the user.

• Plot β̂ vs Ŝ.

This represents a generalisation of algorithm 3, using an interpretable summary in place of the MSP, and is possibly a
powerful tool for sensitivity analyses.
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