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Unbiased estimation in seamless phase
II/III trials with unequal treatment effect
variances and hypothesis-driven
selection rules
David S. Robertson,a*† A. Toby Prevostb and Jack Bowdena,c

Seamless phase II/III clinical trials offer an efficient way to select an experimental treatment and perform con-
firmatory analysis within a single trial. However, combining the data from both stages in the final analysis can
induce bias into the estimates of treatment effects. Methods for bias adjustment developed thus far have made
restrictive assumptions about the design and selection rules followed. In order to address these shortcomings, we
apply recent methodological advances to derive the uniformly minimum variance conditionally unbiased esti-
mator for two-stage seamless phase II/III trials. Our framework allows for the precision of the treatment arm
estimates to take arbitrary values, can be utilised for all treatments that are taken forward to phase III and is
applicable when the decision to select or drop treatment arms is driven by a multiplicity-adjusted hypothesis
testing procedure. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

Keywords: adaptive seamless designs; phase II/III clinical trials; treatment selection; uniformly minimum
variance unbiased estimator

1. Introduction

Seamless phase II/III designs are key examples of adaptive clinical trials where data from a learning phase
and a confirmatory phase are combined to promote efficient drug development. Typically, such trials
will have two stages separated by an interim analysis. In stage 1, which resembles a traditional phase II
trial, multiple experimental treatments or drug doses are simultaneously compared against a control. The
most promising candidates are then selected for confirmatory analysis in stage 2, which corresponds to a
phase III trial.

Recent examples of seamless phase II/III trials in clinical practice include dose selection for chronic
obstructive pulmonary disorder [1], acute myocardial infarction [2] and treatment selection for colorectal
cancer [3]. Regulatory guidance dealing with such adaptive trial designs has been produced in Europe by
the European Medicines Agency [4] and in the USA by the Food and Drug Administration [5].

Unlike the classical approach where only phase III patients contribute to the confirmatory analysis, in
seamless phase II/III trials, the final analysis utilises data from both stages. Whilst combining the data is
efficient in terms of time and resources (and of course in a purely statistical sense too), it can inflate the
type I error of hypothesis tests and induce bias into the naïve estimates of treatment effect, because of
the dual influence of multiplicity and selection [6].

In this paper, we consider point estimation of the treatment effects. In particular, our focus is on con-
ditionally unbiased estimation using the method of Rao–Blackwellization. Briefly, this involves taking
the unbiased stage 2 data and conditioning on a complete, sufficient statistic. The resulting estimator is
the uniformly minimum variance conditionally unbiased estimator (UMVCUE).
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Our key starting point in deriving the UMVCUE for the treatment effect is the paper by Kimani
et al. [7]. Building on the seminal framework of Cohen and Sackorwitz [8], Kimani et al. derived the
UMVCUEs for the means of the selected and control treatments separately and then took the differ-
ence to give an unbiased estimator for the treatment difference. However, a number of limitations to this
approach currently exist.

Firstly, the methodology does not try to explicitly take into account differing treatment effect variances.
Hence, if treatment selection is based on standardised differences, the estimator will not necessarily
be unbiased when the treatment effect variances are unequal. Many other authors have also used the
convention of equal variances in order to derive their results [9–12]. This allows the information from
the treatment and control arms at phases II and III to be separated, and all estimates can be assumed to
be independent. However, there are many reasons why differences in the treatment effect variances may
occur, even if this was not planned at the outset. For example, there may be unequal drop out across
arms, or there simply may be true differences between the variance of patient outcomes for different
experimental treatments.

Secondly, the estimator is only for the treatment with the largest treatment difference. However, we may
be interested in estimating the treatment difference for several treatments, for example, when the decision
to select/drop treatments is driven by a formal hypothesis testing procedure. We note that formulae that
are applicable to this setting have been derived by Bowden and Glimm [10], but for different ranking and
selection rules to those considered in this paper. In practice, and as for any confirmatory trial, hypothesis
testing (with rigid type I error control) will be the primary focus of a seamless phase II/III trial, with
estimation being an important but secondary target. For a comprehensive overview of the methodology
for hypothesis testing in seamless phase II/III trials, we refer the reader to the reviews of Bretz et al. [13]
and Stallard and Todd [14].

In this paper, we aim to address these limitations, by transferring recent methodological advance-
ments in UMVCUEs for multivariate normal outcomes proposed by Robertson et al. [15] to the seamless
phase II/III setting. We derive formulae that are applicable in full generality for the jth-ranked treatment
where the precision of treatment arm estimates can take arbitrary values.

The rest of the paper is organised as follows. In Section 2, we describe the set-up and notation, derive
the UMVCUE for the maximum treatment difference and compare it analytically with the Kimani et al.
estimator. We carry out a simulation study in Section 3 to compare the bias and mean square error of
the Kimani et al. estimator and our UMVCUE in a variety of trial settings. Section 4 describes how
our UMVCUE can be used in the context of a seamless phase II/III trial where a multiplicity adjusted
hypothesis procedure drives the design and is illustrated with a simple practical example. We discuss all
of our results in Section 5 and consider future avenues of research.

2. Framework for the uniformly minimum variance conditionally
unbiased estimator

We use the adaptive seamless design (ASD) setting of Kimani et al. [7] as our starting point. Consider an
ASD with two stages, where stage 1 is used to select the most promising treatment and stage 2 is used
for confirmatory analysis. Let K (⩾ 2) denote the number of experimental treatments tested in stage 1
for comparison with the control. The treatment that shows the highest standardised treatment difference
(as defined in the succeeding text) in stage 1 is then selected to continue to stage 2, along with the control.

We now allow for the treatment arm estimates to have unequal variances. Let n1i denote the number
of subjects allocated to treatment i (i = 0, 1,… ,K) in stage 1, where i = 0 corresponds to the control
treatment. We assume that the stage 1 sample mean for treatment i, denoted Xi, is normally distributed
with unknown mean 𝜇i and known variance 𝜎2

1i. As an example, if we also assume that there is a known
common variance 𝜎2 across the treatment groups, then 𝜎2

1i = 𝜎2∕n1i.
At the end of stage 1, we rank the treatments according to their standardised treatment difference. More

explicitly, we rank treatment i above treatment j if

Xi − X0√
Var(Xi − X0)

>
Xj − X0√

Var(Xj − X0)
=⇒

Xi − X0√
𝜎2

1i + 𝜎2
10

>
Xj − X0√
𝜎2

1j + 𝜎2
10

. (1)

In contrast, in the Kimani et al. setting, we rank the treatments by the stage 1 sample means, and so
treatment i is ranked above treatment j if Xi > Xj. Note that if we have a common stage 1 variance, that is,
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𝜎1i = 𝜎1 for i = 1,… ,K, then the two ranking rules are the same, because when ranking by standardised
treatment difference, the denominator and control data X0 can be ignored.

We let the treatment with the highest ranking be denoted S (S ∈ {1,… ,K}), where S is a random
variable. We also allow early stopping of the trial for futility: the trial continues to stage 2 if XS−X0√

𝜎2
1S+𝜎

2
10

> b,

where b is a (pre-specified and constant) futility boundary.
For notational convenience, let Θi = Xi − X0 denote the stage 1 sample mean treatment difference for

treatment i (i = 1,… ,K) and define 𝜆i = 1∕
√

𝜎2
1i + 𝜎2

10 (i = 1,… ,K). Then treatment i is ranked above
treatment j if 𝜆iΘi > 𝜆jΘj. As well, the futility boundary implies that 𝜆SΘS > b in order for the trial to
continue to stage 2.

If the trial continues to stage 2, then let n2i denote the number of subjects allocated to treatment i
(i = 0, S). We assume that the stage 2 sample means, denoted Yi, follow a N(𝜇i, 𝜎

2
2i) distribution. As

before, if we also assume a known common variance 𝜎2, then 𝜎2
2i = 𝜎2∕n2i. We can define the selection

time for treatment i (i = 0, S) as ti = 𝜎2
2i∕(𝜎

2
1i + 𝜎2

2i). Hence, the sample mean from the two stages for the
control is Z0,MLE = t0X0 + (1 − t0)Y0 and similarly ZS,MLE = tSXS + (1 − tS)YS for the selected treatment.

After the trial is completed, the aim is to estimate the treatment difference 𝜃S = 𝜇S − 𝜇0. As Kimani
et al. note, the maximum likelihood estimator (MLE) for 𝜃S is DS,MLE = ZS,MLE − Z0,MLE. This estimator
will likely be biased, because it does not take into account the selection rules. An unbiased estimator can
easily be found by just using the stage 2 data, because YS and Y0 are unbiased estimators for 𝜇S and 𝜇0,
respectively. Hence, the sample difference Y = YS − Y0 is an unbiased estimator for 𝜃S. However, this
estimator will be inefficient because it does not use the stage 1 data.

2.1. Calculating the uniformly minimum variance conditionally unbiased estimator

Using the theory from the general multivariate normal setting [15], we derive the UMVCUE for this
framework. The stage 1 sample mean treatment differences Θi = Xi − X0 are normally distributed: Θi ∼
N

(
𝜇i − 𝜇0, 𝜎

2
1i + 𝜎2

10

)
. Because 𝚯 = (Θ1,… ,ΘK) is a linear transformation of X = (X0,X1,… ,XK), then

𝚯 follows a multivariate normal distribution with mean 𝜽 = (𝜃1,… , 𝜃K) and covariance matrix Σ, where
𝜃i = 𝜇i − 𝜇0 and Σij = Cov(Θi,Θj). Hence,

Σii = 𝜎2
1i + 𝜎2

10 i ∈ {1,… ,K}
Σij = 𝜎2

10 i, j ∈ {1,… ,K} , i ≠ j.

The stage 2 sample mean treatment difference Y =YS−Y0 is also normally distributed with Y ∼N(𝜇S−
𝜇0, 𝜎

2
20 + 𝜎2

2S). Let Q be the event {𝚯 ∶ 𝜆1Θ1 > 𝜆2Θ2 > · · · > 𝜆KΘK , 𝜆1Θ1 > b}, which implies that
the trial continues to stage 2 and that treatment i has rank i, with S = 1. Without loss of generality, we
condition on Q for the remainder of this section. For notational convenience, let 𝜈2 = 𝜎2

10 + 𝜎2
11 and

𝜏2 = 𝜎2
20 + 𝜎2

21. Then the statistics Z = (Z1,… ,ZK) are sufficient and complete for 𝜽, where

Z1 = Θ1 +
𝜈2

𝜏2
Y

Zi = Θi +
𝜎2

10

𝜏2
Y i = 2,… ,K.

(2)

Using the notation defined previously, we have the following form for the UMVCUE, with a proof
provided in Appendix A.1.

Theorem 2.1
The UMVCUE for 𝜃1 = 𝜇1 − 𝜇0 given Q is

Û =
𝜏2Z1

𝜈2 + 𝜏2
− 𝜏2√

𝜈2 + 𝜏2

𝜙(W1) − 𝜙(W2)
Φ(W1) − Φ(W2)

, (3)

where
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Wi =
ki

√
𝜈2 + 𝜏2

𝜏2
−

Z1√
𝜈2 + 𝜏2

for i = 1, 2 ;

k1 = min(A1,A2,A3), k2 = max(A4,A5),

A1 = 𝜏2

𝜈2

(
Z1 −

b
𝜆1

)
,

A2 =

{
𝜏2

(
𝜆1Z1 − 𝜆2Z2

)
𝜎2

10

(
𝜆1 − 𝜆2

)
+ 𝜆1𝜎

2
11

∶ 𝜆1𝜎
2
11 >

(
𝜆2 − 𝜆1

)
𝜎2

10

}
,

A3 =

{
𝜏2

(
𝜆iZi − 𝜆i+1Zi+1

)
𝜎2

10

(
𝜆i − 𝜆i+1

) ∶ 𝜎2
1,i+1 > 𝜎2

1i ; i = 2,… ,K − 1

}
,

A4 =

{
𝜏2

(
𝜆1Z1 − 𝜆2Z2

)
𝜎2

10

(
𝜆1 − 𝜆2

)
+ 𝜆1𝜎

2
11

∶ 𝜆1𝜎
2
11 <

(
𝜆2 − 𝜆1

)
𝜎2

10

}
,

A5 =

{
𝜏2

(
𝜆iZi − 𝜆i+1Zi+1

)
𝜎2

10

(
𝜆i − 𝜆i+1

) ∶ 𝜎2
1,i+1 < 𝜎2

1i ; i = 2,… ,K − 1

}
,

and we define min({∅}) = +∞ and max({∅}) = −∞.

Note that the first term in expression (3), namely, 𝜏2Z1

𝜈2+𝜏2
, is equal to the MLE DS,MLE.

2.2. Comparison with the estimator of Kimani et al.

Suppose we set 𝜎2
1i = 𝜎2

1 (for i = 0, 1,… ,K) and 𝜎2
2i = 𝜎2

2 (for i = 0, 1). We then recover the setting
of Kimani et al. [7], so we can compare our results. In this case, ranking by standardised treatment
difference reduces down to ranking by the stage 1 sample mean, in the sense that they always select the
same treatment. Kimani et al. derived the following unbiased estimator for 𝜃1 = 𝜇1 − 𝜇0:

D1,CHN = Z1,CHN − Z0,CHN

=
⎡⎢⎢⎢⎣
𝜎2

2X1 + 𝜎2
1Y1

𝜎2
1 + 𝜎2

2

−
𝜎2

2√
𝜎2

1 + 𝜎2
2

𝜙(WB)
Φ(WB)

⎤⎥⎥⎥⎦ −
⎡⎢⎢⎢⎣
𝜎2

2X0 + 𝜎2
1Y0

𝜎2
1 + 𝜎2

2

+
𝜎2

2√
𝜎2

1 + 𝜎2
2

𝜙
(
WB1

)
Φ

(
WB1

)⎤⎥⎥⎥⎦
=

𝜎2
2(X1 − X0) + 𝜎2

1(Y1 − Y0)
𝜎2

1 + 𝜎2
2

−
𝜎2

2√
𝜎2

1 + 𝜎2
2

[
𝜙(WB)
Φ(WB)

+
𝜙

(
WB1

)
Φ

(
WB1

)]
,

(4)

where

WB =

√
𝜎2

1 + 𝜎2
2

𝜎2
1

(
𝜎2

2X1 + 𝜎2
1Y1

𝜎2
1 + 𝜎2

2

− max{X0 + b𝜎1

√
2,X2}

)

WB1
=

√
𝜎2

1 + 𝜎2
2

𝜎2
1

(
X1 − b𝜎1

√
2 −

𝜎2
2X0 + 𝜎2

1Y0

𝜎2
1 + 𝜎2

2

)
.

As for the UMVCUE derived in Section 2, firstly note that 𝜎1,j+1 = 𝜎1j = 𝜎1 for j = 2,… ,K − 1.
Hence, the sets A3 and A5 are empty in Equation (3). In addition, 𝜎2

11 = 𝜎2
12 =⇒ 𝜆1 = 𝜆2, and hence, A4

is also empty. Note also that 𝜏2 = 2𝜎2
2 and 𝜈2 = 2𝜎2

1 .
The sufficient statistics in this case are

Z1 = Θ1 +
𝜎2

1

𝜎2
2

Y

Zi = Θi +
𝜎2

1

2𝜎2
2

Y i = 2,… ,K.
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Hence, the UMVCUE equals

Û =
𝜎2

2Z1

𝜎2
1 + 𝜎2

2

−
𝜎2

2

√
2√

𝜎2
1 + 𝜎2

2

𝜙(W)
Φ(W)

=
𝜎2

2(X1 − X0) + 𝜎2
1(Y1 − Y0)

𝜎2
1 + 𝜎2

2

−
𝜎2

2

√
2√

𝜎2
1 + 𝜎2

2

𝜙(W)
Φ(W)

,

(5)

where

W =
k
√

𝜎2
1 + 𝜎2

2

𝜎2
2

√
2

−
Z1√

2
(
𝜎2

1 + 𝜎2
2

) ,
k = min(A1,A2),

A1 =
𝜎2

2

𝜎2
1

(
Z1 − b𝜎1

√
2
)
, A2 =

2𝜎2
2

𝜎2
1

(Z1 − Z2).

Now, we can rewrite W as

W =

√
𝜎2

1 + 𝜎2
2

𝜎2
2

√
2

min

(
2𝜎2

2

𝜎2
1

(
Z1 − Z2

)
,
𝜎2

2

𝜎2
1

(
Z1 − b𝜎1

√
2
))

−
Z1√

2
(
𝜎2

1 + 𝜎2
2

)
=

√
𝜎2

1 + 𝜎2
2

𝜎2
1

√
2

[
𝜎2

2Z1

𝜎2
1 + 𝜎2

2

− max
(

2Z2 − Z1, b𝜎1

√
2
)]

=

√
𝜎2

1 + 𝜎2
2

𝜎2
1

√
2

[
𝜎2

2

(
X1 − X0

)
+ 𝜎2

1

(
Y1 − Y0

)
𝜎2

1 + 𝜎2
2

− max
{

2
(
X2 − X1

)
−

(
X1 − X0

)
, b𝜎1

√
2
}]

.

Even for the special case when the two methods always select the same treatment, the estimators are not
equal, because the estimators condition on different selection rules and data. We return to this issue in
Section 3.1.1.

3. Simulation study

We now perform a simulation study to explore the bias and mean squared error (MSE) of the estimators
described in Section 2. Because the performance of the Kimani et al. (D1,CHN), naïve (D1,MLE) and stage 2
(D1,2) estimators have already been extensively studied in [7], we focus on comparing the properties of
our UMVCUE with these existing estimators.

3.1. Equal variances

Initially we use the setting of Kimani et al. [7], with a common variance 𝜎2, n1i = n1 (i = 0, 1,… ,K) and
n2i = n2 (i = 0, 1). Hence, the stages 1 and 2 variances are all equal, and we can write 𝜎2

1i = 𝜎2
1 = 𝜎2∕n1

and 𝜎2
2i = 𝜎2

2 = 𝜎2∕n2. Also the selection times ti all equal t = n1

n1+n2
.

In our simulations, we set the common variance 𝜎 = 1 and vary the selection time point t in the interval
(0, 1). Because the stages 1 and 2 sample sizes per arm are equal, we can present the bias and the

√
MSE

of the estimators in units of the standard error (SE)
√

2∕(n1 + n2). This is the standard deviation for
the difference of a single experimental treatment–control comparison and makes the results invariant to
sample size [7].

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 3907–3922
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Figure 1 shows the
√

MSE when the number of experimental treatments K = 2 and 𝜇0 = 0, 𝜇1 =
𝜇2 = 0.05. We assume there is no early stopping for futility, which corresponds to the futility boundary
b = −∞. Note that we do not give a plot of the bias because (as expected) the bias of our UMVCUE (as
well as the Kimani estimator) is not noticeably different from zero in the simulations. The MSE of the
Kimani estimator and UMVCUE are approximately equal, but for all values of t, the UMVCUE has a
higher MSE. This difference is an increasing function of t.

Table I shows the bias and
√

MSE (in units of SE) for a range of representative parameter values, with
the selection time t = 0.5. As expected, the UMVCUE is unbiased in its mean in all cases. The UMVCUE
still has a slightly higher

√
MSE – although it is within 10% of the

√
MSE for the Kimani estimator. This

difference is a decreasing function of the futility boundary b (or equivalently, an increasing function of
the probability of early stopping for futility).

Figure 1.
√

MSE for various estimators, in units of standard error (SE). We set 𝜇0 = 0, 𝜇1 = 𝜇2 = 0.05 and
b = −∞. There were 20 000 simulated trials for each value of the selection time t. MSE, mean squared error;

UMVCUE, uniformly minimum variance conditionally unbiased estimator.

Table I. Simulation results for t = 0.5. There were 100 000 simulations for each
set of parameter values.

Bias
(√

MSE
)

in units of SE

Parameter values Naïve Stage 2 Kimani UMVCUE

𝜇0 = 0, 𝜇1 = 𝜇2 = 0.05 0.286 0.002 0.003 0.003
b = −∞ (1.002) (1.412) (1.085) (1.119)

𝜇0 = 0, 𝜇1 = 𝜇2 = 0.05 0.511 −0.008 −0.003 −0.004
b = 0 (1.002) (1.407) (1.188) (1.198)

𝜇0 = 0.1, 𝜇1 = 𝜇2 = 0.3 0.276 −0.005 −0.007 −0.006
b = −∞ (0.997) (1.419) (1.083) (1.119)

𝜇0 = 0.1, 𝜇1 = 𝜇2 = 0.3 0.330 0.004 0.004 0.005
b = 0.1 (0.986) (1.413) (1.111) (1.140)

𝜇0 = 0.05, 𝜇1 = 0.15, 𝜇2 = 0.1 0.439 −0.004 −0.003 −0.004
b = 0 (0.985) (1.414) (1.166) (1.181)

𝜇0 = 0, 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 = 0.05 0.650 0.005 0.005 0.003
b = 0.05 (1.087) (1.412) (1.186) (1.222)

MSE, mean squared error; UMVCUE, uniformly minimum variance conditionally unbi-
ased estimator.
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3.1.1. How can the UMVCUE be worse in terms of MSE?. The result that the UMVCUE has a higher
MSE than the Kimani estimator seems somewhat counter-intuitive and indeed seemingly in contra-
diction of the very definition of the UMVCUE we have derived. However, the explanation is that the
two estimators are using different amounts of data. The Kimani estimator is a function of the individ-
ual treatment mean outcome statistics X0,X1,… ,XK ,Y0,Y1, whereas our UMVCUE is a function of
X1 −X0,… ,XK −X0,Y1 −Y0. That is, we are not explicitly using the control data X0,Y0 in the UMVCUE
– all we need are the treatment differences in both stages. In the special case of equal variances, for which
the experimental and control group data can be separated, this loss of information results in a slightly
greater MSE for the UMVCUE. We return to this issue in the discussion.

3.2. Unequal variances

We have seen that the Kimani estimator performs well when the stages 1 and 2 variances are equal.
We now explore what happens when this assumption no longer holds – that is, when the 𝜎1i and 𝜎2i are
distinct. In this setting, ranking by standardised treatment difference no longer reduces down to ranking
by the stage 1 sample mean. This means that the selection based on standardised observed differences
will not necessarily select the treatment with the highest stage 1 sample mean. The Kimani estimator will
overcorrect for bias in this setting, because it assumes that we are always selecting the treatment with the
highest treatment effect.

We now conduct simulation studies to see to what extent the Kimani estimator is appropriate for the
selection rule that uses standardised treatment differences. Although the Kimani estimator is being incor-
rectly applied in this setting, because it slightly outperformed the UMVCUE in terms of MSE when the
variances are equal, it is interesting to investigate whether it does so again.

We can straightforwardly modify the Kimani estimator to take into account the differing variances in
stages 1 and 2 as follows:

D1,CHN = Z1,CHN − Z0,CHN

=
⎡⎢⎢⎢⎣
𝜎2

21X1 + 𝜎2
11Y1

𝜎2
11 + 𝜎2

21

−
𝜎2

21√
𝜎2

11 + 𝜎2
21

𝜙(WB)
Φ(WB)

⎤⎥⎥⎥⎦ −
⎡⎢⎢⎢⎣
𝜎2

20X0 + 𝜎2
10Y0

𝜎2
10 + 𝜎2

20

+
𝜎2

20√
𝜎2

10 + 𝜎2
20

𝜙
(
WB1

)
Φ

(
WB1

)⎤⎥⎥⎥⎦ ,

where

WB =

√
𝜎2

11 + 𝜎2
21

𝜎2
11

(
𝜎2

21X1 + 𝜎2
11Y1

𝜎2
11 + 𝜎2

21

− max

{
X0 + b

√
𝜎2

11 + 𝜎2
10,X2

})

WB1
=

√
𝜎2

10 + 𝜎2
20

𝜎2
10

(
X1 − b

√
𝜎2

11 + 𝜎2
10 −

𝜎2
20X0 + 𝜎2

10Y0

𝜎2
10 + 𝜎2

20

)
.

Consider now the scenario where K = 2 and one of the experimental treatments has variance �̃�2
1 say,

whereas the other experimental treatment and the control both have variance equal to 1. Figure 2 shows
the (unadjusted) bias and

√
MSE for the various estimators where we vary �̃�1 from 0.25 to 4. We also

set 𝜎21 = 𝜎11, whilst keeping 𝜎20 = 1. Note that 𝜎2
11 is the variance of the treatment that is selected to

continue to stage 2.
If we assume a common variance 𝜎2 across treatment groups, then values of �̃�1 > 2 (or < 0.5) imply

unrealistic unequal allocations to the treatment groups that would rarely occur in practice. However, such
scenarios could occur where there is reason to believe treatment 1 has a different treatment effect variance
from the other treatment (and the control) after looking at previous trial or pilot study data. This may
make biological sense too, if treatment 1 is a different class of drug to the others. In that case, we could
have �̃�1>2 despite having equal allocation ratios to the treatment groups and the control.

As expected, the stage 2 estimator and UMVCUE are unbiased for all values of �̃�1, whilst the naïve
estimator is positively biased. However, we see that for �̃�1 ≠ 1, the Kimani estimator is negatively biased,
with the bias much worse when b = −∞ compared with b = 0.1. This negative bias steadily increases
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Figure 2. Bias and
√

MSE for the estimators, using individual variances for the Kimani estimator. We set 𝜇0 = 0,
𝜇1 = 𝜇2 = 0.05, 𝜎21 = 𝜎11 and 𝜎10 = 𝜎20 = 1. There were 50 000 simulated trials for each value of �̃�1.

as �̃�1 increases above 1. Indeed, when �̃�1 = 4, the Kimani estimator has a substantial bias when b = −∞
(which corresponds to an early stopping probability of 0).

In terms of the MSE, as expected the naïve estimator has the lowest MSE. The Kimani estimator has
a higher MSE than the UMVCUE except when �̃�1 is close to 1. There is a steady increase in the Kimani
estimator’s MSE for �̃�1 > 1. The MSE of the UMVCUE is slightly higher when b = 0.1 compared with
b = −∞ and vice-versa for the MSE of the Kimani estimator.

4. Unbiased estimation for hypothesis-driven designs

Finally, we look at the application of our estimator within the context of formal hypothesis testing.
We illustrate this with an example based on the case study in [16]. Suppose we are comparing three
experimental drugs with a placebo for the treatment of generalised anxiety disorder. We assume that
the outcomes (the total score on the Hamilton Rating Scale for Anxiety) are normally distributed with
common standard deviation 𝜎 = 6.

The trial is planned with equal allocations to each treatment, with n1 = n2 = 71 subjects per group.
However, suppose that the randomisation procedure used leads to an unequal number of subjects in each
treatment group. Table II shows the observed data for both stages of the trial.

The aim is to take forward as many treatments as possible that pass a first-stage p-value futility thresh-
old, set at 𝛼0 = 0.1. As we are in a multiple testing situation, we use multiplicity corrected p-values and
the closure principle in our analysis (see Section 4.2). Although the primary focus will be hypothesis
testing, estimation of the treatment effects is an important secondary goal, and we would like unbiased
estimates of the selected treatments’ benefit over control at the end of the trial. This means that we need
a way of estimating the treatment difference when (i) multiple treatments are taken forward to stage 2,
and (ii) the treatments are not ranked using a rule that is concordant with ranking by the stage 1 sample
mean alone. In these cases, the Kimani estimator cannot be used, and hence we need to extend our
methodology (see succeeding text).
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Table II. Example data from a seamless phase II/III trial.

Stage 1 Stage 2

n1i Observed z-statistic p1i n2i Observed

Placebo 70 0.4 — — 68 −0.3
Treatment 1 72 2.2 1.787 0.0369 75 1.7
Treatment 2 68 2.4 1.958 0.0251 70 2.2
Treatment 3 74 3.2 2.799 0.0026 71 1.9

4.1. Uniformly minimum variance conditionally unbiased estimator for the jth-ranked treatment

Suppose that we take forward the top K treatments from a larger group of K′. We want to find the
UMVCUE for the jth best treatment out of K. Let Tj = Yj −Y0 denote the stage 2 sample mean treatment
differences for j ∈ {1,… ,K}. We consider the more general early stopping rules where the jth-ranked
treatment proceeds to stage 2 if 𝜆j

(
Xj − X0

)
> bj.

For notational convenience, let 𝜈2
j = 𝜎2

10 + 𝜎2
1j and 𝜏2

j = 𝜎2
20 + 𝜎2

2j. Then from the multivariate normal
theory [15], for a given value of j ∈ {1,… ,K} the statistic Zj = (Z1j,… ,ZKj) is sufficient and complete
for 𝜽, where

Zjj = Θj +
𝜈2

j

𝜏2
j

Tj

Zij = Θi +
𝜎2

10

𝜏2
j

Tj i ≠ j, i ∈ {1,… ,K}.

This time, we are conditioning on the modified event Q′, where Q′ = {𝚯 ∶ 𝜆1Θ1 > · · · >

𝜆KΘK , 𝜆1Θ1 > b1,… , 𝜆KΘK > bK}. Then the UMVCUE for the jth-ranked treatment (denoted Ûj) is
shown in Theorem 4.1 with a proof provided in Appendix A.2.

Theorem 4.1
For a given value of j ∈ {1,… ,K}, the UMVCUE for 𝜃j = 𝜇j − 𝜇0 given Q′ is

Ûj =
𝜏2

j Zjj

𝜈2
j + 𝜏2

j

−
𝜏2

j√
𝜈2

j + 𝜏2
j

𝜙(W1) − 𝜙(W2)
Φ(W1) − Φ(W2)

, (6)

where

Wi =
ki

√
𝜈2

j + 𝜏2
j

𝜏2
j

−
Zjj√
𝜈2

j + 𝜏2
j

for i = 1, 2 ;

k1 = min(A1,A2,A3,A4,A5), k2 = max(A6,A7,A8),

A1 =
𝜏2

j

𝜈2
j

(
Zjj −

bj

𝜆j

)
; A2 =

{
𝜏2

j

𝜎2
10

(
Zij −

bi

𝜆i

)
∶ i ≠ j, i ∈ {1,… ,K}

}
,

A3 =

{
𝜏2

j

(
𝜆jZjj − 𝜆j+1Zj+1,j

)
𝜎2

10

(
𝜆j − 𝜆j+1

)
+ 𝜆j𝜎

2
1j

∶ 𝜆j𝜎
2
1j >

(
𝜆j+1 − 𝜆j

)
𝜎2

10 ; j ≠ K

}
,

A4 =

{
𝜏2

j

(
𝜆jZjj − 𝜆j−1Zj−1,j

)
𝜎2

10

(
𝜆j − 𝜆j−1

)
+ 𝜆j𝜎

2
1j

∶ 𝜆j𝜎
2
1j <

(
𝜆j−1 − 𝜆j

)
𝜎2

10 ; j ≠ 1

}
,

A5 =

{
𝜏2

(
𝜆iZij − 𝜆i+1Zi+1,j

)
𝜎2

10

(
𝜆i − 𝜆i+1

) ∶ 𝜎2
1,i+1 > 𝜎2

1i ; i ∈ {1,… ,K − 1}∕{j − 1, j}

}
,

A6 =

{
𝜏2

j

(
𝜆jZjj − 𝜆j+1Zj+1,j

)
𝜎2

10(𝜆j − 𝜆j+1) + 𝜆j𝜎
2
1j

∶ 𝜆j𝜎
2
1j <

(
𝜆j+1 − 𝜆j

)
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}
,
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A7 =

{
𝜏2

j

(
𝜆jZjj − 𝜆j−1Zj−1,j

)
𝜎2

10

(
𝜆j − 𝜆j−1

)
+ 𝜆j𝜎

2
1j

∶ 𝜆j𝜎
2
1j >

(
𝜆j−1 − 𝜆j

)
𝜎2

10 ; j ≠ 1

}
,

A8 =

{
𝜏2

(
𝜆iZij − 𝜆i+1Zi+1,j

)
𝜎2

10

(
𝜆i − 𝜆i+1

) ∶ 𝜎2
1,i+1 < 𝜎2

1i ; i ∈ {1,… ,K − 1}∕{j − 1, j}

}
,

and we define min({∅}) = +∞ and max({∅}) = −∞.

4.2. Uniformly minimum variance conditionally unbiased estimator with the closure principle

We can now start to apply our UMVCUE to the example trial setting. In general, assume that we are
testing the K directional null hypotheses Hi ∶ 𝜇i ⩽ 𝜇0 (i = 1,… ,K) comparing the K treatments with
the control. Our aim is to strongly control the familywise error rate (FWER) at a pre-specified level 𝛼,
where strong FWER is defined as the (maximum) probability of rejecting at least one true null hypothesis,
irrespective of the configuration of true and false null hypotheses [17].

To control the FWER, we use the closure principle (CP) [18]. The CP considers all intersection
hypotheses that are constructed from the elementary null hypotheses. To strongly control the FWER, an
elementary null hypothesis Hi can only be rejected if all intersection hypotheses implying Hi are rejected
also. For more details, we refer the reader to the papers of Bretz et al. [13, 16]. In order to test an inter-
section hypothesis at the end of a two-stage trial, we begin by correcting for multiplicity for each stage
separately. Only afterwards do we combine the resulting adjusted p-values into a pre-specified combina-
tion function C(p, q). Given an intersection hypothesis HI (where I ⊆ {1,… ,K}) and the corresponding
multiplicity-adjusted stage 1 p-value p1I and stage 2 p-value p2I , we reject HI in the final analysis if
C(p1I , p2I) ⩽ c (where c is a suitably chosen critical value to ensure a pre-specified type I error rate of 𝛼).

As an example, consider using the closed testing procedure for the stage 1 data with early stopping for
futility, using the Bonferonni correction for multiplicity (for the sake of simplicity). The usual first-stage
(unadjusted) p-values for treatment i ∈ {1,… ,K}, denoted p1,i, are as follows:

p1,i = 1 − Φ
⎛⎜⎜⎜⎝

Xi − X0√
𝜎2

1i + 𝜎2
10

⎞⎟⎟⎟⎠ .
For notational convenience, let r(Xi) =

Xi − X0√
𝜎2

1i + 𝜎2
10

denote the standardised treatment difference for

treatment i ∈ {1,… ,K}.
Consider comparing K = 3 treatments with a control (as in our example), as shown in Figure 3.
By the CP, treatment 1 (say) continues to stage 2 if

p1,{1,2,3} < 𝛼0 =⇒ max
i∈{1,2,3}

r(Xi) > Φ−1
(
1 − 𝛼0∕3

)
p1,{1,2} < 𝛼0 =⇒ max

i∈{1,2}
r(Xi) > Φ−1

(
1 − 𝛼0∕2

)
p1,{1,3} < 𝛼0 =⇒ max

i∈{1,3}
r(Xi) > Φ−1

(
1 − 𝛼0∕2

)
p1,1 < 𝛼0 =⇒ r(X1) > Φ−1

(
1 − 𝛼0

)
.

Figure 3. Closed testing procedure for the stage 1 data using the Bonferonni correction, with K = 3 treatments.

3916

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 3907–3922



D. S. ROBERTSON, A. T. PREVOST AND J. BOWDEN

Without loss of generality, suppose r(X1) > r(X2) > r(X3). Then maxi∈{1,2,3} r(Xi) = r(X1), and treat-
ment 1 continues to stage 2 if r(X1) > Φ−1

(
1 − 𝛼0∕3

)
. Hence, conditional on the event Q = {X ∶ r(X1) >

r(X2) > r(X3), r(X1) > Φ−1
(
1 − 𝛼0∕3

)
}, the UMVCUE for 𝜃1 = 𝜇1−𝜇0 is given by Equation (3), where

K = 3 and b = Φ−1
(
1 − 𝛼0∕3

)
.

If treatment 2 also continues to stage 2, then the UMVCUE for 𝜃2 = 𝜇2 − 𝜇0 is given by Equation (6),
where we set K = 3, b1 = Φ−1

(
1 − 𝛼0∕3

)
, b2 = Φ−1

(
1 − 𝛼0∕2

)
and b3 = −∞. Finally, if treatment 3

continues to stage 2, then the UMVCUE for 𝜃3 = 𝜇3 − 𝜇0 is given by Equation (6), with K = 3, b1 =
Φ−1

(
1 − 𝛼0∕3

)
, b2 = Φ−1

(
1 − 𝛼0∕2

)
and b3 = Φ−1

(
1 − 𝛼0

)
.

4.3. Example analysis

Returning to the data from our example trial, we can calculate the stage 1 Bonferroni-adjusted p-values
as given as follows:

p1,{1,2,3} = 0.0077

p1,{1,2} = 0.0503, p1,{1,3} = 0.0051, p1,{2,3} = 0.0051

p1,1 = 0.0369, p1,2 = 0.0251, p1,3 = 0.0026.

Because all of the adjusted p-values are less than 𝛼0, the futility boundary threshold is not crossed for
any of the doses, and hence, all of the dose groups (and placebo) are continued to stage 2. Plugging in
the observed values (and known variances), the naïve estimator, stage 2 estimator and UMVCUE for the
differences between the doses are given in Table III. We see that the UMVCUE can be higher or lower
than both the naïve and stage 2 estimators and is not necessarily closer to the stage 2 data.

As a brief comparison, the Kimani estimator for the highest ranked treatment is 2.197 using the mod-
ified formula shown in Section 3.2. Both these values are lower than the the UMVCUE and the stage 2
estimator, which may be a reflection of the fact that Kimani estimator overcorrects for bias. Note that
the Kimani estimator is only for the highest ranked treatment, and estimates for the other treatment
differences are unavailable.

Finally, if we want to test the elementary hypotheses H1,H2 and H3 at the end of the trial, we first need
to find the stage 2 Bonferroni-adjusted p-values:

p2,{1,2,3} = 0.0216

p2,{1,2} = 0.0144, p2,{1,3} = 0.0307, p2,{2,3} = 0.0144

p2,1 = 0.0233, p2,2 = 0.0072, p2,3 = 0.0153.

In order to combine the adjusted p-values, we use the well-known weighted inverse normal combina-
tion function C(p, q) = 1−Φ[w1Φ−1(1−p)+w2Φ−1(1−q)], where the weights w1,w2 are set proportional
to the originally planned stage-wise sample sizes: w1 = w2 =

√
1∕2. Because 𝛼0 = 0.1, then setting

𝛼 = 0.025 means that the critical value c = 0.0401.
Taking dose level 3 as an example, by the CP, to reject H3, we also need to reject the intersec-

tion hypotheses H{1,2,3},H{1,3} and H{2,3}. Because C(p1,{1,2,3}, p2,{1,2,3}) < c, C(p1,{1,3}, p2,{1,3}) < c,
C(p1,{2,3}, p2,{2,3}) < c and C(p1,3, p2,3) < c, then we can indeed reject H3 and conclude that treatment 3
is superior to placebo. Similarly, following the same procedure, we can also reject H2 and H1.

Note that unlike hypothesis testing for the closure principle that strongly controls the type I error
regardless of the number of treatments that continue to stage 2, if the estimates obtained after stage 2 are

Table III. Estimators for the treatment differences from a
seamless phase II/III trial.

Stage 1 Rank Treatment Naïve Stage 2 UMVCUE

1 3 2.505 2.200 2.285
2 2 2.250 2.500 2.020
3 1 1.900 2.000 2.062

UMVCUE, uniformly minimum variance conditionally unbiased
estimator.
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used to select the most effective treatment, all the estimators compared in Table III are biased. That is,
the estimators derived in this section are only unbiased if the treatments will not be ranked after stage 2.
This is because the estimators do not adjust for additional selection at the end of the trial.

5. Discussion

In seamless phase II/III trials, it may be desirable to explicitly take into account differences in the pre-
cision of the treatment effect estimates. Also, if more than one treatment is taken forward to the second
stage, then it is natural to estimate the effect of treatments other than the highest ranked. In this paper,
we described a framework for unbiased estimation that is applicable in full generality for the jth-ranked
treatment, where the precision of treatment effect estimates can take arbitrary values. Our generalised
early stopping rules for futility means that our methodology can be applied where the interim selection
rules are driven by formal hypothesis testing procedures, as would be expecting in practice.

Our UMVCUE for the maximum treatment difference is different analytically from the Kimani et
al. estimator in the special case where the treatment effect variances are equal within each stage.
Somewhat counter-intuitively, our numerical simulations showed that when this special case is sat-
isfied, our UMVCUE is slightly less efficient. The reason is that the Kimani estimator uses all of
the data X0,X1,… ,XK ,Y0,Y1 explicitly, whereas the UMVCUE uses only the treatment differences
X1 −X0,… ,XK −X0,Y1 − Y0. Hence, if selection is indeed based on the observed stage 1 sample means,
then we would recommend using the Kimani estimator (or its modification when variances in different
treatment arms cannot be assumed equal).

When we do in fact have unequal variances and rank by standardised treatment difference, then our
simulation results demonstrate how the Kimani estimator overcorrects for bias, because it conditions on
different selection rules from those being actually used. This negative bias can be particularly severe when
the ratio of the stage 1 treatment variances is greater than 1 ∶ 2, and in these cases, the MSE of the Kimani
estimator increases above the UMVCUE. These results indicate that the difference between the selection
rules (and hence the estimators) is greatest when there is reason to believe that the treatment effect vari-
ances are different from treatment to treatment, such as when different classes of drugs are being tested
and we have variance estimates from pilot studies.

Hence, if selection is based the standardised treatment differences, then we would recommend using
the new UMVCUE, because it is unbiased and generally has a lower MSE. Note that our new estima-
tor complements the existing Kimani estimator (and its modification). Indeed, the two frameworks are
answering different questions because of the different selection rules being used.

We also showed how to extend our framework to estimate the jth-ranked treatment effect for j > 1,
in contrast to the Kimani estimator, which is only for the largest treatment difference. Our extended
UMVCUE can then be applied within the context of formal hypothesis testing, where we correct for
multiplicity with the closure principle. For simplicity, we used the Bonferroni correction in our example,
but our framework could also be extended to work with more powerful multiplicity adjustment methods,
such as the Simes, Holm or Hochberg procedures (as described in, e.g. [19]).

In this paper, we only looked at point estimation of the treatment difference. However, in practice,
it is natural to also seek confidence intervals at the end of the study. One possibility would be to use
a parametric bootstrap procedure, similar to that described in [20] and [21]. Alternatively, it might be
possible to adapt the analytic approach of Sampson and Sill [22] to the seamless phase II/III trial setting.

A limitation of our work is that we assume that the variance of the treatment differences are known. In
practice, if we have individual variance estimates for each treatment arm, then these will be less precise
than a pooled estimate. In order to correctly account for this, one avenue of research is to extend the
formulae of Cohen and Sackrowitz [8], who derived the UMVCUE in the independent normal setting
(but without the option of early stopping) where the variances are unknown and have to be estimated.

A possible extension is to consider trials where there is early stopping for efficacy. This would be
especially compatible with much of the literature on the combination test approach, where there can be
early rejection of the null hypothesis [16]. However, we anticipate that the UMVCUE would become
much more complex in this setting, because of the additional restrictions on the support of Yj. Finally, it
is an open question whether there exist UMVCUEs for the treatment differences that are functions of all
of the data (X,Y) instead of just (X,Y0,Yj). If such estimators do exist, then they may outperform both
our UMVCUE and the Kimani estimator in terms of MSE.
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Appendix A

A.1. Derivation of the UMVCUE for the maximum treatment difference

Theorem A.1
The UMVCUE for 𝜃1 = 𝜇1 − 𝜇0 given Q is

Û =
𝜏2Z1

𝜈2 + 𝜏2
− 𝜏2√

𝜈2 + 𝜏2

𝜙(W1) − 𝜙(W2)
Φ(W1) − Φ(W2)

, (A.1)

where

Wi =
ki

√
𝜈2 + 𝜏2

𝜏2
−

Z1√
𝜈2 + 𝜏2

for i = 1, 2 ;

k1 = min(A1,A2,A3), k2 = max(A4,A5),

A1 = 𝜏2

𝜈2

(
Z1 −

b
𝜆1

)
,

A2 =

{
𝜏2

(
𝜆1Z1 − 𝜆2Z2

)
𝜎2

10

(
𝜆1 − 𝜆2

)
+ 𝜆1𝜎

2
11

∶ 𝜆1𝜎
2
11 >

(
𝜆2 − 𝜆1

)
𝜎2

10

}
,

A3 =

{
𝜏2

(
𝜆jZj − 𝜆j+1Zj+1

)
𝜎2

10

(
𝜆j − 𝜆j+1

) ∶ 𝜎2
1,j+1 > 𝜎2

1j ; j = 2,… ,K − 1

}
,

A4 =

{
𝜏2

(
𝜆1Z1 − 𝜆2Z2

)
𝜎2

10

(
𝜆1 − 𝜆2

)
+ 𝜆1𝜎

2
11

∶ 𝜆1𝜎
2
11 <

(
𝜆2 − 𝜆1

)
𝜎2

10

}
,

A5 =

{
𝜏2

(
𝜆jZj − 𝜆j+1Zj+1

)
𝜎2

10

(
𝜆j − 𝜆j+1

) ∶ 𝜎2
1,j+1 < 𝜎2

1j ; j = 2,… ,K − 1

}
,

and we define min({∅}) = +∞ and max({∅}) = −∞.

Proof

Everything follows through as for the multivariate normal setting [15], except that the support of Y
changes and hence (k1, k2) changes too.

Conditioning on the event Q means that 𝜆iΘi > 𝜆i+1Θi+1 for i = 1,… ,K − 1. Using the equations for
the sufficient statistics (2), this gives the following when i = 2,… ,K − 1:

𝜆iΘi > 𝜆i+1Θi+1 =⇒ 𝜆i

(
Zi −

𝜎2
10

𝜏2
Y

)
> 𝜆i+1

(
Zi+1 −

𝜎2
10

𝜏2
Y

)

=⇒
𝜎2

10

𝜏2
(𝜆i − 𝜆i+1)Y < 𝜆iZi − 𝜆i+1Zi+1.

(A.2)

Since 𝜆i = 1∕
√

𝜎2
1i + 𝜎2

10, then 𝜆i > 𝜆i+1 ⇐⇒ 𝜎2
1,i+1 > 𝜎2

1i. Hence if 𝜎2
1,i+1 > 𝜎2

1i then equation (A.2)
implies that

Y <
𝜏2(𝜆jZj − 𝜆j+1Zj+1)

𝜎2
10(𝜆j − 𝜆j+1)

.

Conversely, if 𝜎2
1,i+1 < 𝜎2

1i then equation (A.2) implies that

Y >
𝜏2(𝜆jZj − 𝜆j+1Zj+1)

𝜎2
10(𝜆j − 𝜆j+1)

.

However, when 𝜎2
1,i+1 = 𝜎2

1i, then there is no restriction contributed to the support of Y .
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Similarly, for i = 1 we have

𝜆1Θ1 > 𝜆2Θ2 =⇒ 𝜆1

(
Z1 −

𝜎2
10 + 𝜎2

11

𝜏2
Y

)
> 𝜆2

(
Z2 −

𝜎2
10

𝜏2
Y

)
=⇒ 1

𝜏2

[
(𝜆1 − 𝜆2)𝜎2

10 + 𝜆1𝜎
2
11

]
Y < 𝜆1Z1 − 𝜆2Z2.

Finally, the futility boundary b gives the following restriction on the support of Y:

𝜆1Θ1 > b =⇒ 𝜆1

(
Z1 −

𝜈2

𝜏2
Y

)
> b

=⇒ Y <
𝜏2

𝜈2

(
Z1 −

b
𝜆1

)
.

Putting everything together, we have that k1 < Y < k2, where (k1, k2) are as in equation (A.1).

A.2. Derivation of the UMVCUE for the jth ranked treatment difference

Theorem A.2
For a given value of j ∈ {1,… ,K}, the UMVCUE for 𝜃j = 𝜇j − 𝜇0 given Q′ is

Ûj =
𝜏2

j Zjj

𝜈2
j + 𝜏2

j

−
𝜏2

j√
𝜈2

j + 𝜏2
j

𝜙(W1) − 𝜙(W2)
Φ(W1) − Φ(W2)

, (A.3)

where

Wi =
ki

√
𝜈2

j + 𝜏2
j

𝜏2
j

−
Zjj√
𝜈2

j + 𝜏2
j

for i = 1, 2 ;

k1 = min(A1,A2,A3,A4,A5), k2 = max(A6,A7,A8),

A1 =
𝜏2

j

𝜈2
j

(
Zjj −

bj

𝜆j

)
,

A2 =

{
𝜏2

i

𝜎2
10

(
Zij −

bi

𝜆i

)
∶ i ≠ j, i ∈ {1,… ,K}

}

A3 =

{
𝜏2

j

(
𝜆jZjj − 𝜆j+1Zj+1,j

)
𝜎2

10

(
𝜆j − 𝜆j+1

)
+ 𝜆j𝜎

2
1j

∶ 𝜆j𝜎
2
1j >

(
𝜆j+1 − 𝜆j

)
𝜎2

10 ; j ≠ K

}
,

A4 =

{
𝜏2

j

(
𝜆jZjj − 𝜆j−1Zj−1,j

)
𝜎2

10

(
𝜆j − 𝜆j−1

)
+ 𝜆j𝜎

2
1j

∶ 𝜆j𝜎
2
1j <

(
𝜆j−1 − 𝜆j

)
𝜎2

10 ; j ≠ 1

}
,

A5 =

{
𝜏2

(
𝜆iZij − 𝜆i+1Zi+1,j

)
𝜎2

10

(
𝜆i − 𝜆i+1

) ∶ 𝜎2
1,i+1 > 𝜎2

1i ; i ∈ {1,… ,K − 1}∕{j − 1, j}

}
,

A6 =

{
𝜏2

j

(
𝜆jZjj − 𝜆j+1Zj+1,j

)
𝜎2

10

(
𝜆j − 𝜆j+1

)
+ 𝜆j𝜎

2
1j

∶ 𝜆j𝜎
2
1j <

(
𝜆j+1 − 𝜆j

)
𝜎2

10 ; j ≠ K

}
,

A7 =

{
𝜏2

j

(
𝜆jZjj − 𝜆j−1Zj−1,j

)
𝜎2

10

(
𝜆j − 𝜆j−1

)
+ 𝜆j𝜎

2
1j

∶ 𝜆j𝜎
2
1j >

(
𝜆j−1 − 𝜆j

)
𝜎2

10 ; j ≠ 1

}
,

A8 =

{
𝜏2

(
𝜆iZij − 𝜆i+1Zi+1,j

)
𝜎2

10

(
𝜆i − 𝜆i+1

) ∶ 𝜎2
1,i+1 < 𝜎2

1i ; i ∈ {1,… ,K − 1}∕{j − 1, j}

}
,

and we define min({∅}) = +∞ and max({∅}) = −∞.
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Proof

The proof is very similar to that for the uniformly minimum variance conditionally unbiased estimator
(UMVCUE) for the maximum treatment difference. We just need to determine how the support of Yj
changes.

Conditioning on the event Q′ means that 𝜆iΘi > 𝜆i+1Θi+1 for i = 1,… ,K −1. Hence, for i ∉ {j−1, j},
we obtain the inequalities corresponding to the sets A5 and A8 (in the same way as before).

When i = j and j ≠ K, we have

𝜆jΘj > 𝜆j+1Θj+1 =⇒ 𝜆j

(
Zjj −

𝜎2
10 + 𝜎2

1j

𝜏2
j

Yj

)
> 𝜆j+1

(
Zj+1,j −

𝜎2
10

𝜏2
j

Yj

)
=⇒ 1

𝜏2
j

[(
𝜆j − 𝜆j+1

)
𝜎2

10 + 𝜆j𝜎
2
1j

]
Yj < 𝜆jZjj − 𝜆j+1Zj+1,j.

When i = j − 1 and j ≠ 1, we have

𝜆j−1Θj−1 > 𝜆jΘj =⇒ 𝜆j−1

(
Zj−1,j −

𝜎2
10

𝜏2
j

Yj

)
> 𝜆j

(
Zjj −

𝜎2
10 + 𝜎2

1j

𝜏2
j

Yj

)
=⇒ 1

𝜏2
j

[(
𝜆j − 𝜆j−1

)
𝜎2

10 + 𝜆j𝜎
2
1j

]
Yj > 𝜆jZjj − 𝜆j−1Zj−1,j.

Finally, the early stopping rules for futility means that 𝜆iΘi > bi for i = 1,… ,K. When i ≠ j,

this means that 𝜆i

(
Zij −

𝜎2
10

𝜏2
j

Yj

)
> bi =⇒ Yj <

𝜏2
j

𝜎2
10

(
Zij −

bi

𝜆i

)
, whilst when i = j, this implies that

𝜆j

(
Zjj −

𝜈2
j

𝜏2
j

Yj

)
> bj =⇒ Yj <

𝜏2
j

𝜈2
j

(
Zjj −

bj

𝜆j

)
.

Putting everything together, we have that k1 < Y < k2, where (k1, k2) are as in Equation (A.3).
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