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ABSTRACT 

We report the solvothermal synthesis and characterization of the structure, morphology and 

photoluminescence properties of a series of unprecedented layered, organic-inorganic 

lanthanide (LnIII) phosphonates based on t-butyl- (But), 1-naphthalene- (Naph) and 4-

biphenyl- (Biphen) phosphonic acid. Through systematic variation of the ligand and the LnIII, 

we discuss the key structure-property relationships that must be managed for the design of 

Ln-phosphonates with tailored functionality. Single crystal and X-ray powder diffraction 

studies revealed the size and shape of the employed ligand affects the type of layered material 

that forms. In agreement with their molecular structures two distinct crystal morphologies are 

observed, 1D nanorods and 2D platelets, demonstrating that the anisotropy in the crystal 

structure and the variable coordination behavior of the ligands is directly translated to the 

crystal growth. Judicious selection of the ligand enables us to switch-on Ln-centred 

photoluminescence in both the visible (EuIII, TbIII) and near infrared (NdIII and YbIII)spectral 

regions. Notably, the presented Yb-phosphonates are rare examples of phosphonate-based 

near infrared emitters. Furthermore, the EuIII spectral fingerprint provided unique insight into 



the coordination environment of the metal center, facilitating structural characterization 

where X-ray diffraction analysis was limited. 
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1. Introduction 

Coordination-based multidimensional hybrids constructed from organic and inorganic 

building blocks have emerged as an important class of functional materials due to their 

potential applications in catalysis, ion exchange, gas sorption and intercalation chemistry.1,2 

In recent years, two-dimensional (2D) materials have attracted significant interest due to the 

fascinating properties that arise from the anisotropic molecular structure.3-11 Although, purely 

inorganic materials, for example graphene3-5, MoS26-8, BN9,10 and GaN11, have been 

intensively studied, the related 2D organic-inorganic systems have been largely overlooked. 

Metal phosphonates, in which the phosphonate oxygen atoms coordinate strongly to the metal 

ions, forming two-dimensional inorganic layers separated by the hydrophobic regions of the 

organic moieties, offer considerable potential in this regard.12-19 The remarkable coordination 

ability of phosphonates has frequently been exploited in diverse industrial technologies (e.g. 

corrosion inhibitors, waste water management and heterogeneous catalysis).20-22 Lanthanide 

(LnIII) phosphonates are particularly intriguing, since they fuse the high coordination number 

of the lanthanide centre with the variable binding modes of the phosphonate, which can lead 

to layered topologies.23-27 Moreover, Ln3+-based materials often exhibit intense room 

temperature photoluminescence (PL) across the UV to near-IR spectral range, arising from f-f 

electronic transitions.28-30 This expands the potential applications of lanthanide phosphonates 

to optoelectronic devices, solid-state lighting, sensing and optical communications and 

storage.29,31-34  

When combined with a metal center, monofunctional organophosphonate ligands 

generally result in the formation of layered materials.1,23 Judicious selection of the metal 

center and ligand should enable the isolation of lanthanide phosphonate hybrids exhibiting 

well-defined 2D structures with tailored optical properties. However, the design and 

characterization of these materials can be challenging, since lanthanide phosphonates 



typically exhibit low solubility and poor crystallinity.35 Additional functionalization of the 

phosphonic acid ligand (e.g. with carboxylate36-39, hydroxyl40,41, amine42,43 or crown ether 

groups44,45) has been shown improve both the solubility and crystallinity of these materials. 

Moreover, direct population of the LnIII excited states is limited by the low molar absorption 

coefficients (1-10 dm3 mol-1 cm-1) associated with Laporte-forbidden f-f transitions.46 

Sensitization of the LnIII emissive state via energy transfer from an aromatic organic 

chromophore can be used to circumvent this obstacle.47 This so-called antenna effect has 

been exploited extensively to modify the optical properties of lanthanide complexes48,49, 

lanthanide-organic frameworks (LnOFs)50,51, and more recently lanthanide 

phosphonates.38,52,53 Understanding and controlling the interdependent relationships that 

determine each of these factors will therefore be a crucial step forward in enabling the 

strategic design of functional lanthanide phosphonates.   

Recently, several studies probing the structure, morphology and optical properties of 

lanthanide phenyl phosphonates prepared from the reaction with phenyl phosphonic acid 

have been reported.23 Ma and coworkers demonstrated that addition of sodium p-toluene 

sulfonate to the reaction mixture under hydrothermal conditions promoted preferential growth 

of one-dimensional nanorods.54 Comparison of EuIII and LaIII/EuIII phenyl phosphonate 

nanorods against the corresponding bulk materials revealed that crystal size has only a 

negligible effect on the PL properties. Pinna et al. have since shown that changing from an 

aqueous to non-aqueous synthetic route can greatly enhance the photoluminescence quantum 

yields (ΦPL) of the EuIII-doped lanthanum phenyl phosphonate, reporting an impressive value 

ΦPL=45% for La(HO3PC6H5)2:0.06Eu via ligand sensitization.55 The improved PL efficiency 

is attributed to a combination of reduced concentration quenching via co-doping with LaIII 

and inhibition of non-radiative multiphonon relaxation via O-H oscillators through the use of 

an organic solvent. Pinna et al. further demonstrated that citric acid can act as a crystal habit-



modifier for the related YH(O3PC6H5)2:Ln0.05 (Ln = EuIII, TbIII), promoting the formation of 

dandelion-like superstructures composed  of multiple individual nanorods.56 Notably, a ~50% 

increase in the ΦPL of YH(O3PC6H5)2:Ln0.05 could be obtained in moving from plate-like to 

dandelion-like morphologies.  It is clear from these initial studies that the chemical 

composition, morphology and optical properties of these materials are closely linked; an 

understanding the specific nature of this relationship, however, remains elusive. 

Here we adopt a strategic approach to the design and synthesis of layered lanthanide 

phosphonates with targeted morphology and optical properties. We have carefully selected 

three ligands, namely t-butyl-, 1-naphthalene- and 4-biphenyl phosphonic acid (Table 1), 

which will allow us to selectively probe the effect of ligand size on the interlamellar spacing 

of the corresponding lanthanide phosphonates. Moreover, 1-naphthalene- and 4-biphenyl 

phosphonic acid were judiciously chosen on the basis of the energy of their excited electronic 

states and their high molar absorption coefficients, and are expected to efficiently sensitize 

the emissive LnIII state. By varying the LnIII ion we were able to tune the emission 

wavelength from green (TbIII), to the red (EuIII), to the near-IR (NdIII, YbIII) and 

simultaneously investigate the effect of the ligand type and size, and the metal ionic radius, 

on the morphology of the material. To the best of our knowledge, this is the first study 

pertaining to lanthanide phosphonates to take a global consideration of both the electronic 

properties and size of the constituent organic and inorganic building blocks in tandem. 

Notably we observe room-temperature emission from a simple, layered ytterbium 

phosphonate (based on 1-naphthalene- and 4-biphenyl phosphonic acid) for the first time.  

2. Experimental Section 

2.1 Synthesis of lanthanide phosphonates. Lanthanide phosphonates were prepared using a 

solvothermal route. In a typical synthesis, a mixture of ligand (0.4 mmol), LnCl3·6H2O (0.2 



mmol, Ln = NdIII, EuIII, TbIII and YbIII) and an appropriate solvent (5 mL) were placed in a 20 

mL Teflon liner and stirred for 30 minutes to give a white cloudy suspension. The pH was 

adjusted to 2 using 1 M NaOH aqueous solution. The Teflon liner was inserted into a steel 

autoclave and placed in an oven at 100 °C for 48 hours. Following cooling to room 

temperature, the resulting material was filtered and washed with water and ethanol before 

drying at 80 °C. The ligands investigated were t-butyl phosphonic acid (But), 1-naphthalene 

phosphonic acid (Naph) and 4-biphenyl phosphonic acid (Biphen). Ligand structures, the 

composition of the Ln phosphonates prepared and the corresponding sample names are 

shown in Table 1. Complete synthetic procedures and characterization data for all samples 

investigated may be found in the Supporting Information.  

2.2 Characterization. Single crystal X-ray crystallography of Eu-But was performed at 108 

K on a Rigaku Saturn-724 diffractometer using graphite monochromated Mo Kα radiation. 

The omega scan method was used to collect a full sphere of data. Data was collected, 

processed and corrected for absorption and polarization effects using the Crystalclear SM 

1.4.0 software. The structure was solved using direct methods and refined using the 

SHELXTL program.57 The crystallographic details and refinement parameters are provided in 

the Supporting Information; the crystallographic data can be obtained free of charge for the 

Cambridge Crystallographic Data Centre (CCDC, No: 980771). Powder X-ray diffraction 

(PXRD) was performed using a Siemens D500 diffractometer using Cu Kα radiation. All 

diffraction patterns were measured in the 2θ range 2-70° using a 0.02° step size and 14.7 s 

counting rate. 

Fourier transform infrared (FTIR) spectra were measured using a PerkinElmer 

Spectrum 100 FTIR spectrometer in the range 4000-650 cm-1. Solution NMR spectroscopy 

was performed on a Bruker DPX 400 NMR machine. 1H and 31P spectra were obtained at 400 

and 162 MHz, respectively. Electrospray mass spectrometry (MS) was performed on a 



Micromass LCT Electrospray mass spectrometer. Samples were dissolved in a suitable HPLC 

grade solvent. Thermogravimetric analysis (TGA) was performed on a Perkin Elmer Pyris 1 

TGA thermogravimetric analyzer in the range 30-900 °C in an air atmosphere using a heating 

rate of 10 °C/min. Elemental analyses (CHN) were performed in the Microanalysis Lab of the 

School of Chemistry and Chemical Biology, University College Dublin.  

Solution-state UV/Vis absorption spectroscopy was performed on a Shimadzu UV-

2401 PC spectrometer using matched quartz cuvettes (path length 10 mm). Solid-state UV-

Vis diffuse reflectance spectroscopy was performed on a Perkin Elmer Lambda 1050 

spectrometer using an integrating sphere accessory across the range 250-800 nm. 

Steady-state photoluminescence spectroscopy was performed on a Fluorolog-3 

spectrophotometer (Horiba Jobin Yvon), using the front-face configuration for solid state 

samples. Low temperature phosphorescence measurements on the ligands naphthalene 

phosphonic acid and biphenyl phosphonic acid were performed at 77 K using a liquid 

nitrogen filled quartz dewar. Spectra measured in the UV/Vis range used a room temperature 

R9281x photomultiplier tube as the detector. Near-Infrared (NIR) spectra were measured 

using a liquid nitrogen cooled R5509 photomultiplier tube as the detector. Emission and 

excitation spectra were corrected for the wavelength response of the system and the intensity 

of the lamp profile over the excitation range, respectively, using correction factors supplied 

by the manufacturer. Absolute photoluminescence quantum yields (ΦPL) were measured 

using an F-3018 integrating sphere accessory (Horiba Jobin Yvon). Three measurements for 

each sample were taken and the average value is reported. The method has an error margin of 

10%. Emission lifetimes in the visible region were measured using a Jobin-Yvon Fluorolog 

3-22 equipped with a Spex 1934D phosphorimeter accessory. Emission decay curves were fit 

to either a single or double exponential decay function in Origin 8.0 data analysis program. 



Samples for scanning electron microscopy (SEM) were prepared by drop-casting the 

sample onto silicon wafers. The wafer was mounted onto a carbon disc and a connection 

made between wafer and stage use Ag-DAG paint. SEM images were recorded on a Zeiss-

Ultra Scanning Electron Microscope at an accelerating voltage of 2 kV. Energy dispersive 

spectroscopy (EDS) was carried out using an Oxford Instruments INCA system attached to 

the microscope. 

3. Results  

3.1 Synthesis, structure and composition. Lanthanide phosphonate organic-inorganic 

hybrids were prepared from the reaction of a two to one mole ratio of ligand to Ln(III) 

chloride (Ln = NdIII, EuIII, TbIII and YbIII) under solvothermal conditions at 100 °C. Hybrids 

prepared using t-butyl phosphonic acid were reacted in acetonitrile (Ln-But), whilst reactions 

of 1-naphthalene- and 4-biphenyl-phosphonic acid (Ln-Naph and Ln-Biphen, respectively) 

were performed in deionized water, to produce crystalline powders of the coordination 

compounds. Sample names, compositions and ligand structures are summarized in Table 1. 

The Fourier transform infrared (FTIR) spectra of all Ln-phosphonates prepared 

display characteristic stretching modes associated with the deprotonated phosphonic acid 

group (Figure S1, Supporting Information), namely nP-O at ~1000 cm-1 and 1100 cm-1, nP=O at 

1600 cm-1 and nP-C at 1400 cm-1.55 Typical C-H (~3000 cm-1) and C=C stretching modes 

(~1600 cm-1) associated with the organic ligand are also observed.   

 

 

 



Table 1. Sample names, compositions and ligand structures of the Ln-phosphonates 

investigated.  

Series Ligand Formula 

Ln-But 

 

 

[Nd(HO3PC(CH3)3)3]·H2O 

[Eu(HO3PC(CH3)3)3]·H2O 

[Tb(HO3PC(CH3)3)3]·H2O 

[Yb(HO3PC(CH3)3)3]·H2O 

Ln-Naph 

 

 

[Nd(O3PC10H7)2(H2O)2] 

[Eu(O3PC10H7)2(H2O)2] 

[Tb(O3PC10H7)2(H2O)2] 

[Yb(O3PC10H7)2(H2O)2] 

Ln-Biphen 

  

[Nd(O3PC12H9)2] 

[Eu(O3PC12H9)2] 

[Tb(O3PC12H9)2] 

[Yb(O3PC12H9)2] 

 

Thermogravimetric analysis (TGA) of the Ln-phosphonates was performed in air 

(Figure S2, Supporting Information) to establish the chemical composition and thermal 

stability. The thermogram obtained for Ln-But reveals three gravimetric events:  a loss of 

3.3% between 50-100 °C due to the loss of the water of crystallization (calc. 3.1%) and two 

subsequent losses at 420-450 °C and 520-580 °C, with a combined 31% weight loss (calc. 

29.4%), attributed to decomposition and loss of the t-butyl moiety. The residual substance is 

assumed to be a lanthanide phosphate. Ln-Naph materials display two gravimetric events: a 

6.1% weight loss at 190 °C which is assigned to two coordinated water molecules (calc. 

6.0%) and a loss centred at 400 °C assigned to the loss of two coordinated naphthalene 

ligands, yielding [Ln(O3PC10H7)2(H2O)2] (calc. 43.2-44.3%, obs. 40.3% [loss 2 equiv. C10H8 

moieties]) as a reasonable empirical formula. A single gravimetric event centred at 500 °C 

due to decomposition of the organic residues for Ln-Biphen indicate two coordinated ligands 

with formula [Ln(O3PC12H9)2] (calc. 49.1%, obs. 48.8 % [loss 2 equiv. C12H9 moieties]).  

PO3H2

PO3H2

PO3H2



Single crystal X-ray analysis allowed us to determine the detailed molecular 

arrangement of [EuIII(HO3PC(CH3))3]·H2O (Eu-But), which crystallizes in the monoclinic 

crystal system in the space group P21/c. Each EuIII ion coordinates to six organophosphonate 

ligands to give a distorted octahedral coordination geometry. Each crystallographically 

distinct organophosphonate But-PO3H- remains partially protonated, whereby only two 

phosphonate oxygen atoms are free to coordinate. These oxygen donors bridge two EuIII 

centers to produce 1D polymeric chains that extend along the c-axis (Figure 1a).  

Constitutional water molecules engage in hydrogen bonding, organizing one-dimensional 

polymer chains into a two-dimensional assembly that extends parallel to the bc-plane. This 

hydrogen bonding between the water molecules and non-coordinating phosphonate oxygen 

atoms gives rise to a pseudo-layered arrangement of intricate pleated-like sheets that stack via 

Van der Waals forces in the direction of the crystallographic a-axis. (Figure 1a and b). 

 The structure of Eu-But has both similarities and differences to that of the lanthanide 

phenyl phosphonate, [La(O3PC6H5)(HO3PC6H5)], reported by Clearfield et al.29 Whilst both 

compounds adopt layered supramolecular structures which contain distinct inorganic 

{Eu(III)-O}-based regions that are encapsulated by organic moieties protruding into the 

interlamellar spacings, they exhibit contrasting coordination behavior due to the differing 

geometrical requirements of the tert-butyl and phenyl ligands.38,58,59 In 

[La(O3PC6H5)(HO3PC6H5)] the formation of two-dimensional coordination polymer sheets is 

facilitated by the dodecahedral LnIII environment and bridging oxygen donors.23 In contrast, 

in Eu-But the octahedral geometry leads to the formation of one-dimensional chains that 

assemble via hydrogen bonding, which leads to the assembly of pleated-like sheets. 

Substitution of EuIII by NdIII, TbIII or YbIII leads to a series of four isostructural compounds as 

confirmed by FTIR spectroscopy and powder XRD (see Figure 2a, Figure S1 and S3). 

  



 

Figure 1. Crystal structure of [EuIII(HO3PC(CH3))3]·H2O, Eu-But. The 3D packing 

arrangement of 1D polymeric chains as seen down the projection of the (a) c-axis and (b) b-

axis (C:Black, O:Red, P:Pink tetrahedra, Eu:Grey. Blue dashed line represents hydrogen 

bonding). 

The chemical composition of the Ln-Naph series, [Ln(O3PC10H7)2(H2O)2], is 

consistent with that of the structurally-related [La(O3PCH2C6H5)2(H2O)2], which crystallizes 

in the orthorhombic space group Pbcn with a =10.801(2) Å, b = 10.301(2) Å and c = 

33.246(8) Å.23 Using the PXRD patterns of the Ln-Naph series, the individual reflections 

were indexed using the program Taup to provide an orthorhombic unit cell with a =13.76 Å, 

b=16.42 Å and c=23.31 Å. Taking into account systematic absences, the centrosymmetric 

space group, Pcca, was assigned. In a similar fashion, the PXRD pattern of Ln-Biphen has 

been indexed to provide a monoclinic unit cell, with dimensions a=23.80 Å, b=6.75 Å and 

c=5.34 Å with β=92.95°.  

Figure 2b shows representative PXRD patterns for Eu-But, Eu-Naph and Eu-

Biphen, which all exhibit intense periodic reflections originating from their layered lamellar 

structures that are characteristic for organophosphonate-stabilized lanthanide coordination 

compounds.54-56 The interlayer spacing, d, as determined from Bragg’s law is directly 



proportional to the ligand size, following the order Ln-But (12.27 Å ± 0.01) < Ln-Naph 

(16.38 Å ± 0.01) < Ln-Biphen (23.64 Å ± 0.01).  

 

Figure 2. (a) Experimental and calculated PXRD patterns for Eu-But, (b) comparison of 

PXRD patterns for the different Eu-phosphonates showing the variation in d-spacing with 

changing ligand   

 

3.2 Morphology. A Scanning Electron Microscopy (SEM) study was undertaken to 

investigate the effect of ligand size and ionic radii on the morphologies of these materials 

(Figure 3). In general, the layered molecular structure is represented in the morphology and 

we observe platelet-type crystals of sub-micrometer dimensions for all samples. Notably, the 

Yb-based organophosphonates show a tendency towards anisotropic crystal growth to form 



rods whose aspect ratio is influenced by the nature of the organic ligand. This may in part be 

attributable to the smaller ionic radius of the YbIII ion compared to the other LnIII 

investigated.60 Addition of the STS habit modifier improves the monodispersity of these 1D 

rod materials. Moreover, in agreement with our crystallographic analysis, all Ln-But exhibit 

rod-like crystal morphologies providing further evidence for a pseudo-2D structure that is 

assembled from 1D coordination polymers.  The Ln-Biphen series gives rise to film-like 

assemblies (Fig 3f), whose amorphous character is consistent with the corresponding PXRD 

patterns (Figure 2b). 

 

Figure 3. SEM images of (a) platetlets of Nd-Naph (no p-STS), (b) rod structures of Yb-

Naph amongst some nanoparticles (no p-STS), (c) phase pure rod structures of Yb-Naph 

(with p-STS), (d) rod structures of Yb-But   and (e) Nd-But and (f) film-like assemblies of 

Yb-Biphen (with p-STS modifier) .  

 



3.3 Photoluminescence (PL) properties. Figures 4b and 4c show the PL and excitation 

spectra of Eu-But, Eu-Naph and Eu-Biphen.  On direct excitation of the EuIII centre (λex = 

393 nm, 7F0→5L6) (Figure 4b, S5), characteristic EuIII-centred red photoluminescence 

originating from 5D0→7FJ transitions (J = 0-4) between 570-720 nm is observed for all 

samples (e.g. see Fig 4a). Emission from higher excited states (e.g. 5D1) is not observed 

indicating efficient non-radiative relaxation to the 5D0 manifold. The characteristic EuIII 

emission spectrum is also obtained for Eu-Naph and Eu-Biphen via ligand sensitization (λex 

= 320 nm and λex = 305 nm (Figure 4b), respectively).  For both metal-centered and ligand 

excitation, the most intense transition is the hypersensitive 5D0→7F2 emission line, which is 

common for eight-coordinate lanthanide centers.61 The absence of ligand-centered emission 

in the PL spectrum (Figure S6) suggests that energy transfer from the ligand to the metal 

center is very efficient. The corresponding excitation spectra (monitored in the 5D0→7F2 

transition) exhibit characteristic metal-centered ff emission lines corresponding to transitions 

between the 7F0 ground state and the 5D4-1, 5G2-6 and 5L6 excited states (Figure 4c). In 

addition, Eu-Naph and Eu-Biphen display broad excitation bands centred at 320 nm and 300 

nm. Comparison with the UV/Vis absorption spectra of the free ligands (Figure S7, 

Supporting Information) confirms that these bands result from ligand-based excitation. 



 

Figure 4. (a, d) Photographs of Eu-Biphen and Tb-Biphen under excitation with a UV-lamp (b) 

Room-temperature (RT) PL spectra for Eu-But obtained upon direct excitation at 393 nm (5L6←7F0) 

and Eu-Naph and Eu-Biphen on ligand excitation (λex = 320 nm and λex = 305 nm, respectively). (c) 

Corresponding RT excitation spectra (λem = 610-614 nm, 5D0→7F2 transition). (e) RT PL spectra for 

Tb-But obtained upon direct excitation at 377 nm (5D3←7F6) and Tb-Biphen on ligand excitation (λex 

= 305 nm). (f) Low temperature (77-250 K) PL spectra for Tb-Naph upon ligand sensitization (λex = 

320 nm).  

The ground (7F0) and the emissive (5D0) states of EuIII are nondegenerate and cannot be split 

by the crystal field.29 As such, there is a one-to-one correspondence between the number of 

bands associated with the 5D0→7F0 transition in the PL spectrum and the number of distinct 

EuIII environments.29,62 Gaussian deconvolution of this band reveals a single EuIII local 

environment for all Eu-phosphonates, which is in good agreement with the crystallographic 

data. 



The PL and excitation spectra for Tb-But and Tb-Biphen are shown in Figures 4e 

and S8.  Characteristic TbIII–centered green emission is observed in the range of 450-700 nm 

corresponding to 5D4→7FJ (J = 6-2) transitions upon direct excitation of the metal center (see 

Figure 4d). The excitation spectra for Tb-But display characteristic ff transitions between 

300-500 nm, corresponding to transitions from the 7F6 ground state to the 5D4-3, 5L10 and 5GJ 

excited states. Ligand sensitization of the TbIII photoluminescence is also observed for Tb-

Biphen (Figure 4e and S6d, Supporting Information). The relative intensity of the observed 

PL is significantly greater (under the same experimental conditions) than for direct excitation 

of the same sample, suggesting that efficient ligand to metal energy transfer occurs. This is 

supported by the dominance of the broad ligand band in the excitation spectrum (monitored 

in the 5D4→7F5 transition, Fig. S8a), which obscures the weak ff transition lines.    

Unexpectedly, no photoluminescence was observed for Tb-Naph, for either metal-

centered excitation and ligand sensitization at room temperature. However, characteristic 

TbIII emission was observed at 77-250 K, with the relative PL intensity increasing as the 

temperature decreased (Figure 4f). The excitation spectrum for Tb-Naph observed at 77 K 

(Figure S8b, Supporting Information) is dominated by a ligand-centered band at 320 nm and 

a weaker emission line centred at 377 nm attributed to the 5D3←7F6 transition.   

Notably, NIR photoluminescence from both NdIII- and YbIII phosphonates was 

observed at room temperature. For Nd-But, Nd-Naph and Nd-Biphen, characteristic NdIII 

emission lines assigned to the 4F3/2→4IJ/2 (J = 13, 11, 9) transitions are observed for direct 

NdIII excitation (λex = 580nm, 5G5/2← 4F9/2) (Figure 5a), with Nd-Biphen exhibiting some 

fine splitting for these transitions. Ligand sensitization of the emission is also observed for 

Nd-Naph and Nd-Biphen (Figure 5a). The excitation spectra of Nd-But monitored for the 

4F3/2→4I11/2 transition (λem~1060 nm) exhibit NdIII-centred excitations in the UV to visible 

range of the spectrum arising from the 4I9/2 ground state to the 4DJ/2, 4I11/2, 2L15/2, 2D5/2, 2P1/2, 



2K15/2, 4G7/2-5/2, 4S3/2 and 4F9/2-7/2 excited states (Figure 5b). The excitation spectra for Nd-

Naph and Nd-Biphen also display broad bands at 320 and 305 nm due to absorption by the 

aromatic ligand antenna (Figure 5b). Similar characteristics are observed in the corresponding 

UV/Vis diffuse reflectance spectra (Figure S9, Supporting Information).  

 

Figure 5. (a) Room-temperature (RT) PL spectra for Nd-But obtained upon direct excitation 

at 584 nm (5G5/2← 4F9/2) and Nd-Naph and Nd-Biphen on ligand excitation (λex = 320 nm 

and λex = 305 nm respectively). (b) Corresponding RT excitation spectra (λem = 1057-1061 

nm, 4F3/2→4I11/2 transition). (c) RT PL spectra for Yb-Naph and Yb-Biphen under ligand 

excitation (λex = 320 nm and λex = 305 nm respectively). 

Figure 5c shows the PL spectra for Yb-Naph and Yb-Biphen obtained upon ligand-

centered excitation at 320 and 300 nm, respectively. A broad band centred at 977-978 nm 

corresponding to the 4F5/2→4F7/2 transition is observed. The excitation spectra support this 

observation for Yb-Naph and Yb-Biphen where there is absorption from the ligand at 320 

and 300 nm, respectively, but no ff transitions are observed (Figure S10, Supporting 

Information).  

Photoluminescence quantum yields (ΦPL) for direct excitation of EuIII were ~1-3% for all 

samples (Table 2). These low values are consistent for direct lanthanide excitation due to the 

low molar absorption coefficients of the ff transitions.29 Whilst Tb-Biphen and Tb-Naph are 

only weakly or non-emissive at room temperature upon direct excitation of TbIII, the ΦPL for 



Tb-But was significantly greater at 8%.  The observed emission lifetimes of EuIII (5D0) and 

TbIII (5D4) phosphonates are shown in Table 2. Upon direct excitation and ligand sensitization 

Eu-Naph exhibits a monoexponential decay curve, with an observed lifetime of τ~0.36 ms. 

Eu-Biphen and Eu-But  both exhibit biexponential decay curves, comprised of a short-lived 

component of similar magnitude (τ1~0.30-0.38 ms) and a longer lived component of τ2~1.00-

1.32 ms, depending on the mode of excitation. Notably for Eu-But  the long-lived component 

makes only a minor contribution (~7%), but becomes the dominant feature for Eu-Biphen 

(~73%).  Tb-Biphen and Tb-But similarly exhibit biexponential decay curves, but the 

lifetime and contribution of each component differs significantly. Tb-But displays two 

lifetimes, τ1 ~0.98 ms and τ2 ~2.69 ms that contribute equally to the decay curve. In contrast, 

Tb-Biphen exhibits two much shorter lived components of similar magnitude that also 

contribute equally (τ1 ~0.33 and τ2 ~0.80 ms). The origin of the biexponential nature of the 

Ln-But and Ln-Biphen is unclear. The crystallographic data indicates that only one LnIII 

environment is present in all samples. Concentration quenching, where excitation energy 

migrates between LnIII sites before being trapped by a quencher site is common in solid-state 

materials where the LnIII concentration exceeds more than a few percent, as is the case here.64 

The observed biexponential decays could therefore arise due to emission from quenched 

(short-lived) and unquenched sites (longer lived). Moreover, concentration quenching 

typically results in low emission quantum yields, which is in agreement with our observed 

values. Non-radiative energy transfer is highly dependent both on the dimensionality and the 

distance between energy donor and acceptor sites.30 As such, differences in rate of energy 

transfer processes occurring within the 2D sheets for Ln-Biphen or 1D chains for Ln-But  

compared to the bulk 3D network are anticipated to lead to complex decay kinetics that 

deviate from simple exponential behavior.The emission quantum yields for ligand 

sensitization (ΦLS) can be estimated for EuIII from the experimental lifetimes and the 



corrected emission spectrum due to the presence of the purely magnetic 5D0→7F1 transition, 

from:63    

Φ"# =
%&

%&'%(&
= 	 *+,-

*&
         (Eq. 1) 

where kr, knr, τobs and τr are the radiative and non-radiative rate constants, observed and 

radiative lifetimes,  respectively. This assumes that only radiative and non-radiative pathways 

are responsible for the depopulation of the 5D0 state. Assuming the energy and dipole strength 

of the 5D0→7F1 transition is constant, it is possible to estimate the radiative lifetime from: 

 .
*&
= 	𝐴01𝑛3(

56+6
578

)          (Eq. 2) 

where AMD is the spontaneous emission probability for the 5D0→7F1 transition in vacuo, n is 

the refractive index of the medium and (Itot/IMD) is the ratio of the integrated area for the Eu3+ 

emission spectrum to the integrated area for the 5D0→7F1 transition. Taking the refractive 

index as n = 1.5,61 we find ΦLS to be 14% for Eu-Naph and 31% for Eu-Biphen, indicating 

that population of the EuIII 5D0 level via ligand sensitization from the naphthalene- or 

biphenyl-phosphonate ligands is significantly more efficient than direct excitation of the EuIII 

center.  

Quenching of LnIII lifetimes by coordinated water molecules occurs as a result of non-

radiative deactivation of the emissive state due to coupling with O-H oscillations.65 The 

number of water molecules (nw) in the EuIII first coordination sphere can be determined with 

the empirical formula:31,66 

𝑛: = 1.11 × [𝜏@. − 𝑘C − 0.31]      (Eq.3) 

The nw values calculated for Eu-Naph and Eu-Biphen of ~2 and ~0, respectively, are in 

excellent agreement with our constitutional and structural assignment for these materials. We 



note that for Eu-Biphen, a slightly elevated nw≈0.5 is obtained upon direct excitation, which 

suggests the contribution of additional non-radiative deactivation channels in this material. 

For Eu-But, we determined nw ≈ 1.3, which reflects that this compound contains both a 

constitutional water molecule and also contains multiple partially-protonated 

organophosphonate ligands which supply additional O-H oscillators.  

Although it was not possible to determine ΦPL or τobs with our experimental set-up for 

the Nd-phosphonate series, we note that relatively intense NIR emission was observed under 

moderate experimental conditions (7-10 and 7-10 nm excitation and emission slit widths, 

respectively), despite the propensity for non-radiative quenching through C-H, C-C and O-H 

oscillations on the ligands and coordinated water molecules.67,68  

  



Table 2. Observed emission lifetime (determined from either mono- or bi-exponential decay 

functions) (τi), pre-exponential coefficients (Ai),  radiative rate constants (kr) non-radiative 

rate constants (knr) absolute emission quantum yields (ΦPL) and calculated emission quantum 

yield for ligand sensitization (ΦLS) and number of water molecules in the first coordination 

sphere (nw) for EuIII- and TbIII-phosphonates.  

Compound 

	
λex 

(nm) 
τ1 

(ms) 

 
A1 

 
τ2 

(ms) 

 
A2 kr 

(s-1) 
knr 

(s-1) 
ΦPL 
(%) 

ΦLS 
(%)e 

 
nw 

Eu-But 
 

393a 
0.32 

± 0.05 
0.93 1.32  

± 0.05 
0.07 

270 1525 3 
 
- 

 
1.3 

Eu-Naph 
 

393a 
0.37 

 ± 0.05 
1.00 - - 

359 2457 2 - 
2.3 

 

 
330b 

0.36 
± 0.05 

1.00 - - 
390 2427 - 14 

2.3 

Eu-Biphen 
 

393a 
0.30  

± 0.05 
0.20 1.00  

± 0.05 
0.80 

440 780 0.7 - 0.5 

 

 
305c 

0.32 
± 0.05 

0.23 1.32 0.73 
252 717 - 31 

0.2 

Tb-But 
 

377d 
0.98 

± 0.05 
0.57 2.69 

± 0.05 
0.47  

- 
 
- 8 

 
- 

 

Tb-Biphen 
 

377d 
0.38  

± 0.05 
0.51 0.86  

± 0.05 
0.49  

- 
 
- 

f - 
 

 

 
305c 

0.33  
± 0.05 

0.52 0.80  
± 0.05 

0.48 - - - - 
 

a λex = 393 nm (7F0 ←5L6), b λex = 330 nm (Naph excitation), c λex = 305 nm (Biphen excitation), d λex = 377 nm 

(5D3←7F6), e ΦLS calculated using the average experimental lifetime <τ> = ΣτiAi2/τiAi and corrected emission 

spectrum for EuIII, f measured emission intensities too low to determine ΦPL. N.B no emission lifetimes or 

quantum yields measured for Tb-Naph due to absence of room-temperature photoluminescence. 

4. Discussion 

A combination of powder and single-crystal X-ray diffraction studies were employed 

to investigate the influence of size, shape and steric effects of the organic ligand on the 

dimensionality and supramolecular organization in layered lanthanide phosphonates. The 

observed d-spacings are in excellent agreement with the length of the organic ligands 

incorporated, whereby organic moieties from two adjacent layers are accommodated into the 



interlamellar space. We have seen that size and shape of the ligand can have an effect on the 

type of layered phosphonate that forms. In Ln-But materials, the t-BuPO3H2 ligand size 

determines the ligand to metal ratio in the compound and to maintain charge balance, one of 

the phosphonate oxygen donors remains protonated and does not bridge between metal 

centers. This binding mode results in a one dimensional polymer. Water of crystallization is 

present to help stabilize these chains by the formation of hydrogen bonding between chains 

and the protonated oxygen atom allowing the formation of a pleated layer. In contrast, Ln-

Naph and Ln-Biphen materials form the more familiar layered structures, similar to the 

previously reported lanthanide phenyl phosphonates. As confirmed by TGA and PL 

spectroscopy, in Ln-Naph two water molecules coordinate directly to the metal center, 

whereas in Ln-Biphen there is no water present. It seems plausible to attribute this effect to 

differences in the size and nature of the two ligands, whereby the steric bulk of the Naph-

PO3H2 moiety augments the coordination space around the LnIII center, facilitating the direct 

coordination of the smaller water molecules.   

Ln-phosphonates exhibit two distinct morphologies; 2D plates and 1D nanorods. We 

observe that a smaller ionic radius (i.e. YbIII) favors one-dimensional growth, which is 

consistent with the nanomorphology reported previously for layered lanthanide phosphates 

(LnPO4) and lanthanide hydroxides (Ln(OH)3).60 Moreover Ln-But materials, in particular, 

exhibit rod-like crystal morphologies with a high aspect ratio, which is in excellent agreement 

with the formation of a 1D coordination polymer that assembles in the solid-state via 

hydrogen bonding into a pseudo-2D supramolecular structure, as identified by X-ray 

crystallography. The anisotropy of these interactions that prevail in distinct directions of 

space is thus reflected in the crystal habit.              

The addition of STS generally leads to more uniform crystal morphologies, improving 

the sample monodispersity. The influence of STS was previously considered in nanorod 



growth in lanthanide phenyl phosphonates.54 Two growth mechanisms were proposed. In the 

first, the formation of an intercalated structure where STS molecules are held between the 

hydrophobic lamellar phase of the lanthanide phenyl phosphonate is described; subsequent 

removal of the STS exfoliates the structure into the individual nanorods. The second 

mechanism postulates that 1D crystal growth is possible if the chemical potential of the 

monomers in solution are higher than the chemical potential of an atom on a crystal seed. 

Since we observed one-dimensional crystal growth even in the absence of STS, we believe 

that for Ln-But the connectively of individual lanthanide phosphonate centers plays a more 

critical role in defining the crystal morphology. 

With the exception of Yb-Naph, which forms rod-like structures, irregular two-

dimensional plates are more commonly observed for Ln-Naph materials.  Considering this, it 

is likely that there is no or only a small anisotropic structural feature from the ligand-

lanthanide bonding within the layer, so preferential favored one-dimensional growth is 

reduced or even absent. The Ln-Biphen series is influenced by the more extended 

hydrophobic ligand, which gives rise to film-like assemblies, whose amorphous character is 

consistent with the corresponding PXRD patterns. 

 The photoluminescence characterization of the EuIII-phosphonates enabled us to 

investigate not only the optical properties of these materials, but also provided 

complementary insight into the molecular structure, which was crucial for those systems 

where it was not possible to obtain single crystal X-ray diffraction data. Firstly, the 

observation of a single component for the 5D0→7F0 transition confirms that there is only one 

unique crystallographic site in each material.29,62 Secondly, for Eu-Naph, splitting of the 

7F1→5D0 transition into three Stark components supports the unit cell assignment as 

orthorhombic.69 Furthermore, splitting of the 7F2→5D0 into only three Stark components  

suggests a point group symmetry close to D2 indicating the coordination environment around 



the EuIII-center is likely a distorted dodecahedron.69 Moreover, the number of water 

molecules estimated from time-resolved PL measurements for Eu-But, Eu-Naph and Eu-

Bibphen (nw = 1, 2 and 0, respectively) was in excellent agreement with that obtained from 

TGA and/or X-ray crystallography.  

With the exception of Tb-Naph, room temperature photoluminescence is observed 

via both direct excitation of the LnIII center and ligand sensitization for all Ln-phosphonates 

studied. Near-infrared (NIR) emission was observed from both Nd- and Yb-phosphonates at 

room temperature, via both direct excitation and ligand sensitization. We note that emission 

quantum yields obtained for direct excitation of Eu-phosphonates (ΦPL ~0.7, 2 and 3% for 

Eu-Biphen, Eu-Naph and Eu-But, respectively) are lower than those previously reported for 

EuIII-doped LaIII phenyl phosphonates (e.g. ΦPL = 10% for La(HO3PC6H5)2:0.06Eu).55 This is 

attributed to enhanced concentration quenching in our Ln-phosphonate materials, whereby 

excitation energy transfer between nearest neighbor EuIII lattice sites activates an additional 

non-radiative deactivation channel.70 Emission quantum yields for ligand sensitization, ΦLS, 

are considerably higher than direct excitation (ΦLS =14% and ΦLS = 31% for Eu-Naph and 

Eu-Biphen, respectively). Ligand sensitization proceeds via energy transfer from the lowest 

excited triplet state (T1) of the ligand antenna. It has been previously demonstrated that 

energy transfer occurs most efficiently when an energy gap of ΔE = 2500-3000 cm-1 between 

the triplet donor state on the ligand and the emissive state of the acceptor LnIII center is 

present.49,71 The triplet state energies were estimated from the 77 K phosphorescence spectra 

and were found to be 21,097 cm-1 for 1-naphthalene phosphonic acid and 22,624 cm-1 for 4-

biphenyl phosphonic acid, respectively (Figure S7b,d, Supporting Information). Figure 6 

shows the corresponding energy level diagram for Ln-Naph and Ln-Biphen (Ln = EuIII, 

TbIII). For EuIII-phosphonates the T1 energies of both organic ligands lie ~3500-4500 cm-1 

above the emissive 5D0 manifold (~17400 cm-1), resulting in good energy transfer. For Tb-



Naph no room-temperature PL was observed. Examination of the energy level diagram 

reveals that the Naph T1 state lies ~600 cm-1 above the emissive 5D4 state (20,490 cm-1). At 

room temperature, thermal population of higher vibrational levels within the 5D4 manifold is 

expected, thus facilitating back energy transfer to the ligand. However, on cooling to 77 K, 

the characteristic TbIII emission spectrum is observed for Tb-Naph, suggesting that the 

probability for back energy transfer to the ligand T1 level is reduced due to a decreased 

Boltzmann population of vibrational levels. In contrast for Tb-Biphen, the ligand T1 state lies 

~2100 cm-1 above the TbIII emissive state, resulting in efficient ligand to metal energy 

transfer and inhibiting back energy transfer at room temperature. This indicates that with 

judicious matching of the ligand donor and LnIII acceptor energy levels it is possible to switch 

the LnIII photoluminescence on and off by changing the temperature.   

 

Figure 6. Partial energy level diagram of 1-naphthalene- and 4-biphenyl-phosphonic acids 

(Naph-PO3H2 and Biphen-PO3H2, respectively) and EuIII (intra-4f6) and TbIII (intra-4f8) 

energy levels. Solid and dashed lines represent radiative and non-radiative transitions, 

respectively. ISC – intersystem crossing, FET – forward energy transfer, BET – back energy 

transfer. 



Conclusions 

In this work, we have synthesized and characterized the structure, morphology and 

photoluminescence properties of a series of two-dimensional, layered LnIII-phosphonate 

materials. Through systematic variation of the ligand (But-PO3H2, Naph-PO3H2 and Biphen-

PO3H2) and LnIII (EuIII, TbIII, NdIIII and YbIII) incorporated, we have been able to identify the 

key structure-property relationships that control the supramolecular organization, 

morphology and optical properties of unprecedented organic-inorganic hybrid Ln-

phosphonates. The small, saturated ligand But-PO3H2 within the corresponding Ln-But 

series, promotes the growth of 1D coordination polymers, which are assembled into pseudo-

two-dimensional sheets via hydrogen bonding. We report the crystallographic structure of 

these materials here for the first time. The anisotropy of the primary building units is 

reflected in the tendency of Ln-But to adopt nanoscopic rodlike crystal morphologies.  In 

contrast, larger aromatic ligands bridge directly between LnIII centers, forming 2D, layered 

materials in which the interlamellar distance may be tuned by the ligand size. Ln-Naph and 

Ln-Biphen materials typically result in a 2D platelike crystal morphology or form 

amorphous films. With the exception of Tb-Naph, all LnIII-phosphonates exhibit room 

temperature photoluminescence that is characteristic of the nature of the incorporated LnIII 

ion. The emission efficiency can be modulated through judicious selection of the organic 

ligand: aromatic ligands such as Naph-PO3H2 and Biphen-PO3H2 facilitate population of the 

LnIII emissive state via ligand sensitization, resulting in increased emission quantum yields. 

However, if the energy gap between the ligand T1 donor level and the LnIII acceptor state is 

too small (<1000 cm-1), reverse energy transfer can inhibit photoluminescence at room 

temperature, as observed for Tb-Naph. Lowering the temperature, however, can result in the 

PL channel being switched on once again. Careful consideration of both the ligand and LnIII 

energy level diagrams should thus be essential step when designing emissive, Ln-



phosphonate materials. This study therefore provides key insight into the essential structure-

property relationships that must be identified for the design of layered, organic-inorganic 

materials with tailored functionality and morphology.  
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