
Horse: towards an SDN traffic dynamics simulator
for large scale networks

Eder Leão Fernandes†

e.leao@qmul.ac.uk
Gianni Antichi‡

gianni.antichi@cl.cam.ac.uk
Ignacio Castro†

i.castro@qmul.ac.uk
Steve Uhlig†

steve.uhlig@qmul.ac.uk
†Queen Mary, University of London ‡University of Cambridge

CCS Concepts
•Networks → Network simulations; Network ex-
perimentation; Network measurement;

Keywords
Software Defined Networking; simulation

1. INTRODUCTION
The Software Defined Networking (SDN) paradigm

can be successfully applied to the inter-domain ecosys-
tem [1] to empower network fabrics with finer grained
policies and traffic engineering capabilities. While there
is potential to enhance Internet routing, introducing
SDN at the inter-domain level might also lead to pol-
icy misconfiguration. As network fabrics are closely in-
terrelated [3], configuration mistakes in one fabric can
lead to unexpected shifts of traffic volumes in another
one. Therefore, understanding the impact of new SDN
dynamics is crucial for the design and management of
robust inter-domain fabrics.

Figure 1 illustrates a network fabric comprised of edge
and core switches. Such fabric has fine grained network
policies and hence, packets are subject to different pol-
icy enforcements. Applications such as load balancing
and blackholing, typical in legacy networks, should co-
exist in harmony with those enabled by SDN (i.e., spe-
cific peering and source routing). Composition of net-
work applications has been studied in [4], however, en-
suring no interference does not guarantee that packets
flow as expected. Inconsistencies might occur even as-
suming completely independent policies. For instance,
in Figure 1, a misconfigured load balancing policy can
cause congestion in the core, a chosen source routing
path might be inefficient, or a rate limiting policy can
undermine the quality of a TCP transmission.

Simulators are a popular approach to verify network
behavior and test applications before going in produc-
tion. As SDN matured, a range of tools to reproduce
networks were developed. Researchers and operators

can use solutions such as Mininet1 to study how fine
grained policies may affect network traffic. Unfortu-
nately, Mininet is not scalable [5]. This severely un-
dermines the detailed analysis of use cases that involve
large topologies and/or traffic loads. Furthermore, gen-
eral purpose SDN simulators usually include the full
implementation of the protocols stacks, e.g., the com-
plete OpenFlow mechanics. Even though high fidelity
is desirable, in specific situations, higher levels of ab-
straction may be necessary.

Finding the right level of abstraction to analyze SDN
network policies is not trivial. Indeed, such an abstrac-
tion must be able to capture the interactions between
the now decoupled control and data planes, and show
the reaction of the controller to specific network events
(e.g., a change in the path of a flow due to link con-
gestion). At the same time, the degrees of freedom
inherent to controller applications must be taken into
account. The abstraction must allow a flexible logic for
the SDN controller: suitable for testing but without ex-
plicitly dictating the simulated behavior. The trade-offs
between flexibility and control are important, but find-
ing the right balance is a key aspect in the design of a
simulator.

Recognizing the need to evaluate policies over inter-
domain SDN fabrics, this poster proposes Horse: a new
simulator to foster SDN research and improve our un-
derstanding on the impact of the new use cases over
the traffic flow. A simulation tool capable of efficiently
reproducing large scale networks, high traffic loads, and
policies, by abstracting the interactions between switches
and controllers of the SDN network.

2. APPROACH
Figure 2 shows a high level architecture of the pro-

posed simulator. The data plane of the simulator is
based on three main building blocks: (1) Events, (2)
Topology and (3) Traffic statistics, and network state.
Events are a temporally ordered set of inputs for the

1http://mininet.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162912897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Load balancing
Application specific policy
Blackholing

 Source routing
Rate limit policy

Fabric Edge Fabric EdgeFabric Core

Figure 1: Traffic policies in an SDN network fab-
ric. Finer granularity in SDN enables complex policies
across ISPs and IXPs networks.

topology (i.e, data traffic, link failure). To provide
a scalable solution, we propose a flow-level data traf-
fic representation, similar to fs-sdn [2], rather than a
packet-level granularity. A data flow is an aggregate
of packets with equal values of the header fields, but
with different traffic rates. Data flows are treated as
events that can be set in the form of a traffic matrix, or
can be generated by the simulator itself. Traffic statis-
tics and the state of the topology are updated after ev-
ery event and exported to a control plane module. Al-
though not reflecting the actual monitoring that would
be performed inside a fabric, the monitoring primitives
of the simulator will contemplate typical network mea-
surements such as link bandwidth and SDN-enabled
ones (i.e., OpenFlow counters). These measurements
enable the creation of policies based on the current sta-
tus of the network.

The control plane of the simulator is based on three
building blocks: (1) Policy Generation, (2) Control Plane
related instructions, and (3) Monitoring. The policy
generator is a lightweight and modular controller that
translates high level policies into OpenFlow control mes-
sages used as input for the fabric. Unlike other simu-
lators, in order to reduce the state that needs to be
kept, there are no real OpenFlow connections between
the control and the data plane. While default policies
will be driven by potential SDN use-cases2, we target a
flexible simulation infrastructure which enables the up-
grading of the system with new policies (use cases). The
policy generator will only make basic policy validation
of policy composition.

We will evaluate the simulator by creating an SDN
model based on the topology of one of the largest Inter-
net Exchange Points (IXP). We will then assess the sim-
ulator using real data from the IXP itself, by replaying
its behavior over time. Simulation time and accuracy
will be evaluated under multiple configurations, from

2https://www.h2020-endeavour.eu/sites/www.
h2020-endeavour.eu/files/u54/D.4.1.pdf

Traffic
Statistics

&
Network

State

Events

Topology

Policy configuration
“load balancing”: “edge->core”,
“application based peering": “e1->e3” : “http”,
“rate limiting”: “e2->e4”: “500 Mbps”

Policy
GeneratorInstructions

e1 e2

c1 c2

e3 e4

Monitor

Control plane

Data plane

Figure 2: High-level architecture of the simula-
tor.

basic forwarding based on source and destination Media
Access Control (MAC), to more complex combination
of policies such as load-balancing and application-layer
peering.

3. ACKNOWLEDGMENTS
Research supported by the EU’s Horizon 2020 re-

search and innovation program (ENDEAVOUR project,
grant agreement 644960).

4. REFERENCES
[1] A. Gupta, L. Vanbever, M. Shahbaz, S. P.

Donovan, B. Schlinker, N. Feamster, J. Rexford,
S. Shenker, R. Clark, and E. Katz-Bassett. Sdx: A
software defined internet exchange. In SIGCOMM.
ACM, 2014.

[2] M. Gupta, J. Sommers, and P. Barford. Fast,
accurate simulation for sdn prototyping. In
HotSDN. ACM, 2013.

[3] T. King. Traffic Volume Dependencies between
IXPs. https://www.euro-ix.net/m/uploads/2015/
10/26/e-TK-20151026-Euro-IX-Traffic Volume
Dependencies Between IXPs-Neutral.pdf. [Online;
accessed 15-Apr-2016].

[4] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker. Composing software-defined networks.
In NSDI. USENIX, 2013.

[5] D. Pediaditakis, C. Rotsos, and A. W. Moore.
Faithful reproduction of network experiments. In
ANCS. ACM/IEEE, 2014.

