
Enabling Fast Hierarchical Heavy Hitter Detection
using Programmable Data Planes

Diana Andreea Popescu
University of Cambridge

diana.popescu@cl.cam.ac.uk

Gianni Antichi
University of Cambridge

gianni.antichi@cl.cam.ac.uk

Andrew W. Moore
University of Cambridge

andrew.moore@cl.cam.ac.uk

ABSTRACT
Measuring and monitoring network traffic is a fundamental
aspect in network management. This poster is a first step to-
wards an SDN solution using an event triggered approach to
support advanced monitoring dataplane capabilities. Lever-
aging P4 programmability, we built a solution to inform a
remote controller about the detected hierarchical heavy hit-
ters, thus minimizing control plane overheads.

CCS Concepts
•Networks → Programmable networks; Network man-
agement; Network monitoring;

Keywords
Hierarchical Heavy Hitters, SDN, P4

1. INTRODUCTION
Network monitoring is the fine art of providing the nec-

essary information for network management. Despite the
importance to detect network trends to quickly locate po-
tential issues is well recognized, dataplane observability has
not considerably improved over the time. In the past, it re-
lied on packet sampling techniques to lower overheads and
data collection bandwidth, thus impacting estimation accu-
racy. OF does not currently improve the dataplane visibil-
ity: the main mechanism exposes the per-port and per-flow
counters available in the switches. An application running
on top of the controller can periodically poll each counter
using the standard OF APIs, and then perform any software-
based algorithm to get insights into the network behavior.
However, this approach limits significantly the original flex-
ibility intended by SDN. While increasing the gap between
two consecutive counters requests reduces the controller ca-
pabilities to react in a timely fashion to network events, con-
tinuously requesting counters from switches leads to non-
scalable solutions by overloading the control plane. For this
reason, lately a number of proposal rely on P4 programma-
bility to extend dataplane functionality for more advanced
monitoring applications. Recent solutions focused on en-
hancing network visibility by exporting counters at fixed pe-
riods. FlowRadar [4] exports the dataplane flow counters
kept for all flows at short time scales, e.g., 10ms. Hash-
Pipe [6] determines the heavy hitters in the dataplane, ex-

porting the flow counters every 20 seconds, corresponding
to a table flush period, while UnivMon [5] relies on sketches
computed in the data plane which are exported to the control
plane. Although these architectures prove to be flexible and
accurate, the collector, i.e., the network controller, receives
at a fixed time interval the generated counters/sketches from
the data plane, and estimates the various application-level
metrics of interest. However, such an architecture might suf-
fer from the same problems as the "legacy" OF protocol: the
ability to detect a network event and react accordingly de-
pends on the controller’s capabilities to collect statistics at
short time ranges [2]. Our approach takes a different direc-
tion. We recognize the need of monitoring the traffic from
multiple sources to have a global view of the network and
we acknowledge that reducing controller overheads is cru-
cial to avoiding (potential) scalability problems. To this end,
in this poster we present a first step towards smarter data-
planes. By leveraging dataplane programmability, we seek
to transform the switch from a passive monitoring infrastruc-
ture to an “active" one. We envision enhancing the switch
functionality with precise monitoring tasks, where the con-
troller gets insights into the network only when a specific
event occurs, without facing controller scalability problems.
As a first example, in this poster we show how we can lever-
age P4 programmability to detect Hierarchical Heavy Hitters
into the dataplane and inform the control plane only when
the detection is completed.

2. SOLUTION
We propose a solution to identify the heavy hitters in a

network in a hierarchical manner, reducing the controller
overheads, by leveraging P4 to move the monitoring logic
in the dataplane. An algorithm for hierarchical heavy hit-
ter detection for OF-enabled switches was presented in [3].
To detect the heavy hitters, the controller inserts rules in the
TCAM to match source IP prefixes, starting with the rules
that match the 0* and the 1* prefixes. In each time interval,
the controller polls the switches for the counts of the rules
that have already been inserted, and determines whether the
threshold for heavy hitters has been surpassed. If this hap-
pens for a specific prefix, the controller will report that IP
prefix as a heavy hitter for that time interval, and it will in-
sert additional rules in the corresponding switch to monitor
the child prefixes of that IP prefix. In the case that the count

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162912896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for a prefix is smaller that the threshold, the count is added to
the parent prefix, and the rule corresponding to that IP pre-
fix will not be used in the next time interval. This algorithm
relies on the controller to process the counters, determine
the hierarchical heavy hitters for that interval, and decide
which prefixes should be monitored in the future. However,
using P4, the controller could poll periodically the switch
to obtain the current sizes for the monitored IP prefixes, in
order to determine the hierarchical heavy hitters for that in-
terval, but it does not need to indicate to the switch which
IP prefixes should be monitored during each time interval,
leaving this operation to the dataplane. Going further, we
eliminate the periodic polling done by the controller by hav-
ing the dataplane generate a packet to signal the detection of
a hierarchical heavy hitter.Thus, when a packet arrives, we
need to find the longest IP prefix that matches the source IP
address. Following the idea from [7], we use a hash table
for each prefix length, thus for IPv4 addresses, we need 32
hash tables. The key to index the hash table is the source IP
prefix. When a packet arrives, we check each table, starting
with the table whose prefix length is the longest (32 bits, the
full IP address), to see if there is a non-zero entry in the hash
table. If the sum of the hash table entry and the packet size is
larger than a predefined threshold size for hierarchical heavy
hitters, then we inform the controller about the detected hi-
erarchical heavy hitter. Additionally, we form the child IP
prefix by extending the IP prefix with one additional bit and
we store the packet size in the corresponding hash table. If
the sum is not larger than the threshold, we store the new
sum in the hash table corresponding to the original IP prefix.

P4 Prototype. We built a prototype of our algorithm in P4
version 1.1. Although P4 offers the lpm option for longest-
prefix matching, we found that we are not be able to con-
struct the child IP prefix from the matched IP prefix, in the
case that the IP prefix’s count indicates a hierarchical heavy
hitter. Thus, our implementation uses a match+action table
for each hash table and additional match+action tables for
the other operations. A match+action table specifies a sin-
gle action that applies to every packet. Each table uses a
register array for the hash table that holds the IP prefixes
counters. The action of each match+action table looks up
the packet’s source IP prefix in its corresponding hash table.
The key used for hashing is the source IP prefix, which is
obtained from the source IP address of the packet using a
mask to keep only the relevant bits. The control flow spec-
ifies a packet’s flow through the pipeline of match+action
tables. We use 8 such lookup tables, each corresponding to
an IP prefix length of 32, 28, 24, 20, 16, 12, 8 and 4 bits,
respectively. We used IP prefixes multiples of 4 due to the
fact that the number of stages in the pipeline is small [1]. If
the location in the hash table is empty, the packet moves to
the next table in the pipeline, which corresponds to a smaller
IP prefix length. If the location is not empty, the current
counter associated with that prefix is read into metadata us-
ing another match+action table, and the remaining lookup
tables are not applied. Further, we check whether the sum
between the current packet’s size and the counter read is
larger than a predefined heavy hitter threshold size. If it is,

then we have found a hierarchical heavy hitter, and we thus
need to alert the controller about it, by generating a packet
digest (generate_digest action in P4) which contains
the current IP prefix of the hierarchical heavy hitter, and also
to insert the current packet’s size in the appropriate hash ta-
ble, using the child IP prefix, represented by the current IP
prefix extended with 4 additional bits of the source IP ad-
dress. Thus the packet will move through match+action ta-
bles whose purpose is to construct the IP prefix to be used
for hashing into the hash table corresponding to the child
IP prefix. There are 8 update tables, corresponding to IP
prefixes of length 32, 28, 24, 20, 16, 12, 8 and 4 bits, re-
spectively. Depending on the value of the child IP prefix, the
corresponding table is applied, and the remaining update ta-
bles will not be applied. The last match+action table in our
pipeline either writes the new size for current IP prefix in the
hash table, or, in the case that a hierarchical heavy hitter was
detected, just the packet size in the hash table corresponding
to the child IP prefix.

In future work we will extend our prototype with other
network monitoring applications, and we will evaluate it and
compare its performance and accuracy to other existing so-
lutions.

Acknowledgements. This work is supported by the EU
FP7 ITN METRICS (grant no. 607728), the EU Horizon
2020 SSICLOPS (grant no. 644866) and EU Horizon 2020
ENDEAVOUR (grant no. 644960) projects.

3. REFERENCES
[1] Bosshart et al. Forwarding Metamorphosis: Fast

Programmable Match-action Processing in Hardware
for SDN. In SIGCOMM. ACM, 2013.

[2] Curtis et al. DevoFlow: Scaling Flow Management for
High-performance Networks. In SIGCOMM. ACM,
2011.

[3] Jose et al. Online Measurement of Large Traffic
Aggregates on Commodity Switches. In Hot-ICE.
USENIX, 2011.

[4] Li et al. FlowRadar: A Better NetFlow for Data
Centers. In NSDI. USENIX, 2016.

[5] Liu et al. One Sketch to Rule Them All: Rethinking
Network Flow Monitoring with UnivMon. In
SIGCOMM. ACM, 2016.

[6] Sivaraman et al. Heavy-Hitter Detection Entirely in the
Data Plane. In SOSR. ACM, 2017.

[7] Waldvogel et al. Scalable High Speed IP Routing
Lookups. In SIGCOMM. ACM, 1997.


