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Dendritic cells (DCs), macrophages (Mf), and T cells are major components of the skin immune system, but their
interstitial spatial organization is poorly characterized. Using four-channel whole-mount immunofluorescence
staining of the human dermis, we demonstrated the three-dimensional distribution of CD31þ blood capillaries,
LYVE-1þ lymphatics, discrete populations of CD11cþ myeloid DCs, FXIIIaþ Mf, and lymphocytes. We showed
phenotypic and morphological differences in situ between DCs and Mf. DCs formed the first dermal cellular
layer (0–20mm beneath the dermoepidermal junction), Mf were located deeper (40–60mm), and CD3þ

lymphocytes were observed throughout (0–60mm). Below this level, DCs, T cells, and the majority of Mf formed
stable perivascular sheaths. Whole-mount imaging revealed the true extent of dermal leukocytes previously
underestimated from cross-section views. The total area of apical dermis (0–30mm) contained approximately
10-fold more myeloid DCs than the entire blood volume of an average individual. Surprisingly, o1% of dermal
DCs occupied lymphatics in freshly isolated skin. Dermal DCs rapidly accumulated within lymphatics, but Mf
remained fixed in skin explants cultured ex vivo. The leukocyte architecture observed in normal skin was
distorted in inflammation and disease. These studies illustrate the micro-anatomy of dermal leukocytes and
provide further insights into their functional organization.
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INTRODUCTION
The human dermis is rich in leukocytes such as dendritic cells
(DCs), macrophages (Mf), and T cells. Skin DCs migrate to
lymph nodes to activate naive T cells, but there is evidence
to suggest that skin DCs and Mf may also interact with
memory T cells in situ (Tomura et al., 2010; Jiang et al., 2012).
Skin DCs comprise distinct subsets. In addition to CD1aþ þ

Langerinþ epidermal Langerhans cells (LCs), CD1cþ DCs co-
expressing CD1a, CD14þ DCs, and CD141hiXCR1þ DCs
have been identified (Czernielewski et al., 1983; Lenz et al.,
1993; Nestle et al., 1993; Haniffa et al., 2012 and reviewed in
Collin et al., 2013) and distinguished from FXIIIaþCD163þ

interstitial Mf (Haniffa et al., 2009; Zaba et al., 2009). Dermal
DC subsets have distinct cytokine profiles and are functionally
specialized (Morelli et al., 2005; Klechevsky et al., 2008;

Haniffa et al., 2012). Dermal T cells are predominantly
CD4þ , have the effector memory cell phenotype
(CD45RA�CD45ROþCCR7� ), express the skin addressins
CLA, CCR6, and CCR4, and possess a diverse TCR repertoire
(Clark et al., 2006a, b). Th1, Th2, Th17, and Th22 CD4þ

T cells have been described (Eyerich et al., 2009 and reviewed
in Sallusto et al., 2012). CD4þCD25hi regulatory T cells are
observed in the dermis and are shown to be modulated by
epidermal LCs (Clark, 2010; Seneschal et al., 2012). Animal
studies have shown antigen-presenting cells (APCs) and
T-cell migration into skin via blood vessels and to the
draining lymph node via lymphatic channels (reviewed in
Forster et al., 2012).

Studies on human skin leukocytes, blood, and lymphatic
conduits have relied on two main techniques: (i) flow
cytometry of cells migrated from skin explant cultured
ex vivo or digested skin and (ii) in situ microscopic analysis
of cross-sectioned skin (Ochoa et al., 2008; Zaba et al., 2009).
These studies lacked the resolution to illustrate dermal
vascular networks, microanatomy of skin leukocytes, and the
role of lymphatics as conduits for DC migration to the draining
lymph node (Hudack and McMaster, 1933; Zaba et al., 2007;
Ochoa et al., 2008).

Here we performed whole-mount dermal sheet microscopy
to analyze DCs, Mf, and T cells in normal and diseased
skin. We also analyzed dermal blood and lymphatic vessels
and interrogated dermal APC lymphatic migration capacity in
normal skin. This study provides further insights into the
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functional organization of interstitial leukocytes in normal and
diseased skin.

RESULTS
Human dermis contains an interwoven network of lymphatic
and blood vessels

We first assessed the distribution of dermal blood capillaries
and lymphatics using antibodies to CD31 (PECAM1), an
endothelial cell marker, and lymphatic vessel endothelial
hyaluronan receptor 1 (LYVE-1). Double staining with CD31
and LYVE-1 allowed visualization of the blood capillary
network (CD31þLYVE-1� ) and initial lymphatics (CD31þ

LYVE-1þ ; Figure 1a–c). Looped blood capillaries were found
in the first 25mm beneath the dermoepidermal junction (DEJ;
Figure 1d). Between 25 and 50mm, blind-ended large bore
lymphatics and capillary networks were easily visualized
(Figure 1e). Whole-mount Z-stack reconstruction of the dermal
whole mount to a depth of 50mm beneath the DEJ showed the
more superficial distribution of blood capillaries above the
network of initial lymphatics (Figure 1f).

Initial lymphatic vessels appeared to lose LYVE-1 staining
in deeper dermis (4500mm) where intra-luminal valve-like
structures were observed (Figure 1g). We analyzed the expre-
ssion of the 38 kD transmembrane mucoprotein, podoplanin,

reported to be expressed by both initial and collecting
lymphatic vessels (Kawai and Ohhashi, 2012) and found that
initial lymphatic vessels expressed both LYVE-1 and podo-
planin, but collecting vessels were LYVE-1lo/�podoplaninþ

(Figure 1h). The transition between initial and collecting vessels
was marked by intra-luminal valves (Figure 1i) and sparse
expression of smooth muscle actin (Figure 1j).

Flow cytometry and cytology of dermal leukocytes

Before examining leukocytes in situ, we reviewed the pheno-
type, relative abundance, and morphology of dermal leuko-
cytes by flow cytometry and cytology. Analysis of major
histocompatibility complex class II expression (HLA-DR) and
cell granularity (side scatter (SSC) parameter) enabled the
separation of HLA-DR�SSCloCD3þ T lymphocytes from
HLA-DR�SSCmid�hiCD117þ mast cells and HLA-DRþ APCs
(Figure 2a). Mf were distinguishable by their autofluorescent
properties from DCs (Figure 2a). Successive gating of the HLA-
DRþ autofluorescent-negative DC fraction allowed CD14þ

DCs to be separated from CD14� cells. The latter fraction
comprises the major dermal CD11chi DC population, which
co-expressed CD1c (Haniffa et al., 2009, 2012) and CD1a and
CD11cloCD141hi DCs. CD1aþ þ þ LCs are CD11cloCD141lo.
CD14þ DCs were shown to be functionally distinct from
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Figure 1. Dermal lymphatics and blood vessels. (a–c) CD31 (red) and LYVE-1 (green) staining to identify CD31þLYVE-1� blood vessels and CD31loLYVE-1þ

lymphatic vessels. (d, e) Serial sections of region within inset in c. (d) CD31þcapillary loops and LYVE-1þ lymphatic tips at 0–25mm. (e) Blood and lymphatic

vessels between 25 and 50mm beneath the dermoepidermal junction (DEJ). (f) A three-dimensional projection of d and e. (g) Loss of LYVE-1 (green) expression at

the transition from initial to collecting lymphatic vessel (4500mm beneath the DEJ). (h) LYVE-1þpodoplaninþ initial lymphatic vessels and LYVE-1lo podoplaninþ

collecting vessels. (i) Valves (white arrows) within collecting lymphatic vessels. (j) Smooth muscle actin (red) at the start of collecting lymphatic vessel. Data are

representative of n45 from 43 separate donors, maximum Z-stacks projection. Scale bar ¼ 100mm except c ¼500mm.
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Figure 2. Flow cytometry, cytology, and in situ identification of dermal leukocytes. (a) Dermal leukocytes by flow cytometry as % of CD45þ cells. Representative

results from 43 experiments from 43 donors. (b) Cytology of dermal leukocytes. (c) CD11c (green; dendritic cell (DC)), CD3 (red; T cells), and FXIIIa (blue; Mf).

(d) CD11cþ DCs (red) are HLA-DRbr (green), whereas FXIIIaþ Mf (blue) are HLA-DRlo/neg. Cropped images on right. (e) LYVE-1 (green) is expressed by Mf.

(f) Some FXIIIaþMf express LYVE-1. (g) CD11c (green), CD14 (red), and FXIIIa (blue) distinguishes CD11cþCD14�FXIIIaneg DCs (green arrow) from

CD11cþCD14þFXIIIalo�neg DCs (CD14þ DCs; red arrow) and CD11c�CD14þ FXIIIabr Mf (blue arrow). Scale bar ¼ 50mm. (a–f) Representative of n45 from

43 separate donors. (h) CLEC9Aþ (red) HLA-DRþ (green) DCs (white arrows). Representative images from two donors. Maximum projection of Z-stacks shown.
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dermal Mf by adherence, endocytosis, and migration out of
skin explants cultured ex vivo (Haniffa et al., 2009).

We confirmed the cellular identity of dermal leukocytes by
Giemsa staining cytospin preparations of purified populations
(Figure 2b). Mast cells and lymphocytes had a low cytoplasm
to nuclear ratio. Mast cells had intensely basophilic cytoplas-
mic granules. Lymphocytes had circular nuclei with visible
chromatin granules. Mf possessed highly vacuolated cyto-
plasm and dense blue–black cytoplasmic melanin granules,
bean-shaped nucleus with lacy chromatin network. DCs had
highly vacuolated acidophilic cytoplasm with characteristic
fine external projections, an open nuclei with nucleoli con-
sistent with replicative potential as previously reported
(Haniffa et al., 2009, 2012). In contrast, CD14þ DCs had
granular oval nuclei, a mildly vacuolated basophilic
cytoplasm, and a few melanin granules in the occasional cell.

Dermal DCs, M/, and T cells are phenotypically distinct in situ

We next sought to locate the dermal DC subsets, Mf, and T
cells identified by flow cytometry and cytology in situ. Our
previous analysis revealed the utility of the integrin, CD11c,
and the transglutaminase FXIIIa, as antigens that distinguished
DCs from Mf (Zaba et al., 2007; Haniffa et al., 2009). We
used CD3 to identify T cells.

We detected a population of rounded CD11cþ cells and a
population of elongated cells that stained with FXIIIa
(Figure 2c and d). There was no overlap between these two
antigens with CD3. All CD11cþ cells in the dermis were
HLA-DRþ and CD3� in keeping with the expected pheno-
type of DCs (Figure 2c and d). Mf were CD11c� and
expressed variable HLA-DR (Figure 2d). DCs were larger
compared with CD3þ T cells and more rounded in shape
and less elongated than dermal Mf, which were FXIIIaþHLA-
DRlo and CD11c� (Figure 2c and d). We also observed LYVE-
1 expression on dermal Mf, although at a reduced level
compared with lymphatic endothelium (Figure 2e). LYVE-1
colocalized, although incompletely, with FXIIIaþ Mf and was
not expressed by DCs or T cells (Figure 2f).

In addition, small numbers of perivascular cells expressing
the lipopolysaccharide receptor CD14 and with a rounded
morphology (Figure 2g) corresponding to migratory CD14þ

DCs known to express FXIIIa in common with dermal Mf
(Nestle et al., 1993; Klechevsky et al., 2008; Haniffa et al.,
2009) were observed. These cells expressed higher CD14, but
less FXIIIa than interstitial Mf (Figure 2g).

HLA-DRþCLEC9Aþ cells corresponding to CD141hiXCR1
þ DCs as previously described (Haniffa et al., 2012) were
also identifiable in situ (Figure 2h). Both CD14þ DCs and
CD141hiXCR1þ DCs expressed CD11c (Figure 2g and
Haniffa et al., 2012). Migrating LCs were extremely rare and
accounted for approximately 2% of CD11cþ cells (Figure 2a
and Supplementary Figure 1 online). As such, we used CD11c
expression as a surrogate marker for all dermal DCs.

Anisotropic distribution of dermal DCs, M/, and T cells

We next investigated the distribution of DCs, Mf, and T cells
in the dermis. DCs were abundant at o20mm beneath the DEJ
(Figure 3a). Mf were more visible at 20–40mm and persisted

until 60mm beneath the DEJ and formed a second cellular
layer of APC (Figure 3b). T cells were found throughout the
dermis but more abundant at 40–60mm beneath the DEJ
(Figure 3c). A three-dimensional reconstruction of the optical
sections imaged up to 60mm beneath the DEJ illustrates the
cellular distribution of DCs, Mf, and T cells in situ (Figure 3d).

Below 60mm, cells became progressively more organized in
cords with an apparent perivascular distribution (see below). A
convenient way to visualize deeper structures in the whole-
mount dermal sheet was to examine the sheet from the
subcutaneous face, which presented a level of about 150mm
(Figure 3e). DCs, Mf, and T cells located 4150mm beneath
the DEJ were patchy in distribution with cell-dense and
pauci-cellular areas (Figure 3e). The number of DCs, Mf,
and T cells up to 30mm beneath the DEJ per mm2 dermis were
423±168, 291±51, and 1,153±231, respectively (mean±
SD; Figure 3f). This equated to 7.62� 108 DCs over an
average total surface body area of 1.8 m2, approximately
10-fold higher than the total number of myeloid DCs in the
entire blood volume of 5 l (7.5±3.02�107 myeloid DCs;
Jardine et al. manuscript submitted). The number of T cells in
the first 30mm of dermis is estimated at 2.08±1.24� 109

compared with 0.5–1� 1010 in 5 l of blood.
We next investigated the distribution of dermal CD8 and

CD4 T lymphocytes. As CD4 is also expressed by DCs, double
staining for CD3 and CD8 allowed us to identify CD8þ T cells
and CD3þCD8� T cells (Figure 3g). In all, 490% of
CD3þCD8� T cells correspond to CD4þ T helper cells as
CD3þ NKT cells are absent in healthy human skin (Figure 2a)
and o10% of CD3þCD8� dermal cells comprise gdT
cells (Ebert et al., 2006). We observed a higher proportion
of CD4þ T cells compared with CD8þ T cells in the human
dermis, in keeping with published data (Clark et al., 2006a).
The ratio of CD8þ : CD4þ T cells was 1:2.9 at o30mm and
1:4.1 at 4150mm beneath the DEJ.

DCs, M/, and T cells have unique spatial relationships to dermal
vessels

The organization of cells into cords suggested the existence of
stable perivascular structures. Staining for CD31 with a cell
marker revealed distinct spatial relationships of DCs, Mf, and
T cells to the dermal vascular network (Figure 4a–d). In order
to derive a quantitative view of the patterns of distribution, we
compared apical (o30mm) with deep (4150mm) dermis. We
enumerated DCs, Mf, and T cells that were perivascular
(o15mm from vessel) and interstitial (415mm from vessel).
DCs found o30mm beneath the DEJ were predominantly
interstitial in distribution. However, at 4150mm beneath the
DEJ, DCs were predominantly perivascular (Figure 4a). Mf
were both perivascular and interstitial at o30mm beneath the
DEJ, but primarily perivascular at 4150mm beneath the DEJ
(Figure 4b). T cells formed perivascular sheaths throughout the
dermis (Figure 4c). DCs, Mf, and T cells did not have any
specific spatial relationship with lymphatic vessels (Figure 4d).
The ratio of DC:Mf:T cell at o30mm beneath the DEJ was
1.0:0.5:2.2 but 1.0:1.2:5.02 at 4150mm beneath the DEJ. A
schematic diagram to show the distribution of dermal leuko-
cytes is illustrated in Figure 4e.
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Apical dermal DCs with branching morphology express fascin

In healthy skin, some dermal DCs located more superficially
(o20mm beneath the DEJ) formed clusters of cells with highly
branching cytoplasmic projections in contrast to DCs located
4150mm beneath the DEJ, which had a rounded morphology
(Figure 5a and b). This led us to speculate whether the highly

branching morphology was associated with increased activa-
tion and motility, a feature of lymphatic migration. We next
interrogated dermal DCs for the expression of fascin, the actin
cytoskeletal binding cell motility protein (Kureishy et al.,
2002). Interestingly, fascin was expressed exclusively by
superficial DCs that were in clusters (Figure 5c). Fascin
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expression was found very rarely on DCs found perivascularly
at 4150mm beneath the DEJ (Figure 5d). Mf did not express
fascin (Figure 5e).

Dermal DCs but not M/ migrate into lymphatic vessels

We next performed dynamic studies of leukocyte migration
into lymphatics. To our surprise, o1% of DCs were inside the
lymphatic lumen in freshly isolated skin (Figure 5f). However,

DCs were easily demonstrable within lymphatic lumen
(480% of DCs in field imaged) of dermal explants cultured
for 32 hours ex vivo (Figure 5g). Consistent with our previous
observations of fascin expression by highly branching DCs, we
observed fascin upregulation on DCs migrating into lympha-
tics (Figure 5h). Mf did not express fascin and were never
detected within dermal lymphatics in keeping with their
resident fixed nature (Figure 5h).
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Distortion of skin leukocyte architecture in disease

We next investigated dermal leukocyte microanatomy in
disease. We imaged skin biopsies (o30mm beneath the DEJ)
from involved skin of patients with psoriasis, atopic dermatitis,
CD4þ cutaneous T-cell lymphoma (CTCL), and graft-versus-
host disease (GVHD; Figure 6a–d). Psoriatic and atopic
dermatitis skin exhibited cord-like leukocyte aggregates
(Figure 6a and b) in contrast to the intense interstitial infiltrate

seen in CTCL and GVHD (Figure 6c and d). There was a
notable increase in DCs in addition to T cells in atopic
dermatitis and GVHD (Figure 6b and d). DCs generally had
a spindled or branched morphology in diseased skin. Although
both CTCL and GVHD dermis were rich in DCs and T cells, a
notable difference was the presence of lymphoid tissue-like
aggregates in GVHD (Figure 6d) in contrast to the more diffuse
infiltrate in CTCL (Figure 6c).
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DISCUSSION
This study provides a detailed analysis of the three-dimen-
sional organization of leukocytes, blood, and lymphatic
vessels within the human dermis. DCs, Mf, and T cells were
differentially distributed by depth within the dermis and in
relation to dermal vascular network. The whole-mount ima-
ging analysis revealed the true extent of leukocytes in the
dermis, previously underestimated using cross-section views.
Stable perivascular sheaths of leukocytes can be observed in
normal skin, but the leukocyte micro-anatomy is distorted in
pathology and adopts disease-related patterns. In all, o1% of
dermal DCs were located within dermal lymphatics in freshly

isolated skin, but lymphatic migration were readily observed
upon culturing skin ex vivo.

Lymphatic and blood vessel networks in the human dermis
have been visualized by injecting vital dyes (Hudack and
McMaster, 1933), electron microscopy (Sauter et al., 1998),
and more recently immunostaining for CD31, podoplanin,
and LYVE-1 (Kriehuber et al., 2001; Kawai and Ohhashi,
2012). The majority of these studies have focused on imaging
skin by cross-section or in vitro cell culture analysis. Although
intravital multiphoton imaging is useful for in vivo imaging of
animal models (Tal et al., 2011; Nagao et al., 2012; Roediger
et al., 2013 and reviewed in Germain et al., 2006), technical
constraints have limited its application to study human tissue.

CD11c, FXIIIa, and CD3 identified DCs, Mf, and T cells in
the dermis in agreement with previous reports (Zaba et al.,
2007; Ochoa et al., 2008; Haniffa et al., 2009). The spindle-
shaped morphology of FXIIIaþ Mf in the dermis had
previously led to their initial characterization as ‘‘dermal
dendrocytes’’ (Cerio et al., 1989) and contrasts with
CD11cþ DCs, which are predominantly rounded in situ.
Cytology provides additional distinction between DCs and Mf
and confirms the characteristic cytoplasmic melanin granules
seen in dermal Mf that visually describes the ‘‘melanophage’’
as shown here and in previous studies (McLellan et al., 1998;
Zaba et al., 2007; Haniffa et al., 2009). We also confirm that
LYVE-1 is a receptor that can identify human dermal Mf as
previously described (Bockle et al., 2008; Attout et al., 2009),
although it does not colocalize completely with FXIIIa.

Our analysis of healthy human skin has been done using
breast skin, and to avoid high autofluorescence of hair follicles
we have focused on interfollicular areas. Our observation of
distinct leukocyte layers and stable dermal perivascular
sheaths of DCs, Mf, and T cells suggest the existence of
microdomains where immune interactions occur. The recent
demonstration in mice of long-lived skin resident effector
memory T cells (Jiang et al., 2012) and the role of skin-derived
Tregs in inhibiting cutaneous immune response (Tomura et al.,
2010) highlights the potential significance of regional semi-
autonomous immune regulation.

Although in cross-section dermal leukocytes appear enriched
in the proximity of vascular structures (Cerio et al., 1989; Zaba
et al., 2007; Ochoa et al., 2008; Haniffa et al., 2009), our data
showing stable perivascular sheaths of leukocytes suggest
positioning to interact with newly recruited leukocytes. DCs
form the top most APC layer directly under the DEJ, which may
relate to their role as surveyors of the DEJ.

As our quantification of DCs and T cells only takes into
account the first 30mm thickness of the dermis, the numbers
we derive underestimate the true value. The abundance of
T cells at 430mm, anatomical sites sampled, and the lack of
accounting for epidermal T cells may explain the discrepancy
between our estimate and that previously reported (Clark
et al., 2006a, b). Nevertheless, the observation of high
numbers of DCs in the skin compared with blood remains
and is in keeping with their role as immune sentinels in
peripheral tissues.

The expression of fascin by DCs has been reported to occur
during DC maturation and migration to draining lymph node
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CD4+ cutaneous T-cell lymphoma

Graft-versus-host disease

Figure 6. Dermal leukocyte architecture is distorted in disease. (a) Psoriasis,

(b) atopic dermatitis, (c) cutaneous T cell lymphoma (CTCL), and (d) graft-

versus-host disease (GVHD) skin showing CD11cþ dendritic cells (DCs;

green), FXIIIaþMf (blue), and CD3þT cells (red); (scale bar¼ 200mm except

d¼ 100mm left panel) and �20 of white inset (scale bar¼ 100mm except

d¼ 50mm right panel). Representative images from two to six independent

donors.
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(Ross et al., 1998 and reviewed in Kureishy et al., 2002). The
association of clusters of fascin expressing DCs with extensive
dendritic morphology at o30mm beneath the DEJ suggests
patrolling behavior or localized activation for lymphatic
migration. Dynamic studies on tissue leukocytes in humans
are technically challenging. Steady-state DC migration has
been described as a mechanism to induce antigen tolerance
(Steinman et al., 2003) and reported using animal models
(Lammermann et al., 2009; Tal et al., 2011) and human
lymphatic cannulation (Brand et al., 1999). DCs in human
skin explants cultured in vitro have been shown to form cords
within the dermis and thought to reflect lymphatic migration
(Lukas et al., 1996). We detected very low numbers of DCs
inside lymphatic vessels in freshly isolated skin, in agreement
with observations in steady-state mouse skin (Ng et al., 2008;
Sen et al., 2010), although a short intra-lymphatic transit time
may obscure our detection capacity. Our analysis also
confirms the lymphatic migratory property of dermal DCs in
contrast to the tissue resident nature of Mf (Haniffa et al.,
2009). Previous studies on DC migration could not distinguish
LCs from dermal DCs within lymphatics (Lukas et al., 1996;
Brand et al., 1999). Further studies will be required to define
the kinetics and understand the functional contribution of
individual DC subsets in response to antigen challenge.

Our analysis of diseased skin focused on the superficial
dermis. As human pDCs are CD11c� , the infiltrating
CD11cþ cells we observed correspond to myeloid DCs.
However, we cannot distinguish newly recruited ‘‘inflamma-
tory’’ DCs from the ‘‘steady-state’’ DCs that are present in
healthy skin. The surprising observation of DCs interspersed
within CD3þ T cells in CTCL skin suggests that lymphoma-
tous T cells require growth stimulation or factors from adjacent
cellular milieu. Epidermal changes in the different disorders
will also accentuate the disease-related patterns we observed.

Our study demonstrates dermal leukocyte anisotropy in
healthy human dermis, suggesting the existence of anatomical
micro-domains that may have important functional and
potentially exploitable properties. In addition, we show dis-
ease-related leukocyte topography, further advancing our
understanding of the pathogenesis of inflammatory and malig-
nant skin disorders.

MATERIALS AND METHODS
Preparation of whole mounts

Normal human skin was obtained with written informed consent from

plastic surgery patients under approval of the Newcastle Research

Ethics Committee and adherence to Helsinki Guidelines. Normal skin

was obtained from patients undergoing mammoplasty aged between

18 and 65 years. Details for patients donating pathological skin are in

Supplementary Table 1 online. Dermatome cut whole-skin sheets

(200mm thick) were fixed in 2% paraformaldehyde and 30% sucrose

in phosphate-buffered saline overnight at 4 1C. Epidermis was

separated by 1-hour incubation in 0.83 mg ml–1 dispase (Gibco,

Paisley, UK) at 37 1C. To image depths 4200mm beneath the DEJ,

fixed skin sheet was optimal cutting temperature compound

embedded and sectioned longitudinally (60–80mm thickness). Der-

mal cell suspension for flow cytometry was prepared as previously

described (Haniffa et al., 2009).

Immunostaining and microscopy
Dermal sheets were blocked and permeabilized in phosphate-

buffered saline containing 0.5% BSA, 0.3% TritionX-100 and washed

with phosphate-buffered saline containing 0.2% BSA, 0.1% TritionX-

100. Primary antibodies used were as follows: Ag (clone), supplied by

BD Pharmingen (Oxford, UK) unless stated otherwise; CD3 (UCHT1);

CD8 (HIT8a); CD11c (B-ly6); CD11c-FITC (BU15; AbDSerotec,

Kidlington, UK); CD14 (polyclonal; Sigma, Dorset, UK); CD31

(WM59); FXIIIa (polyclonal; Enzyme Research, Swansea, UK);

LYVE-1 (polyclonal; R&D, Minneapolis, MN); a-smooth muscle actin

(1A4; Sigma); podoplanin (polyclonal; R&D); HLA-DR (G46-6); HLA-

DR-FITC (L243); CLEC9A (8F9; Miltenyi Biotec, Bisley, UK); fascin

(55K2; Abcam, Cambridge, UK). Secondary antibodies used were as

follows: donkey anti-sheep, donkey anti-mouse, and donkey anti-goat

Dy488, Dy549, and Dy649 (Jackson ImmunoResearch, Suffolk, UK),

AlexaFluor555 or AlexaFluor647 (Invitrogen, Paisley, UK), and

Streptavidin-Cy2 or Cy5 (Jackson ImmunoResearch). Biotinylation of

primary antibody was performed using TSA Biotin staining kit

(Perkin Elmer, Cambridge, UK). Tissue sections were immersed in

Vecta mounting medium with 4,6-diamidino-2-phenylindole (Vector

Laboratories, Peterborough, UK) for 3 hours before analysis.

Ex vivo DC migration assay
Skin sheets was placed in RPMI with 10% fetal calf serum at 37 1C for

32 hours before paraformaldehyde fixation and staining as described

above.

Microscopy and cell count

The immunostained specimens were imaged using AxioImager.Z2

fluorescence microscope with Axiovision software v4.8 (Carl Zeiss,

Jena, Germany). Epidermis side up was imaged and the tissue turned

to scan dermal face. Three-dimensional reconstruction of the dermis

and leukocyte enumeration were performed using Imaris7.6.2 soft-

ware (www.bitplane.com).

Flow cytometry

Antibodies were obtained from BD (Oxford, UK) unless stated

otherwise. Antigen (clone): CD1aAPC (HI149); CD3PE (SK7);

CD11cA700 (B-Ly6); CD14PE and PECy7 (M5E2); CD45APC

(H130); CD45APCCy7 (2D1); CD117PE (104D2); CD141PE and

APC (Miltenyi, Bisley, UK; AD5-14H12); and HLA-DRPerCPCy5.5

(L243). Flow cytometry was performed using BD LSRII and the data

analyzed with FlowJo (Treestar, Ashland, OR). Cytospin preparation

and Giemsa staining were performed as previously described (Haniffa

et al., 2009)

Statistical analysis

Statistical analysis was carried out using two-tailed nonparametric

Mann–Whitney U-test (PrismV5, La Jolla, CA). Po0.05 was consid-

ered significant.
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