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Recent years have seen neuroimaging data sets becoming richer, with larger cohorts
of participants, a greater variety of acquisition techniques, and increasingly complex
analyses. These advances have made data analysis pipelines complicated to set up and
run (increasing the risk of human error) and time consuming to execute (restricting what
analyses are attempted). Here we present an open-source framework, automatic analysis
(aa), to address these concerns. Human efficiency is increased by making code modular
and reusable, and managing its execution with a processing engine that tracks what has
been completed and what needs to be (re)done. Analysis is accelerated by optional parallel
processing of independent tasks on cluster or cloud computing resources. A pipeline
comprises a series of modules that each perform a specific task. The processing engine
keeps track of the data, calculating a map of upstream and downstream dependencies for
each module. Existing modules are available for many analysis tasks, such as SPM-based
fMRI preprocessing, individual and group level statistics, voxel-based morphometry,
tractography, and multi-voxel pattern analyses (MVPA). However, aa also allows for full
customization, and encourages efficient management of code: new modules may be
written with only a small code overhead. aa has been used by more than 50 researchers in
hundreds of neuroimaging studies comprising thousands of subjects. It has been found to
be robust, fast, and efficient, for simple-single subject studies up to multimodal pipelines
on hundreds of subjects. It is attractive to both novice and experienced users. aa can
reduce the amount of time neuroimaging laboratories spend performing analyses and
reduce errors, expanding the range of scientific questions it is practical to address.
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THE NEED FOR EFFICIENT WORKFLOWS
The last two decades have seen enormous growth in the use
of magnetic resonance imaging (MRI) as a tool to understand
brain function, and in the size and complexity of the datasets
acquired. The number of participants in individual studies has
grown for many reasons, including: the increasing availabil-
ity of MRI scanners; a move from fixed- to random-effects
designs (Friston et al., 1999; Mumford and Nichols, 2008); a
demand for greater replication in neuroimaging (“The dilemma
of weak neuroimaging papers,” http://www.danielbor.com/
dilemma-weak-neuroimaging); the need to overcome statistical
noise in studies of individual differences, genetics, aging, devel-
opment or disease; large scale investments such as the Human
Connectome Project (Van Essen et al., 2012), Alzheimer’s Disease
Neuroimaging Initiative (Mueller et al., 2005) or Cambridge
Centre for Aging and Neuroscience (http://www.cam-can.org);
and a growth in open data sharing (Van Horn et al., 2001; Biswal
et al., 2010; Poldrack et al., 2013; http://www.xnat.org).

Furthermore, the neuroimaging data acquired from each par-
ticipant have become richer. Whereas in the past, researchers
frequently collected data using a single method, many now
acquire diverse MRI protocols, including structural (e.g., T1,
T2, PD), functional (echoplanar imaging; EPI), connectiv-
ity (diffusion-weighted imaging; DWI), fieldmaps (multi-echo;
gradient echo) and myelination (magnetization transfer ratio;
MTR) measurements in single studies. Accelerated sequences
using parallel imaging (SENSE, GRAPPA, and multiband
EPI) have allowed for finer temporal or spatial resolution
and increased the size of datasets by up to an order of
magnitude.

Alongside the increasing quantity of data, the palette of
analysis methods has also grown. In functional MRI (fMRI),
in addition to the standard preprocessing stages of motion
correction, slice-timing correction, warping-to-template (nor-
malization) and smoothing, denoising is now possible using tools
based upon independent components analysis (Calhoun et al.,
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2009; Kundu et al., 2012; http://fsl.fmrib.ox.ac.uk/fslcourse/
graduate/icaprac/artdata/dim33.ica/report; http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/FIX), modeling of noise components (Kay
et al., 2013), and image rejection (Power et al., 2012). Statistical
analyses are now often conducted both using standard univariate
methods and multi-voxel pattern analysis (MVPA) (Haynes
and Rees, 2006; Kriegeskorte et al., 2006; Norman et al., 2006).
Brain structure is often analyzed using voxel- (Ashburner, 2009)
and surface-based (Winkler et al., 2012) morphometry, and
gyrification indices (Schaer et al., 2008). Registration between
individuals can use relatively low-dimensional warping to a
template, or higher dimensional registration (Ashburner, 2007,
2009). Diffusion data can be analyzed with probabilistic or
deterministic methods, by summarizing parameters such as the
fractional anisotropy (FA) on a skeleton (Smith et al., 2006) or
by tracing tracts (Behrens et al., 2007). In addition to the sheer
number of useful analysis methods now available, many methods
are highly computationally intensive, such as searchlight MVPA
(Kriegeskorte et al., 2006), probabilistic tractography, and high-
dimensional image warping (Ashburner, 2007). Implementing
these complementary approaches commonly requires a combina-
tion of software packages, which follow diverse concepts and may
even use different file formats. The integration of results from
these different software packages (e.g., using fMRI activation
clusters as seeds for diffusion tractography) further increases the
complexity of an analysis workflow.

The increasing quantity of raw data and greater number of
computationally intensive analysis methods have led to two chal-
lenges. The first is an increase in the complexity of the workflows
required: There are a greater number of individual “chunks”
of processing, and more complex dependencies between these
chunks. Furthermore, even the best-run neuroimaging study does
not always proceed exactly according to plan, and there are
often idiosyncrasies that result from technical glitches, opera-
tor error, or participant non-compliance. Manual intervention
in this complex workflow leads to the potential for human
error.

The second challenge is an increase in computation time per
study. Many neuroimagers are already stretched by the need to
become multidisciplinary experts in the physics of neuroimaging,
the mathematics for analysis, the psychology of cognitive func-
tion, and the biology of the brain. They do not all necessarily
relish the additional challenge of becoming a programmer and
computer scientist so that they can make the most efficient use of
computing resources.

The many stages of analysis required to draw conclusions
from MRI data were once almost universally accomplished using
point-and-click interfaces, a practice many continue. However,
as the field matures, this sort of “manual” analysis is becoming
increasingly impractical and unattractive. Here, we present a soft-
ware package, automatic analysis (aa) (http://automaticanalysis.
org), which provides a simple but flexible way to specify com-
plex workflows, keep track of what needs to be done, and
facilitate parallel computing. aa is engineered so that even
when used by a “lazy” operator precise records are kept. It is
easily extendable, and code naturally becomes re-useable and
shareable.

EXISTING SOFTWARE
Once the decision is made to use a processing pipeline, there are
a number of options. Although the best solution depends a great
deal on individual preferences and priorities, we have engineered
aa to fill needs not met by other processing pipelines.

Neuroimaging benefits enormously from a dynamic software
development community, with new analysis tools frequently dis-
seminated by large teams. However, these packages focus pri-
marily on implementing specific tools, rather than managing
efficient workflows. aa provides access to many (though not all)
functions in the major neuroimaging packages of SPM, FSL,
and Freesurfer; other tools such as the Advanced Normalization
Tools (ANTs); and our own implementation of searchlight- or
ROI- based MVPA. In addition, although not discussed in this
manuscript, it also includes growing support for other modalities
including MEG, EEG, and ECoG.

DESIGN GOALS
EFFICIENT AND EASY-TO-READ SPECIFICATION OF COMPLEX
PIPELINES
As neuroimaging pipelines become increasingly complicated, it
becomes important to develop elegant ways of describing them.
With aa, we aimed to separate a high-level description of what
needs to be done (e.g., motion correction followed by slice-
timing correction) from the individual parameters that control
each stage. Furthermore, wherever possible, sensible default val-
ues are available for each stage, so that an analysis can be specified
as leanly and efficiently as possible, without the need to re-invent
the wheel each time. We make extensive use of XML markup lan-
guage to provide easy-to-read descriptions of tasklists (i.e., the list
of processing stages) and settings.

MODULAR DESIGN
To make it easier to identify the code that is responsible for a given
task, and to facilitate parallel computing, each stage of processing
is described by an encapsulated “module.”

SEPARATION OF METHOD AND DATA
A separation is enforced between the algorithms that should be
applied and the data (i.e., participants and sessions) on which
they should operate. This separation ensures that modules are
re-useable: once written in the context of one analysis, modules
may usually be re-used without modification in another analysis
of different data.

ONLY DO WHAT NEEDS TO BE DONE
Modules are never called directly by the user; instead, their exe-
cution is handled by the aa scheduling engine (aa_doprocessing).
The scheduling engine identifies whether a module has already
been run on a given piece of data, and whether the inputs to
a module have changed (e.g., a subject has been added) since
it was last run. If a module has already been run, it is not
repeated. Although simple, checking for completed stages pro-
vides three important practical benefits. First, it saves compu-
tational resources. Second, it makes debugging quicker: If an
analysis crashes partway through, then the next time it is re-run,
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all of the stages that lead up to the crashing stage will not be exe-
cuted. Third, it stops the user from needing to “comment out”
lines that have already completed when rerunning just one later
part again. As a result, in practice the final aa script will typically
recreate an analysis in its entirety.

Checking for previously-completed stages also facilitates com-
plex pipelines with multiple analysis pathways. For example, in
the case where all processing stages save one are identical (e.g.,
to compare preprocessing with and without slice-timing correc-
tion), aa can be informed about a branched tasklist and re-use
inputs that are common to both branches.

FACILITATE PARALLEL PROCESSING
As analyses become more computationally intensive, being able to
easily accelerate them across a cluster of machines is increasingly
important. Often, execution time determines what analyses a user
can bear. For example, even if an analysis runs in a single-threaded
manner in a practical amount of time (say 5 days), a user will be
highly discouraged from running it again to fix some small issue.

aa uses coarse-grained parallelization, meaning that where
possible, multiple modules, different EPI sessions, subjects, or
even analyses (e.g., groups of searchlights in an MVPA analy-
sis for a single module) are run in parallel. Modules themselves
are not written differently for parallel or single-threaded execu-
tion: parallelization is achieved entirely in the scheduling engine
(although individual modules can in principle be parallelized at a
finer-grained level).

KEEP TRACK OF WHAT HAS HAPPENED
A precise record of everything that has happened in an aa analysis
is saved and can be referred to in the future. It is stored as a Matlab
structure, which can be read back in to recreate the analysis, or
probed for parameter settings.

DIAGNOSTICS AND QUALITY CONTROL
One of the drawbacks of batch analysis is that a user may
be tempted to only look at the final results, and not inspect
the data at each stage of processing. However, complex analy-
sis pipelines can fail in a greater number of ways than simpler
pipelines. Some failures can be obvious (e.g., activation outside
the brain due to imperfect registration), while others are harder
to track down (e.g., weaker group activation detected due to high
between-subject variability caused by motion). Consequently,
inspection of data is as important as ever. Several existing solu-
tions generate some diagnostic data during the analysis (e.g., FSL’s
FEAT Pre-stats and Registration reports); however, the informa-
tion provided is limited, sometimes complicated to reach, and
almost never submitted to between-subject analysis (important
for the measurement of between-subject variance and outlier
detection).

To address this problem, many aa modules create diagnostic
results (e.g., plots of motions to be corrected, registration over-
lays, thresholded statistical parameter maps for first-level con-
trasts). In addition, aa also implements various quality control
tools (mostly SPM- and FSL-based). A dedicated module for low-
level quality control (tsdiffana) is also bundled with aa, which—
thanks to the flexible modular concept—can be employed before

or after various stages or even multiple times, which allows a user
to follow how the data change during the analysis. Conveniently,
these diagnostic results are collected into a central place in
a multi-level fashion, allowing a user to browse both verti-
cally (within-subject) and horizontally (between-subject). Where
applicable (e.g., motion correction), between-subject visual com-
parison and/or statistics are also provided.

SYSTEM AND SOFTWARE REQUIREMENTS
• aa is developed in a *nix environment and actively used on

machines running Ubunto, RedHat, and Mac OS X. It is not
currently supported on Windows.

• aa is Matlab-based and requires a base installation of Matlab.
Some functions may require additional toolboxes; for example
the Image Processing Toolbox. In general, though, aa is written
with the goal of minimizing use of Matlab toolboxes by using
versions of functions included in the base Matlab installation
or by recreating these functions.

• As a processing pipeline, aa does not include external software
(such as SPM, FSL, etc.), which must be installed separately and
placed in a user’s path.

SOFTWARE ARCHITECTURE
This manuscript describes aa version 4.2. Not all compo-
nents apply to earlier versions. The latest version is available
from: http://automaticanalysis.org/getting-started/download-
installation/. Here, we describe the components in the order a
typical user might encounter them, providing a description of
each and the motivation for the architecture. The earlier topics
will be needed by any aa user, while the later ones are likely to be
of more interest to experienced users.

USER SCRIPT
The core of an aa analysis is the user script, which describes what
processing should happen, and what data it should be applied to.
Almost all analyses will require the user to create a user script in
Matlab, typically by modifying an example script (found in the
“examples” folder distributed with aa). An example user script is
shown below:

% Example aa version 4 user script
%
% Note: For an example of a complete user script,
please see:
%
% http://automaticanalysis.org/getting-started/worked-
example/
%

% Define study specific parameters
aap=aarecipe(’aap_tasklist_typical_fmri.xml’);

% Directory for analyzed data
aap.acq_details.root=’/imaging/rhodri/camcan/cc_movie’;

% Sub-directory for analyzed data
aap.directory_conventions.analysisid=’data’;

% Define subjects, and EPI series number ordered as
aas_addsession lines
aap=aas_addsubject(aap,’CBU110000_*’,{6});
% One or more sessions
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aap=aas_addsession(aap,’movie’);

% How many dummies?
aap.acq_details.numdummies=3;

% (Note: for a full analysis events and contrasts need
to be added)

% Do processing
aa_doprocessing(aap);

This script executes a typical fMRI processing pipeline (discussed
more in the next section) on a single subject (CBU110000) for a
single session (imaging series 6, labeled “movie”).

The user script can set parameters, such as output paths, or
settings for modules. Here, three dummy scans are specified to be
ignored in the analysis by the line:

aap.acq_details.numdummies=3

Note that the entire analysis—comprising the set of tasks to be
run and the data they are to be run on—is described in a sin-
gle structure (the “aap” variable). It is initially constructed by the
aarecipe command. Because the analysis is fully specified by a sin-
gle structure (along with the codebase), it is trivial to keep a record
of the analysis, or to re-run it at a later date.

BASIC TASKLISTS
The tasklist is an XML format file that describes what should be
done. A number of tasklists are available, many of which are useful
without modification (Table 1).

Each tasklist describes a series of modules that should be exe-
cuted. In the example user script given above, the tasklist specified
was aap_tasklist _typical_fmri.xml. Figure 1 shows the processing
that will be run for this tasklist. Note that a subject’s structural
(T1) and fMRI (EPI) data go through a number of processing
stages, and some modules operate on the data together. The XML
code that underlies this tasklist is below.

<?xml version="1.0" encoding="utf-8"?>
<aap>
<tasklist>
<initialisation>
<module><name>aamod_checkparameters</name>

</module>
<module><name>aamod_evaluatesubjectnames</name>

</module>
<module><name>aamod_study_init</name></module>
<module><name>aamod_newsubj_init</name></module>

</initialisation>
<main>
<module><name>aamod_autoidentifyseries_timtrio

</name></module>
<module><name>aamod_get_dicom_structural</name>

</module>
<module><name>aamod_get_dicom_epi</name></module>
<module><name>aamod_convert_structural</name>

</module>
<module><name>aamod_convert_epis</name></module>
<module><name>aamod_realign</name></module>
<module><name>aamod_tsdiffana</name></module>
<module><name>aamod_slicetiming</name></module>
<module><name>aamod_coreg_noss</name></module>
<module><name>aamod_norm_noss</name></module>
<module><name>aamod_norm_write</name></module>

<module><name>aamod_smooth</name></module>
<module><name>aamod_firstlevel_model</name>
</module>

<module><name>aamod_firstlevel_contrasts</name>
</module>

<module><name>aamod_secondlevel_model</name>
</module>

</main>
</tasklist>

</aap>

There are two sections to this simple tasklist. The “initialisation”1

modules are run every time, for tasks such as checking the input
parameters, or expanding wildcards in the subject names. The
“main” modules are only run once on each piece of data, unless
an explicit re-run is requested.

Note also that the dependencies (that is, which pieces of data
act as the input to each module) are not usually explicitly specified
in the tasklist. Instead, the pipeline is automatically connected
up at the start of processing using information in each mod-
ule’s interface. This simplifies specification of tasklists, and allows
modules to be reordered with reduced potential for error. The
dependencies are reported at the start of an analysis.

OUTPUT FILE STRUCTURE
The example of an output file tree for an aa analysis is shown
in Figure 2. The path to which this structure gets written is
determined by the aa setting

aap.acq_details.root=’/imaging/rhodri/mypath’;

The name of the directory for the analysis is specified in:

aap.directory_conventions.analysisid=’myanalysis’;

Each module operates on data stored in a separate directory (e.g.,
aamod_realign_00001, aamod_smooth_00001). This differs from
the conventions with packages such as SPM where all analysis
stages are written to a single directory, often with different pre-
fixes or suffixes to distinguish the stages. There are a number of
practical benefits to aa’s directory separation. First, it reduces the
number of files within subdirectories, which makes them more
manageable, particularly for fMRI or DTI with a 3D data format

1British spellings are used throughout aa, reflecting its country of origin.

Table 1 | Example tasklists.

Tasklist Purpose

aap_tasklist_typical_fmri.xml fMRI preprocessing and first/second level
statistics

aap_tasklist_fmri.xml fMRI preprocessing and first/second level
statistics—variant using fieldmaps,
realignunwarp.

aap_tasklist_dartelvbm8.xml VBM with SPM8 and DARTEL

aap_tasklist_diffusion.xml Diffusion tractography with FSL

aap_tasklist_diffusion2.xml Nonlinear DTI and DKI

aap_tasklist_freesurfer.xml Structural processing with Freesurfer
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FIGURE 1 | A typical fMRI pipeline comprising a set of aa modules (filenames prefixed with aamod_). Blue colors refer to modules processing the
structural, green colors processing the EPI, and red are general. This pipeline does preprocessing and first-level (individual) and second-level (group) statistics.
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FIGURE 2 | Example file structure for aa output. Each analysis comprises output directories organized by processing stage (here, for example, realignment
and smoothing) which are then each subdivided by subject, then session.

(e.g., one image per timepoint). Second, it makes it easier to see
at a glance what processing has happened, and to find a file when
browsing. Finally, it makes maintenance easier when, for example,
a user wishes to delete intermediate stages of analysis to save disk
space.

These ease-of-use and aesthetic advantages come along with
more fundamental benefits. Partitioning the workspace of mod-
ules into separate directories facilitates the encapsulation of data.
The aa engine is responsible for putting a module’s input data
into the directory in which it will execute. If a module does not
request a piece of data, it will not be there, and it cannot acciden-
tally be used. Similarly, the aa engine is responsible for picking
up outputs and passing them along the pipeline. If a module does
not explicitly declare an output, it will not be passed. Thus, direc-
tory separation allows the aa scheduling engine to maintain tight
control of data dependencies. This has a number of benefits. It
permits parallel processing with a reduced potential for conflicts
due to unexpected module behaviors. When executing on a clus-
ter, data transfer demands are reduced as a compute node does
not need to receive the whole analysis, but only the specific data
it is working on. Finally, the one-directory-per-module structure
facilitates branched tasklists, where an analysis forks, and is con-
tinued in two different ways (e.g., with a smoothing kernel of 8 or
12 mm).

Here, both modules had the suffix _00001. If either module
were present more than once in a tasklist (e.g., tsdiffana run before
and after a processing stage), this index would be incremented by
one for each subsequent entry.

Note that this architecture does not restrict the level at which
a module can operate. That is, if data for all sessions and sub-
jects are needed to complete an analysis, they will all be copied
to the appropriate directory. However, as this is more often

the exception than the rule, on the whole aa’s limited copy-
ing approach saves bandwidth and reduces opportunities for
error.

MODULES
At the heart of every aa analysis are the modules. A module per-
forms a single task, such as motion correction or smoothing.
Some examples are given in Table 2.

Each module requires two files: an XML interface (e.g.,
aamod_smooth.xml), and the corresponding Matlab source (e.g.,
aamod_smooth.m). Occasionally, an interface file may specify a
Matlab file with a different name to its source (e.g., aamod_
autoidentifyseries_ge.xml points to aamod_autoidentifyseries.m)
using an mfile_alias=‘. . . ’ attribute.

One of a module’s most important properties, specified
in this XML interface, is the “domain” at which it operates.
Modules with a domain of “study” are called just once (i.e.,
a single instance is created each time the module occurs in
the processing pipeline). Modules with a domain of “sub-
ject” are called once for each subject, while modules with a
domain of “session” are called once for each session of each
subject. These are the three most common module domains;
others include diffusion_session, meg_session, and hyperalign-
ment_searchlight_package. However, new domains can be easily
added to the aa engine, and user-written modules can make use
of new domains.

Instances of a module should restrict their processing to a par-
ticular set of input data (i.e., for a given session-domain module,
there might be an instance for subject 3, session 2). This instance
should take care to only attempt to process this portion of the
data, and should never attempt to write data outside its domain
(in this example, to another session).
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Table 2 | Example aa modules.

Input data sorting

aamod_autoidentifyseries_timtrio

Scan input DICOM files to get series and acquisitions irrespective of
filenames, which are typically site-specific. Identify structural and
fieldmap series numbers.

Anatomy

Basic structural

aamod_get_dicom_structural

Find all DICOM files corresponding to the structural acquisition.

aamod_coreg_extended_1

Coregister an individual’s structural to a standard space template using a
rigid body transformation, which improves robustness of later
normalization stage.

aamod_norm_noss

Estimate nonlinear warp that will transform an individual subject’s space
into a standard template space (SPM normalization).

aamod_norm_write

Apply normalization parameters derived from structural to EPIs.

DARTEL-VBM

aamod_biascorrect_segment8

Run New Segment (introduced in SPM 8) and save bias-corrected image
(e.g., for segmenting).

aamod_segment8

Tissue class segmentation using New Segment (SPM 8).

aamod_structuralstats

Retrieve total tissue class volume and TIV from segmented images.

aamod_dartel_createtemplate

Use DARTEL to create a template.

aamod_dartel_normmni

Write DARTEL-warped images to MNI space.

aamod_normalizebytotalgray

Divide segmented images by total gray matter (proportional scaling).

aamod_norm_write_dartel

Apply normalization parameters derived using DARTEL to other
modalities (e.g., EPI, contrasts, DWI, ROIs).

aamod_dartel_denorm

Transform images in standard MNI space (e.g., atlas labels) into native
space based on normalization parameters derived using DARTEL
(multimodal).

Freesurfer surface extraction

aamod_freesurfer_initialise

Prepare for a Freesurfer analysis.

aamod_freesurfer_deface

Defaces structural (T1) and produces a mask.

aamod_freesurfer_deface_apply

Apply defacing mask to a co-registered image.

aamod_freesurfer_autorecon_all

Runs a Freesurfer pipeline with recon-all.

Anatomical processing from FSL

aamod_fsl_FAST

Use FAST (FSL) for segmentation.

aamod_fsl_FIRST

Use FIRST (FSL) to characterize structure shape.

(Continued)
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ANTS software

aamod_ANTS_epi2template

Create transformation matrix for ANTS normalization to study template.

aamod_ANTS_warp_ROIs

Apply inverse warp to ROIs.

aamod_ANTS_warp_cons

Apply warp to first level contrasts.

fMRI activation studies

fMRI preprocessing

aamod_get_dicom_epi

Find all DICOM files corresponding to the EPI acquisitions.

aamod_convert_epi

Convert the DICOM files to NIfTI format. Handles with multi-echo EPI
with various weighting schemes.

aamod_realign

Perform motion correction with SPM.

aamod_slicetiming

Slice timing correction with SPM.

aamod_coreg_extended_2epi

Applies to the EPIs the transformation derived from coregistering the
structural to a standard-space template (in aamod_coreg_extended_1).
Then, fine-tunes the registration of the EPI to the structural with a
further coregistration.

aamod_coreg_noss

Coregisters structural to mean EPI using SPM.

aamod_smooth

Smooth data.

Distortion correction

aamod_fieldmap_undistort

Use fieldmap (with phase and magnitude) to correct EPI distortions.

aamod_realignunwarp

Realign and unwarp from SPM.

aamod_pewarp_estimate

aamod_pewarp_write

Constrained nonlinear coregistration.

Statistics

aamod_firstlevel_model

Run first level statistical model. Simple specification of events in user
script.

aamod_firstlevel_contrasts

Run first level contrasts. Simple specification of contrasts.

aamod_secondlevel_model

Run a t-test across subjects for every first level contrast.

aamod_OneWay_ANOVA

Run repeated measures (across subjects) one-way ANOVA.

Networks

Connectivity matrices

aamod_fconnmatrix_seedseed

Calculate seed-to-seed connectivity matrix from relationship of
time-courses across seed regions.

PPI

aamod_vois_extract

Extract ROI timeseries after first level analysis.

(Continued)
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Table 2 | Continued

aamod_ppi_prepare

Prepare PPI regressors based on ROI timeseries.

ICA

aamod_tensor_ica

Run individual or group tensor ICA.

Movie inter-subject correlation analysis

aamod_highpassfilter_epi

High-pass filter fMRI time series using discrete cosine model, like SPM.

aamod_meantimecourse

Calculate mean time course for each voxel across subjects.

aamod_moviecorr_meantimecourse

Calculate correlation of each subject’s timecourse with mean.

aamod_moviecorr_summary

Statistics to find which correlations are significant across subjects.

Diffusion

Basic processing

aamod_get_dicom_diffusion

Get a list of all of the DICOM files that correspond to the diffusion series
(typically, as identified by aamod_autoidentifyseries_timtrio).

aamod_convert_diffusion

Convert diffusion images from DICOM to NIfTI

aamod_3dto4d_diffusion

Convert diffusion images from 3D to 4D. The XML file is
’aamod_3dto4d_diffusion.xml’ which refers to the matlab file (using
mfile_alias) ’aamod_3dto4d.m’.

aamod_diffusion_eddycorrect

Use eddy_correct (FSL) to correct image distortions, head movements
using affine registration to a reference volume (T2 image).

aamod_diffusion_extractnodif

Use FSL to extract the reference(s) image(s) (T2 image with b-value of
0), called nodif.

aamod_bet_diffusion

Use FSL to extract the brain of the nodif image. Brain extraction toolbox.
Its “mfile” is aamod_bet.

Diffusion tensors

aamod_diffusion_dtifit

Use FSL to fit a diffusion tensor model at each voxel. Note that dtifit is
not necessary in order to run probabilistic tractography (which depends
on the output of BEDPOSTX).

aamod_diffusion_dkifit

Fit diffusion kurtosis parameters using linear model.

aamod_diffusion_dtinlfit

Fit diffusion tensor parameters using nonlinear model.

aamod_coreg_structural2fa

Coregister structural to diffusion image (dti_FA).

Probabalistic tractography

aamod_unnormalize_seeds

Use SPM to “unnormalize" the seeds (i.e., apply the inverse matrix to
transform the seed (MNI space) to diffusion space).

aamod_unnormalize_targets

Use SPM to “unnormalize” the targets (i.e., apply the inverse matrix to
transform the targets (MNI space) to diffusion space).

aamod_diffusion_bedpostx

Use FSL to apply bedpostx Monte Carlo modeling of PDFs of diffusion
parameters.

(Continued)
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aamod_diffusion_probtrackx

Use FSL to apply probtrackx, which repetitively samples from the
distributions on voxel-wise principal diffusion directions, each time
computing a streamline through these local samples to generate a
probabilistic streamline or a sample from the distribution on the location
of the true streamline.

aamod_diffusion_probtrackxsummarize_indv

Get the results of probtrackx (diffusion space) of each participant, merge
the different splits and transform them to the MNI space.

aamod_diffusion_probtrackxsummarize_group

Averages the seed-to-target connectivity images across subjects, which
we have used for visualization.

MVPA

aamod_MVPaa_brain_1st

Runs an MVPA searchlight on a set of beta or t-values (typically in native
space).

aamod_MVPaa_brain_SPM

Convert results from searchlight into NIfTI images readable in SPM.

aamod_unnormalize_rois

Set ROIs from standard space into subject space.

aamod_MVPaa_roi_1st

Runs an MVPA analysis within an ROI, using a set of beta or t-values
(typically in native space).

Other important properties of a module are the type of data
(e.g., epi or structural) it requires as an input, and the type of data
it produces as an output.

An example interface file, aamod_smooth.xml, is shown below.

<?xml version="1.0" encoding="utf-8"?>
<aap>
<tasklist>
<currenttask domain=’session’ desc=’SPM

smooth’ modality=’MRI’>
<qsub>
<timeBase>0.5</timeBase>
<memoryBase>1</memoryBase>
</qsub>
<permanenceofoutput>2</permanenceofoutput>

<FWHM>10</FWHM>
<inputstreams>
<stream ismodified=’0’>epi</stream>
</inputstreams>
<outputstreams>
<stream>epi</stream>
</outputstreams>
</currenttask>
</tasklist>

</aap>

The domain is specified in the attributes of the “currenttask” line,
along with a description (which is displayed to the user) and the
modality of the data—here “MRI.”

The next two sections are of less focus here. The “qsub” fields
are estimates of the resources used by this module, for use by some
parallel schedulers. The “permanenceofoutput” field is used by
the garbage collection tool to delete less important, intermedi-
ate data prior to archiving. Higher numbers correspond to more
important data.
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More central to the function of this particular module, the
“FWHM” field describes a setting of this module—in this case,
the full-width half maximum of the smoothing kernel, in mil-
limeters. There is then a description of the sorts of input data (or
“streams”) that this module requires, here only “epi” data, and
the output data, again just “epi” for this module. The operation
of these is discussed more in the next section. The Matlab code
for a module implements the function.

CUSTOMIZING ANALYSIS PARAMETERS
In the aa user script, the aarecipe command sets the initial state of
the aap structure that describes the analysis:

aap=aarecipe(’aap_parameters_defaults.xml’,
’aap_tasklist_typical_fmri.xml’);

The values in this aap structure come from three sources:

1. The file aap_parameters_defaults.xml, which contains general
settings;

2. The tasklist XML file (here aap_tasklist_typical_fmri.xml);
3. The XML interface files for each of the modules in the tasklist.

The values returned by the aarecipe command are often cus-
tomized in the user script. Any parameter in aap may by modified.
Examples are:

aap.acq_details.numdummies=3;
aap.tasksettings.aamod_smooth.FWHM=8;

Alternatively, it is sometimes more convenient to create modified
XML files. XML tasklists may set parameters for an individual
instance of a module, with syntax like this:

<module>
<name>aamod_smooth</name>
<extraparameters>
<aap><tasklist><currenttask><settings>
<FWHM>8</FWHM>

</settings></currenttask></tasklist></aap>
</extraparameters>

</module>

It is also possible to create XML files that inherit the
parameters from the standard files, and override a few
of them. For example, one can create a site/study/spe-
cific version of aap_parameters_defaults.xml, such as
aap_parameters_defaults_CBSU.xml (specific for the MRC
Cognition and Brain Sciences Unit):

<?xml version="1.0" encoding="utf-8"?>
<aap xmlns:xi="http://www.w3.org/2001/XInclude">
<xi:include href="aap_parameters_defaults.xml"

parse="xml"/>
<local>

<directory_conventions>
...

</directory_conventions>
<options>

...
</options>

</local>
</aap>

in which most of the settings are imported from
aap_parameters_defaults.xml using XML Inclusion (http://
www.w3.org/TR/xinclude) and only the path-related settings are
redefined in the <local/> section.

SPM defaults are a special case. These can be modified in the
aap.spm.defaults structure.

SPECIFICATION OF STATISTICAL MODELS FOR fMRI
For users who wish to analyze fMRI data with aa, a simple set of
commands is available for the specification of first-level statistical
models. The format is:

aap=aas_addevent(aap,modulename,subject,session,
eventname,ons,dur,parametric);

where:

modulename=module(e.g.,’aamod_firstlevel_model’)
for which this event applies

subject=subject for whom this model applies
session=session for which this applies
eventname=name of the stimulus or response event
ons=event onset times (in scans). Does not need

to be sorted
dur=event durations (in scans), either a single

element (if all occurrences have the same
duration) or in order that corresponds to ons

parametric=parametric modulator (optional - can
omit)

For example,

aap=aas_addevent(aap,’aamod_firstlevel_model’,’*’,’*’,
’VisualStimulus’,[0:15:75],7.5);

specifies that every session of every subject was a block design,
with a regressor titled “VisualStimulus” with onsets every 15 scans
and a duration of 7.5 scans.

Using the “subject” and “session” fields, customized designs
for each subject and/or session may be specified.

A contrast may then be specified with

aap=aas_addcontrast(aap,modulename,subject,format,
vector,contype,automatic_movesandmeans)

where:

modulename= module (e.g.,’aamod_firstlevel_
contrasts’) for which this contrast applies
subject=subject for whom this model applies
format=format for contrast specification, one of:

* "sameforallsessions" - vector contains contrast
to be applied to all sessions

* "singlesession:[sessionname]" - vector contains
contrast for just one session, all other sessions
will be set to 0. [sessionname] should be
replaced with name of that session.

* "uniquebysession" - long contrast string that
separately specifies contrast for every session

contype="T" or "F" (defaults to "T")
automatic_movesandmeans=1 or 0, add means & moves
to contrast automatically?

For example,
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aap=aas_addcontrast(aap,’aamod_firstlevel_contrasts’,
’*’,’sameforallsessions’,[1 -1]);

to contrast the first vs. the second column of every session in every
subject.

If the desired second level model is to run a simple t-test for
every contrast run in every subject at the first level, then the mod-
ule aamod_secondlevel_model may be added to the tasklist. It does
not require customization.

STREAMS
All data into and out of an instance of a module are managed
by the aa engine. Each type of data is referred to as a “stream.”
Common streams are “epi,” “structural,” and “dicom_header.”
Note that these descriptions are deliberately unspecific about the
state of the data—e.g., the data in the epi stream may be nor-
malized, or not—as subsequent modules (e.g., first level statistics)
often do not need to change their behavior to work on one kind
of data or another.

A module’s interface (XML file) describes the data streams that
it requires wants as an input:

<inputstreams>
<stream>epi</stream>

</inputstreams>

and what it produces as an output:

<outputstreams>
<stream>realignment_parameter</stream>
<stream>meanepi</stream>
<stream>epi</stream>

</outputstreams>

This information is then used to connect up the pipelines of
data from one module to the next. So, for example, if a tasklist
contains:

<module><name>aamod_realign</name></module>
<module><name>aamod_tsdiffana</name></module>
<module><name>aamod_slicetiming</name></module>

The module aamod_slicetiming requests an epi input. The quality
control module aamod_tsdiffana does not produce an epi out-
put, so aa looks further back up the tasklist (see Figure 1). It
finds that aamod_realign produces an epi ouput, and so it will
pass the epi output of aamod_realign to aamod_slicetiming. This
automatic connection of pipelines makes it straightforward to
rearrange modules.

A complexity that is largely hidden from the user is that depen-
dencies are calculated at the level of particular instances of a
module, and are affected by the domains at which the source and
target modules operate. Consider this fragment of a tasklist:

<module><name>aamod_norm_write</name></module>
<module><name>aamod_smooth</name></module>

Both aamod_norm_write and aamod_smooth operate on the
domain of single EPI sessions for single subjects. The instance

of the module aamod_smooth that processes subject 4, ses-
sion 2, only needs the data from the instance of the mod-
ule aamod_norm_write that has processed subject 4, session
2, and so only the corresponding data are is passed to the
module instance. Furthermore, when executing in parallel, each
aamod_smooth instance may execute as soon as the corresponding
aamod_norm_write module has completed, and it does not need
to wait for any others to finish. Although transparent to the user,
dependencies become more complicated when the domain of a
module that is the source of a given stream is different from the
domain of a module that is the target of that stream. The restric-
tion that is enforced is that any module may only write data at
the level of its domain or lower (i.e., not sideways or above in
Figure 2). However, modules may read from levels up toward the
trunk, but never sideways.

THE SCHEDULING ENGINE AND PARALLEL PROCESSING
The scheduling engine executes all analyses described within the
aap structure. The command included in every user script is:

aap=aa_doprocessing(aap);

This executes an aa analysis. To do this, it builds a map of all the
instances of all the modules that need to be executed, and the data
dependencies between them.

To test whether an instance of a module needs to be executed,
aa looks for a file named done_aamod_[modulename]_[index].
This file will be stored in the root directory of the instance: for
a session domain module, in the session directory. If it exists, that
instance is considered to have been completed, and will not be
re-run. The exception to this rule is an earlier module instance in
the pipeline needing to be rerun, on which this module instance
is dependent. This will cause the done_ flag to be deleted, and the
module will be re-run.

aa_doprocessing examines the field aap.options.wheretoprocess
to decide how to run these modules. If the field has a value
“localsingle” it will step through these modules one at a time,
in the current Matlab process (as implemented in the object
@aaq_localsingle). If it has the value “qsub” it will use the par-
allel computing toolbox component “createTask” to submit a job.
If it has the value “condor” it will compile the job and submit
it to a condor queuing system, using the shell script specified
in aap.directory_conventions.condor_wrapper. @aaq_matlab_pct
uses Matlab’s parallel computing toolbox.

Ultimately, regardless of the scheduling mechanism, instances
of modules are run by calls to the aa_doprocessing_onetask
function.

BRANCHED TASKLISTS
Neuroimaging studies frequently require data to be analyzed
in different ways. This might be because there is some uncer-
tainty on the ideal parameters or analysis strategy (for exam-
ple, whether motion correction should be performed before or
after slice timing correction, or what smoothing kernel should
be used). Alternatively, it might be because the data are to
be analyzed in a number of different ways—with ICA, with
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conventional univariate fMRI, with MVPA, and with functional
connectivity2.

Traditionally, these scenarios would probably involve either
creating entirely independent pipelines, or processing to the
branch point, making a copy of the analyzed data in a different
directory, and then taking the new analysis forwards. By contrast,
aa provides a straightforward way of specifying branched tasklists,
as in the following fragment:

...
<module>

<branch>
<analysisid_suffix>_realign_then_slicetime
</analysisid_suffix>
<module><name>aamod_realign</name></module>
<module><name>aamod_slicetiming</name></module>

</branch>
<branch>

<analysisid_suffix>_slicetime_then_realign
</analysisid_suffix>
<module><name>aamod_slicetiming</name></module>
<module><name>aamod_realign</name></module>

</branch>
</module>
...

In this command, <analysisid_suffix> is included within each
branch, so that the two branches get separated into dif-
ferent directories. Although tidy, this is not strictly neces-
sary, as the duplicated modules will be suffixed with different
indices—e.g., in the first branch realignment will be output to
aamod_realign_00001 and the second to aamod_realign_00002.

FULLY QUALIFIED STREAM REFERENCES
By default, the input for a stream to a module comes from the last
module in the tasklist that outputs that kind of data. Often, this
is the desirable behavior. However, sometimes, an explicit earlier
reference may be desired. This can be achieved with a fully qual-
ified stream reference comprising [module-name].[stream-name]
as in this example:

<inputstreams>
<stream>aamod_realign_00001.epi</stream>

</inputstreams>

ADJUSTING DEFAULTS, AND SITE-SPECIFIC CONFIGURATION
There are at least two ways a user may customize aa for a
particular site. One way is to have a site-specific configuration
file, conventionally called aas_localconfig_[sitename]. This is then
inserted into the user script, soon after the recipe command, with
the line:

aap=aas_localconfig_[sitename](aap);

Another way is to create a customized
aap_parameters_defaults.xml file, typically by including the

2Of course, care must be taken when trying out multiple analysis options, and
exploration is best done on independent data so as not to bias the results. Our
point is that there are many instances in which researchers might reasonably
want to compare analysis strategies in a systematic way, which aa facilitates.

existing aap_parameters_defaults.xml file and then overriding
some parameters for this local installation, like this:

<?xml version="1.0" encoding="utf-8"?>
<aap xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="aap_parameters_defaults.xml"
parse="xml"/>
<local>

<directory_conventions>
<rawdatadir desc=’Subdirectories to
find raw MRI data’

ui=’dir_list’>/mridata/cbu:/mridata/csl:/mridata/
camcan</rawdatadir>

</directory_conventions>
</local>

</aap>

INPUT DATA FORMAT
A user must prepare raw data in a form acceptable for input to
aa. The easiest starting point is typically the raw DICOM data,
exported as a set of files from the scanner. One challenge we faced
in porting aa between sites was that the dumping of the raw
data out of DICOM database (PACS) systems led to idiosyncratic
filename and directory structures. aa will automatically scan the
data and structure it into acquisition series for Siemens and GE
scanners, provided all of the files from each subject can be iso-
lated into one directory (or a directory with subdirectories). No
particular naming convention is required, other than a consistent
filename extension for the DICOM files. The DICOM headers
are used to organize the files. The system may work also on data
from other scanner manufacturers, but we have not tested it.

In a user’s tasklist (or later, as a site-specific configuration) the
dicomfilter can be set, typically to one of:

aap.directory_conventions.dicomfilter=’*.dcm’;
% if DICOM files end in.dcm

aap.directory_conventions.dicomfilter=’*.ima’;
% if DICOM files end in.ima

aap.directory_conventions.dicomfilter=’*’;
% if only DICOM in raw data directories

For any tasklist, setting the first main module to
aamod_autoidentifyseries_timtrio for data from Siemens
scanners, or aamod_autoidentifyseries_ge with GE scanners, will
identify the DICOM files.

Provided researchers use a consistent name for their structural
scans, these scans can be automatically identified by setting:

aap.options.autoidentifystructural=true;
aap.directory_conventions.protocol_structural=’MPRAGE’;

The first line requests automatic scanning for the structural (the
default), and the second, which protocol should be sought. If a
user sometimes acquires more than one structural (for example,
if a subject moves) but always stops once they have a good one, it
is possible to specify that in this circumstance the last structural is
the one to be used:

aap.options.autoidentifystructural_chooselast=true;

A second alternative is to use data already converted into NIfTI
format. This is possible, either by using the aas_addinitialstream
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command in the user script, or the aamod_epifromnifti module.
However, detailed instructions for doing so are beyond the scope
of this overview.

CONNECTING PIPELINES
It is often the case that a researcher will want to analyze a subset
of data from a larger database, or continue an analysis that exists
in a different location (i.e., a remote location). For example, a
lab might store and preprocess all their subject MRI data—fMRI,
structural images, and diffusion images—on a central server, but
one user might want to only analyze the fMRI data from a few
subjects on their local machine. aa allows a user to easily accom-
plish this by creating an analysis script that connects to the aa
pipeline on the central server; the user does not have to manually
copy and import any data. The new analysis does not replicate any
of the modules or data on the central server, but instead connects
the input streams of the local analysis to the data output streams
in the remote location. By default, the connection is made to the
terminal end of the remote pipeline (i.e., the final instance of each
output stream), but the user can easily specify a connection to an
earlier stage of processing (e.g., to take the EPI stream before the
normalization stage). Furthermore, every time the local analysis is
executed, aa will check to see if the remote data have changed, and
re-run any local modules that depend on those data. The ability to
connect pipelines facilitates data sharing within and between labs,
promotes good practices for organizing and storing data, reduces
data duplication, and simplifies the process of starting new anal-
yses on existing data sets. Detailed examples of this feature are
provided in the aa documentation.

COMMUNITY
aa has been used for hundreds of analyses covering many thou-
sands of participants. It is currently supported by a small but
active base of coders.

BRAIN AND MIND INSTITUTE, WESTERN UNIVERSITY, LONDON,
CANADA
Authors Rhodri Cusack, Annika C. Linke, Conor J. Wild and col-
leagues at the Brain and Mind Institute are actively developing for
aa, and use it for fMRI, DTI and structural data from a variety of
MRI scanners—Siemens 3T (Trio, Prisma), Siemens 7T, and GE
1.5 T (MR450w)—and EEG (EGI, Grass).

MRC COGNITION AND BRAIN SCIENCES UNIT, CAMBRIDGE, UNITED
KINGDOM
In addition to authors Tibor Auer and Daniel J. Mitchell a handful
of other coders in the Unit also actively participate in developing
aa modules. In the Unit, aa is the backbone of analysing fMRI,
DTI, MTR and structural data from Siemens 3T (Trio, Prisma)
MRI scanner, Elekta Neuromag Vectorview MEG scanner and
Brain Products BrainAmp EEG. New colleagues are introduced
to aa right from the start by means of workshops, which allow
them to perform analysis quite early on. A highlighted project, the
Cambridge Centre for Aging and Neuroscience, involving mul-
tiple sessions of hundreds of subjects, also employs aa, which
ensures both high consistency via standardized user scripts and
tasklists and high processing speed via parallelization. The Unit

also hosts a wiki (http://imaging.mrc-cbu.cam.ac.uk/imaging/
AA) complementing the aa documentation.

DONDERS CENTER FOR COGNITIVE NEUROSCIENCE, NIJMEGEN, THE
NETHERLANDS
Author Alejandro Vicente-Grabovetsky and colleagues in the
Doeller laboratory are actively developing for aa, and use it for
Siemens 3T and 7T fMRI analyses.

WASHINGTON UNIVERSITY IN ST LOUIS
Author Jonathan E. Peelle and his laboratory are developing
structural and functional MRI analysis for Siemens 3T data.

GITHUB SOURCE CONTROL, SUPPORT, AND
DOCUMENTATION
The codebase is maintained at: https://github.com/rhodricusack/
automaticanalysis.

There are two main branches: the master branch, which con-
tains a recent stable release, and the devel-share branch, which
contains the latest versions of the code published by each of
our sites. There are also occasional releases, under “tags,” which
contain frozen past versions of the code.

A website (http://automaticanalysis.org) contains the latest
documentation for the code, and an issues discussion forum
is used to report bugs or ask questions (https://github.com/
rhodricusack/automaticanalysis/issues).

OTHER DESIGN DECISIONS
Our software provides access to most functions of SPM, one
of the most commonly used neuroimaging tools worldwide, for
analyses such as fMRI modeling and voxel-based morphome-
try. For several diagnostics in general and DWI analysis we use
the well-established FSL functions, and for cortical-surface based
measures, Freesurfer.

LIMITATIONS
Every processing approach has limitations, and aa is no different.
Perhaps the biggest hurdle for novices is the requirement of know-
ing enough Matlab to organize analyses. The choice of Matlab as a
programming language grew out of the origins of aa as a pipeline
for SPM. There are clearly advantages and disadvantages to this
choice. Matlab is widely used in neuroimaging, other areas of
neuroscience, engineering and finance, and Matlab programming
is a skill that is transferrable to other disciplines. The language
provides an enormous library of high-level mathematical func-
tions that are well tested, and in most cases highly optimized.
It provides compact and elegant syntax for matrix math. It has
a mature integrated-development environment (IDE) including
line-by-line debugging, workspace inspection, computation time
profiling, and 2D/3D graphics. It is a well-supported product,
with regular updates and new features. A disadvantage is that
as a commercial product, it comes with substantial costs, and
is not open-source, reducing the potential for quality assurance
and innovation directly from the community. However, Matlab
does come with a compiler, allowing functions to be redistributed
freely (but not to be changed), and it has an active user software
exchange.
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Like most pipelines that serve as interfaces to other tools, aa
can be a bottleneck: one can only incorporate into a pipeline
those tools that are already “wrapped” into aa. For example,
there are currently no aa modules for AFNI tools. However, aa’s
open source nature and its easy extendibility allow the user to
implement the corresponding functionality and even to make it
available to others.

Another consequence of automated pipelines such as aa is that
they facilitate the processing of large datasets, in turn produc-
ing more data and increasing demands for file storage. Although
aa attempts to keep only necessary files through garbage collec-
tion, analyses can quickly take up large amounts of disk space if
not kept in check, which may prove to be a limitation in some
contexts.

Finally, there is always the danger when using automated batch
analysis pipelines that the researcher might try every possible
combination of analysis tools and parameters —so-called “exper-
imenter degrees of freedom”—to obtain the desired results. This
is not a new problem in neuroimaging, but aa at least provides a
way for researchers to keep track of different analysis approaches
through branched tasklists and detailed analysis logs.

Despite these possible limitations, we believe that aa is suc-
cessful in balancing the diverse needs of neuroimagers, and facil-
itating open, reproducible science on datasets of many sizes and
complexities.
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