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Semantic and emotional content of 
imagined representations in human 
occipitotemporal cortex
Daniel J Mitchell1 & Rhodri Cusack1,2

Mental imagery is a critical cognitive function, clinically important, but poorly understood. When visual 
objects are perceived, many of their sensory, semantic and emotional properties are represented in 
occipitotemporal cortex. Visual imagery has been found to activate some of the same brain regions, 
but it was not known what properties are re-created in these regions during imagery. We therefore 
examined the representation during imagery for two stimuli in depth, by comparing the pattern of fMRI 
response to the patterns evoked by the perception of 200 diverse objects chosen to de-correlate their 
properties. Real-time, adaptive stimulus selection allowed efficient sampling of this broad stimulus 
space. Our experiments show that occipitotemporal cortex, which encoded sensory, semantic and 
emotional properties during perception, can robustly represent semantic and emotional properties 
during imagery, but that these representations depend on the object being imagined and on individual 
differences in style and reported vividness of imagery.

The importance of mental imagery is clear from the range of cognitive functions it supports, including short-term 
memory storage1,2, long-term memory retrieval3, creative insight4, construction of attentional search templates5–7, 
simulation of future events8, perceptual biasing9,10, and driving willed action11. Mental imagery is disturbed in 
many clinical conditions such as neglect12–14, tunnel vision15, schizophrenia16,17 and William’s Syndrome18, and 
can be debilitating when uncontrolled, in post-traumatic stress disorder and phobia19,20. Recently, mental imagery 
has seen increasing use as a therapeutic technique to treat emotional disorders19,20, and as a clinical tool to assess 
conscious awareness when behavioural responses are unavailable21.

Despite this fundamental role in cognition, and increasing clinical importance, the information content that 
is represented during mental imagery remains elusive. From a neural perspective, progress in identifying the 
brain networks that support imagery has not been accompanied by an understanding of the neural content of 
a mental image. Recent neuroimaging has focused on visual imagery, finding similarities with perception, both 
in large-scale mean activity22,23 and fine-scale activity patterns24–27. These similarities are sometimes found in 
primary visual cortex28, but are more consistently observed in higher-level ventral visual regions. For example, in 
occipitotemporal cortex, classifiers trained on activity patterns evoked by perceived items were able to success-
fully classify imagined items, and vice-versa. This demonstrates that occipitotemporal cortex represents some 
common information across perception and imagery, however the nature of the shared information remains 
unclear. During perception, this region encodes a range of both simple sensory and higher-level object prop-
erties29–32. Existing studies of imagery have presented few objects (or object categories), and compared imagery 
of each object with perception of the same object. From these experiments, it is impossible to determine which 
object features drove object-specific responses during imagery, or contributed to the overlap with perception.

The neural instantiations of perception and imagery are not expected to be identical33, despite having some 
shared aspects as shown by the above studies. Perception and imagery dissociate clinically13,34–36, and they evoke 
responses that differ in their spatial distribution of deactivation37 and in their object-selectivity27. Therefore, an 
important open question is: How does the brain’s representation of imagined objects relate to the representational 
space of perceived stimuli? Which features are coded similarly, and which are abstracted?

To de-confound the many possible sensory, semantic and emotional features that might be represented, it is 
necessary to use a large set of objects. Thus, we compared the representation of single objects during imagery or 
perception with the representation of 200 other objects during perception. This allowed us to investigate which 
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features were represented in a common way in occipitotemporal cortex during visual imagery and perception. 
Feature tuning was assessed using pair-wise, representational similarity analysis of multi-voxel fMRI activity 
patterns38 evoked by the 200 images. Using a rich stimulus set increases the number and sampling resolution of 
assessable feature dimensions, however, with limited scanning time, comparing every stimulus to every other 
stimulus becomes increasingly impractical. With imagery this is especially problematic, both because generating 
a mental image is slower than perception39, and because it is prohibitively challenging to memorise many stimuli 
sufficiently for subsequent vivid imagery. Therefore, rather than characterising the entire space of imagery rep-
resentations, power was focused in each experiment on characterising the neural representation of a predefined 
“referent” image. To this end, pair-wise pattern similarity analysis was combined with real-time, adaptive stim-
ulus selection29, to efficiently search the stimulus space: An iterative process resampled subsets of stimuli whose 
evoked activation patterns were most similar to that of the referent (Fig. 1, top). These stimuli were presented 
visually, so only the referent needed to be memorised and imagined, while other stimuli could be presented 
more rapidly. In this way, online neuroimaging was used to select a subset of stimuli that reflected the “neural 
neighbourhood” (NN) of the referent image. Then, by quantifying these stimuli along various sensory, semantic, 
and emotional dimensions, common properties of the final subset were examined in subsequent offline analyses 
(Fig. 1, bottom), to reveal features that they shared more than would be expected by chance.

Results
Occipitotemporal cortex encodes multiple semantic and emotional properties of perceived and 
imagined objects. The occipitotemporal region of interest was significantly active during both perception 
and imagery, as shown using an initial whole-brain univariate analysis (Fig. 2). However, subsequent multivoxel 
pattern analyses revealed important differences in the particular object features that were represented in this 
region during perception, and those that were represented during imagery.

To illustrate the representational space of the 200 stimuli within this region of interest, we used multidi-
mensional scaling to represent their activations patterns, yielding a space in which objects that are closer have a 
more similar neural representation. Furthermore, to assess whether sufficient power was obtained within a single 
iteration of the real-time procedure, we calculated this from the first run alone (Fig. 3). Data from individual 
participants were optimally combined using DISTATIS40, and 95% confidence ellipses indicate variability. (The 
first eigenvalue of the cross-participant similarity matrix (λ 1 =  64.2) explained 76% of the variance, indicating 
moderate consistency of representational spaces across participants41). It is clear that there is detailed informa-
tion in the local activation patterns, even after just a single presentation of each item. Each stimulus is colour 
coded according to a recently proposed tripartite organization into animate items and large and small inanimate 
objects42. Strong pattern separation between animate and inanimate items is clear, as expected for this brain 
region, and separation between small and large objects is also observed along the vertical dimension. A robust 
degree of consistency is apparent; both across both participants (confidence ellipses) and conditions (compare 
the lower panels). (Despite the obvious feature information contained within the first two principal components, 
these components explained a mere 2.45% of the variance in the data (eigenvalues λ 1 =  0.20, λ 2 =  0.11). The 
remaining variance will reflect a mixture of other object features encoded in higher dimensions, and measure-
ment noise, which will be substantial in the response at the level of single images given the large number of stimuli 
(200) but low number of repetitions.)

Having shown that the neural patterns contained representation of two exemplar features, and that the rep-
resentational space was reproducible across subjects and conditions, we next confirmed that neural patterns were 
consistent across repetitions of an object within a subject. Standard MVPA classification (using a linear support 
vector machine with leave-one-run-out cross-validation) was used to decode the identity of stimulus pairs that 
were repeated in four or more runs. Mean classification accuracy (averaged across cross-validation splits and 
every possible stimulus pair) was compared to chance using t-tests across participants and confirmed to be sig-
nificant for both conditions of both experiments (Knife referent, perceived: t(20)= 3.20, p <  0.01; knife referent, 
imagined: t(21) =  3.15, p <  0.01; dolphin referent, perceived: t(20) =  2.95, p <  0.01; dolphin referent, imagined: 
t(20) =  2.24, p <  0.05). This shows the neural patterns contained information that allowed pairs of objects to be 
discriminated.

Given these quality assurance analyses, we moved on to address the core goal of this manuscript, to measure 
and compare which features of the referent items were neurally represented during perception and imagery. For 
the two experiments, Table 1 lists those images that evoked the most similar neural patterns, on average, to each 
perceived or imagined referent. If a particular feature of the referent (e.g. its blue colour) was strongly neurally 
represented, then many other images sharing that feature (i.e. other blue objects) would be members of the neural 
neighbourhood. We started by examining the broader picture, of whether sensory, semantic or emotional feature 
sets were represented. The results are shown in the left-hand bars of each panel of Fig. 4, labelled “Multivariate 
classifier sensitivity”. For each perceived referent (upper half of figure), a multivariate classifier predicted individ-
ual images in the neural neighbourhood (after training on the other images i.e. leave one out cross-validation), 
when provided with their sensory features (red bars; knives, p <  0.05; dolphin, p <  0.05), semantic features 
(blue bars; knives, p <  0.005; dolphin, p <  0.005) or emotional features (purple bars; knives, p <  0.05; dolphin, 
p <  0.005). These results show that there was rich encoding, of the sensory, semantic and emotional features of 
the referents during perception. For the imagined knife referent (experiment 1; lower left quadrant) semantic and 
emotional feature-sets were strongly encoded (semantic p <  0.005, emotional p <  0.005). The sensory feature 
set no longer predicted NN membership, although the feature set-by-condition interaction was not significant 
(p >  0.05). These results show that there is rich overlap in the neural representations that underlie perception and 
imagery, with strong evidence for common encoding of semantic and emotional features. In experiment 2 (dol-
phin referent), although classification during the perception condition was stronger than in experiment 1, clas-
sification during imagery (lower right quadrant) no longer reached significance for any of the three feature-sets. 
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A significant feature-set-by-condition interaction (p <  0.01), showed that this was not due to a general lack of 
power, but that the dolphin was represented in a different way across perception and imagery. Some support 
for a difference in processing between the animate and inanimate referents was also apparent during percep-
tion: Consistent with previous findings29, classification of the perceived referent based on semantic features was 

referent

item X

item Y

Referent: 4 s on, 2 s off
Other stimuli: 2 s on, 2 s off

time

noitpecre
P

se
ss

io
n

yrega
mI se

ss
io

n

sisylanaIR
Mf

enilno
no

desab
noitceles

sulu
mitS

Re-present this subset of
stimuli in the next run

Select stimuli evoking
most similar

activation patterns
to referent

Compare multi-voxel response pattern for each stimulus
to response pattern for referent (e.g. imagined dolphin)

Multivariate classification of
whether each stimulus was finally selected,

based on sets of sensory, semantic or
emotional properties of the stimuli

Univariate classification
of whether each

stimulus was selected,
based on individual

image properties

Analysis of mean
image properties

across final
stimulus selection

Measure occipito-
temporal BOLD

response to
each stimulus

selected stimulus
(within “neural
neighbourhood”
of referent)

referent

vo
xe

l 2

voxel 1
voxel n unselected

stimulus

selected stimulus
(within referent’s
“neural neighbourhood”)

object feature 1

ob
je

ct
 fe

at
ur

e 
2

object feature n

unselected
stimulus

Figure 1. Overview of experimental procedure. (Top) Example sequence of events in the two conditions, and 
stimulus selection procedure based on online fMRI analysis. Actual stimuli were coloured images, represented 
here by their category label. (Bottom) Offline analyses of selected stimulus sets.
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especially strong for the animate dolphin referent, whereas sensory and semantic features had comparable predic-
tive power for the inanimate knives referent (feature-set-by-referent interaction: p =  0.09).

For feature sets where significant classification was observed, we then drilled down, and identified which 
individual features were most strongly represented. The degree to which individual features predicted NN 
membership is shown in the centre column of each panel, labelled “univariate classifier sensitivity”. A few sen-
sory features, and most of the semantic features, were represented during perception (upper half of figure).  
Furthermore, during imagery of knives (lower left quadrant), several semantic features were found to be strongly 
encoded (animacy p <  0.01, knife association p <  0.05, dolphin association p <  0.01, and implied motion 
p <  0.01). Sensitivity to real-world size and to object number were not preserved during knife imagery. Within 
the emotional features, predictive power of an image’s valence and arousal differed across perceived referents 
(valence significant for knife; arousal significant for dolphin), and just failed to reach significance during imagery 
for the knife referent.

This classifier analysis revealed which features significantly predicted NN membership (e.g., emotional 
valence), but not whether images with positive or negative values of each feature were being selected for mem-
bership. To investigate this, the rightmost bar charts in each panel (labelled “Mean feature value in NN”) plot 
the mean value of each feature, across the ten images comprising the NN. In general, the direction of significant 
tuning for a given feature was consistent with whether the referent image had a positive or negative score for this 
feature. For example, images with strong implied motion were consistently selected as having similar activation 
patterns to the dolphin, which was also rated highly on this feature, whereas objects with little implied motion 
were consistently selected as having similar activation patterns to the knives. Typically, features from which 
NN membership could be classified were present in the NN more or less than would be expected by chance. 
In particular, this was true of all four semantic features that allowed significant classification of NN member-
ship during knife imagery. Also consistent with the classification measure, the two remaining semantic features 
(real-world size and object number) showed non-zero tuning during perception of knives but not during imagery 
of knives. This drop in tuning was significant for real-world size (t(20) =  2.50, p <  0.05) but not for object number 
(t(20) =  1.09, p >  0.1).

Occasionally, a feature that significantly predicted NN membership was not significantly expressed in the 
NN, which could reflect consistent selection of a stimulus value close to the average across the stimulus set, or 
selection of more extreme values but in different directions across participants. Conversely, during knife imagery, 
the NN contained images with significantly negative valence, despite valence not significantly predicting NN 
membership in the classifier analysis. This could reflect insufficient power of the classifier, or suggest that images 
with negative valence were clustered not only within the NN, but also elsewhere along the distribution of neural 
pattern similarities.

Finally, feature tuning of the neural representation during mental imagery was compared across the two ref-
erents. Again, coarsely grouped feature sets were considered first, and a significant interaction (p <  0.01) was 
found between feature set (sensory vs. semantic/emotional) and imagined object (knives vs. dolphin) in terms 
of ability to predict NN membership. To explore these differences in more detail, object-specific coding of indi-
vidual features is plotted in Fig. 5, as their differential expression within the NN. For participants imagining the 
dolphin, images in the NN were significantly more blue, rated as less semantically associated with knives, more 
associated with dolphins, and arousing more positive emotions, compared to NN items for the participants who 
were imagining knives (all p <  0.05; Fig. 5, middle). These effects did not survive correction for multiple compar-
isons, but were all in the direction expected a priori based on the feature properties of the referents. For semantic 
features, these differences correspond to image properties that were also represented during perception (Fig. 5, 

Perceived referent
> baseline

Imagined referent 
> baseline

Region of interest 
for adaptive 
stimulus selection

> basel

PerceivPerceiv
> basel

Imagine
> basel

Figure 2. Univariate BOLD response to referent items that are perceived (blue contour) or imagined (red 
contour). Activations are significant at a false discovery rate of 0.05. The region of interest, defined a priori, is 
superimposed in yellow.
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left), consistent with the participants’ goal to recreate the perceptual experience during imagery. A significant 
interaction was found, however, between referent (dolphin vs knives) and condition (perceived vs imagined) for 
coding of animacy (p <  0.05; Fig. 5, right), which was positive during dolphin perception, negative during dol-
phin imagery, and negative during both knife conditions.

The broad stimulus set suits both theory-driven and exploratory analyses. Features considered above were 
chosen a priori, bounding the space of possible inferences. However, this brain region may be sensitive to prop-
erties not considered in advance. During dolphin imagery, an unexpected and above chance preponderance of 
celestial objects (e.g. planets, galaxies, rainbows) was observed in the NN. Although a post-hoc observation, this 
deserves further investigation. One possibility is that this finding is related to representation of expansive space, 
consistent with recent findings for neighbouring brain regions31.

The neural representation of imagined objects reflects individual variability in imagery ability 
and style. Although several semantic and emotional features represented during perception of knives were 
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Figure 3. The representational space of the 200 stimuli based on their occipitotemporal activation patterns 
at the end of the first run. The first two dimensions of this space are illustrated. The DISTATIS extension of 
multidimensional scaling was used to optimally combine participants; variability is indicated by 95% confidence 
ellipses, coloured according to a tripartite classification into animate items, and small or large inanimate objects. 
Panel (a) combines data across the four conditions, and the image categories from the Caltech 256 dataset are 
superimposed on the ellipses. The lower panels show data for the two imagery conditions: experiment 1, knife 
imagery (b), and experiment 2, dolphin imagery (c). Elliptical outlines are bootstrapped 95% confidence ellipses 
illustrating the location of each referent’s neural neighbourhood, defined on the first two dimensions and 
averaged across subjects.
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also robustly represented during knife imagery, this was not the case in the experiment using the dolphin referent. 
Could it be that different features were being consistently represented during dolphin imagery, but which did not 
correspond to the features that were tested and were important during perception? Cross-participant consistency 
in how the referent was represented can be quantified in a feature-agnostic manner, by taking the vector of pattern 
similarities between the referent and the other items, and correlating these vectors for each pair of participants. 
The mean cross-participant correlation was compared to a null distribution generated by randomly shuffling the 
stimulus labels, independently for each participant, repeated 1000 times. While this analysis confirmed significant 
cross-participant consistency for the perceived and imagined knives and for the perceived dolphin (all p <  0.001), 
there remained no significant consistency in how the imagined dolphin was related to the other images (p =  0.27). 
Therefore it seems unlikely that dolphin imagery was evoking a consistent representation that was simply not 
spanned by those features chosen a priori.

Another potential reason for observing relatively low feature tuning of the neural response during dolphin 
imagery could be that different people imagined the dolphin in different ways, a finding that could have important 
implications for the use of mental imagery in clinical applications. Two hypotheses were considered. First, some 
people may have found it more difficult to imagine the dolphin than the kitchen knives (for example because a 

Knife Perception Knife Imagery Dolphin Perception Dolphin imagery

Bat 007.0022 (0.317) Knife 125.0034 (0.154) Unicorn 236.0032 (0.405) Snail 189.0002 (0.178)

Knife 125.0034 (0.291) Sword 209.0017 (0.146) Kangaroo 121.0051 (0.376) Rainbow 170.0060 (0.171)

Mushroom 147.0045 (0.277) Knife 125.0006 (0.138) Dog 056.0028 (0.373) Killer-whale 124.0001 (0.167)

Sushi 206.0072 (0.274) Microscope 141.0021 (0.125) Superman 208.0008 (0.365) Saturn 177.0029 (0.160)

Spoon 199.0040 (0.273) Pyramid 167.0002 (0.124) Camel 028.0082 (0.354) Brain 020.0058 (0.158)

Zebra 250.0083 (0.265) Mushroom 147.0002 (0.123) Bat 007.0022 (0.332) Galaxy 082.0050 (0.152)

Sushi 206.0058 (0.260) Butterfly 024.0098 (0.123) Homer 104.0003 (0.330) Umbrella 235.0042 (0.139)

Snake 190.0047 (0.258) Ostrich 151.0017 (0.119) Zebra 250.0083 (0.328) Laptop 127.0002 (0.138)

Llama 134.0001 (0.253) Umbrella 235.0042 (0.114) Swan 207.0007 (0.323) Tripod 231.0039 (0.136)

Socks 194.0083 (0.252) Snail 189.0052 (0.112) Horse 105.0073 (0.318) Elephant 064.0039 (0.136)

Table 1.  Neural neighbourhoods of images evoking the most similar patterns, on average, to each 
perceived or imagined referent. Category names are followed by the image ID in the Caltech 256 dataset. Font 
style indicates tripartite classification into animals (bold), small inanimate objects (italic), and large inanimate 
objects (regular). Mean pattern correlation with the referent is given in parentheses.

Figure 4. Information represented within the neural neighbourhood of perceived and imagined images. 
Expression of each feature within the neural neighbourhoods of experiment 1 (left panels) and experiment 2 
(right panels). Upper panels are for the perception conditions and lower panels for the imagery conditions. 
**p <  0.01 with Holm-Bonferroni correction for number of tests in category; *p <  0.05 Holm-Bonferroni; 
*p <  0.05 uncorrected. For the classifier analysis, black lines indicate the 95th percentile of the null distribution. 
For the plots of mean feature values in the NN, error bars represent 95% confidence intervals across 
participants, and the grey circles show the feature values for each referent.
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dolphin is a less familiar object). There was no overall difference in subjective imagery ability between the two 
groups (scores on the Vividness of Visual Imagery Questionnaire (VVIQ) were matched; t41 =  − 0.92 p >  0.05), 
but we hypothesised that individuals reporting weak imagery might have struggled to imagine this uncommon 
object, leading to a correlation between the degree of neural tuning and the ability to generate vivid mental 
images. For those features exhibiting significant neural tuning during dolphin perception, the difference in tuning 
between imagery and perception was therefore correlated with VVIQ scores (Fig. 6a). Significant correlations 
were observed for the features of animacy and image complexity (p <  0.05), along with similar trends for arousal 
and implied motion (p =  0.07 and p =  0.08 respectively). In all cases, relatively stronger tuning during imagery 
was observed for participants reporting less vivid imagery. The direction of this relationship will be discussed 
later.

Second, we considered the possibility that whereas different participants tended to imagine the knife image in 
a similar way (i.e. focusing on the same features), participants might have differed in which features they repre-
sented when imagining a dolphin. For example, a bimodal distribution of tuning to “implied motion” might sug-
gest that some participants perceived the dolphin image as static (like a photographic freeze-frame) and others as 
dynamic (as if they were present in the scene). To investigate this, the distribution across participants of the actual 
NN feature values was investigated (Fig. 6b). Hartigan’s dip test43 was used to assess whether the observed distri-
bution was unimodal, by comparison with a null distribution of the test statistic derived from 10000 bootstrapped 
samples of similar size, from a Gaussian distribution with similar mean and standard deviation. Again, the five 
features that showed significant expression in the NN of the perceived dolphin were considered, and tested for 
unimodality of expression in the NN of the imagined dolphin. Image complexity, emotional arousal, and seman-
tic associations with a dolphin all departed significantly from a unimodal distribution across participants (all 
p <  0.05). This indicates that the participant sample contained multiple groups of individuals that differed in their 
style of imagery, specifically by selecting differently along each of these feature dimensions while imagining the 
dolphin. For comparison, Fig. 6c shows the selected feature distributions during the perception condition, which 
have means significantly greater than zero, but none of which depart from a unimodal distribution (all p >  0.1).

Discussion
The current data confirm occipitotemporal involvement in both perception and imagery, with activation pat-
tern similarities encoding image content. Consistent with previous studies, this suggests a meaningful relation 
between the form of neural representations during imagery and perception, while agnostic to what this form 
might be24–27. By using item-based analyses, in combination with Dynamically Adaptive Imaging29, we could 
assess which object features contributed to this common neural representational form as measured in the mul-
tivoxel response pattern. Critically this allows conclusions to be drawn regarding the content of the representa-
tion, e.g. those stimulus attributes represented similarly in both imagery and perception. Some properties (e.g., 
semantic associations) showed stronger correspondence than others (e.g., real-world object size) between per-
ception and imagery, and feature tuning was influenced both by the imagined object itself, and by individual 
differences in style and vividness of imagery.

Perception and imagery dissociate clinically13,34–36, and theoretical and experimental arguments also high-
light differences between them33. We find that occipitotemporal representations reflect some of these differences. 
When items were perceived, sensory, semantic and emotional properties were all represented. However, during 
knife imagery, much semantic and emotional content was robustly preserved while more sensory details were 
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Figure 5. Object-specific feature coding during perception (left), imagery (middle) and their interaction 
(right). **p <  0.01 with Holm-Bonferroni correction for number of tests in category; *p <  0.05 Holm-
Bonferroni; *p <  0.05 uncorrected. Error bars represent 95% confidence intervals across participants.
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lost. This is consistent with imagery being supported by abstracted semantic information in long-term memory44, 
drawn from repeated object encounters, but generalizing over episodic details.

Some researchers26,45 note that prediction of imagined (or verbally evoked) representations, from activity 
patterns measured during perception, is weaker than prediction in the reverse direction. Cichy and colleagues26 
hypothesise that this asymmetry may be because imagined representations comprise a subset of the features rep-
resented during perception, so that features learned under imagery are likely to be discriminative for representa-
tions during perception but not vice versa. Results of experiment 1 are consistent with this prediction (with knife 
imagery showing significant feature tuning for a subset of the features that were significant during perception), 
while experiment 2 provides evidence for an alternative, but not mutually exclusive, possibility that encoded 
features during imagery are more variable (in this case between participants, but potentially also across items).

Concepts can be grouped by common co-occurrence (“thematically”; e.g. “knife”-“sushi”), by type (“taxo-
nomically”, e.g. “knife”-“spoon”), or by other information (for example by similar physical attributes). The left 
anterior temporal lobe and temporoparietal junction may be specialised respectively for processing taxonomic 
and thematic information46. The current data suggest that occipitotemporal cortex reflects all of these organiza-
tional principles, both during perception (knife and dolphin referents), and imagery (knife referent), with tuning 
observed to thematic properties (e.g. semantic relatedness), taxonomic properties (e.g. animacy) and properties 
varying across items within a theme or taxon (e.g. emotionality).
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imagery vividness with neural feature tuning, during dolphin imagery relative to perception. (b) Kernel  
density estimates (bandwidth =  0.1), of the distribution across participants, of mean feature values within the 
NN, during dolphin imagery. Significance indicates Hartigan’s dip test for departure from unimodality.  
(b) Corresponding kernel density estimates during dolphin perception.
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Occipitotemporal sensitivity to implied motion in the perceptual condition of both experiments supports 
previous results47–49, which we extend by finding sensitivity to implied motion during knife imagery (negative 
tuning, i.e. selection of other static objects). Sensitivity to emotional state has also previously been observed in 
ventral visual regions9,30,50,51. The preserved representation of emotional properties during knife imagery, and 
the bimodal distribution of subjects representing emotional arousal during dolphin imagery, are both consistent 
with the view that mental imagery is importantly related to emotional experience and its disorders in susceptible 
individuals20, and further imply that occipitotemporal cortex contributes to this link.

Only two semantic properties showed no evidence of preservation during imagery: real-world size and the 
number of objects in the scene. Recent work suggests that people associate a canonical size to visual objects, 
represented along the ventral stream42,52. We replicate this finding during perception, but despite generally pre-
served tuning to semantic features during knife imagery, there was a significant reduction in coding of real-world 
size. Size may be represented perceptually to aid computations of distance, and potential physical interactions; 
during imagery, actual interaction is impossible, and location can be unspecified or pre-specified, compatible 
with the observed reduction in coding of real-world size. The reduced coding of object numerosity during knife 
imagery did not reach significance, but is consistent with the observation that while occipitotemporal BOLD 
signal increases with the number of attended objects, it shows a capacity limit during short-term memory53. It 
is also consistent with the suggestion that serial processing may limit imagery of multiple items, such that the 4 
s imagery epochs in the present design may have been too short to generate representations of multiple items 
within a mental image54.

An important difference between perception and imagery is that perception triggers interpretation and identi-
fication, whereas people can decide in advance what they will imagine (although hallucinations and flashbacks are 
potential exceptions). The referent-by-condition interaction in tuning to animacy might reflect this. The observed 
selection for animate and inanimate items during dolphin and knife perception, respectively, is expected38, but 
during imagery inanimate items were selected in both cases. A similar interaction between category (faces/
objects) and condition (imagery/perception) has been observed using EEG55. One explanation for this interac-
tion is that activation patterns not only reflect represented features (e.g. animacy), as often implicitly assumed, but 
mental processes being engaged (e.g. identification and interpretation). Identifying other animals is evolutionarily 
critical, but more challenging than identifying other objects, because animals have relatively few distinguishing 
features56. Therefore, processes such as identification may be recruited more strongly during the perception of 
living things. This would be compatible with positive and negative tuning during dolphin and knife perception 
respectively, but negative tuning during imagery of either referent, since identification and interpretation pro-
cesses becomes irrelevant regardless of category if an imagined referent is known in advance.

Occipitotemporal activation patterns represent different features as different objects are perceived29. We sug-
gest that which features a brain region explicitly represents may similarly vary with the object being imagined. 
This is indicated by a significant interaction between feature set and imagined object, and possibly informs debate 
on whether imagery maintains depictive28 or propositional information33, in that the type of information most 
prominently expressed in a particular mental image might depend on the object being imagined and the goal of 
the imagery.

Subjective vividness of imagery has long been known to vary substantially between individuals57. Nonetheless, 
there is remarkable concordance between voxel-wise BOLD-signal across individuals imagining verbally-cued 
items45. In retinotopic cortex, VVIQ scores58 predict individual differences in activation during imagery59, and 
response pattern similarity between perception and imagery27. Here we find that vividness of imagery predicts 
sensitivity of occipitotemporal cortex to particular stimulus features during imagery. Unexpectedly, relatively 
weaker tuning during imagery was consistently observed for participants who reported more vivid imagery. If 
occipitotemporal representations reflect reactivation of abstracted semantic associations, people reporting weak 
imagery might rely more on these than people who can vividly imagine specific exemplars and idiosyncratic 
details. Thus the representations of vivid imagers may rely more on earlier visual cortex than on the current 
occipitotemporal region of interest. Representations of people reporting vivid imagery may also be more variable 
across individuals if they focus on different details, or elaborate their images based on different past experiences. 
This is consistent with the view that effective imagery can be thought of not as a “faithful replica of the physical 
object” but a “refined abstraction” whose “incompleteness…[is] a positive quality, which distinguishes the men-
tal grasp of an object from the physical nature of that object itself ”60. Finally, during dolphin imagery, tuning to 
several features (that were consistently coded during perception) was found to be distributed bimodally across 
participants, demonstrating that distinct participant groups differ in their imagery style, and extending the recent 
finding that response patterns in occipitotemporal cortex predict differences between individuals’ perceptual 
judgements61.

Adaptive similarity search29 efficiently samples a large stimulus set to answer questions focused on local 
neighbourhoods, important if neural representations are inhomogeneous across stimulus space, as observed pre-
viously29. The current study investigated in great detail the feature content of occipitotemporal cortex during 
perception and imagery, but only for two objects. Future work might extend this to a greater number of referents, 
or use our findings to guide a broader but shallower investigation. Another trade-off in the current approach is 
optimisation for a given ROI. Occipitotemporal cortex was chosen because of its reliable involvement in both 
imagery and perception24–27,62 and its coding of multiple visual attributes29. However, the occipitotemporal ROI is 
only a subset of cortex implicated in perception and imagery22, and other features may be represented elsewhere 
in the brain. Imagery additionally activated hippocampus, parieto-occipital cortex and the insula, and sometimes 
engages retinotopic areas28. Some of these regions, such as the hippocampus, may represent content-specific 
properties63, while others may serve task-general roles64. The current approach offers a tool to measure and con-
trast tuning to different object properties across these regions. It remains unclear whether feature tuning is com-
puted within the region of interest, or reflects upstream input. For example, frontal cortex may process emotional 
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imagery and subsequently modulate occipitotemporal representations9,30. Methods with finer temporal resolution 
may help elucidate this48.

Although our methods allow for the examination of many image features, multiple-comparison correction 
limits statistical power. Occipitotemporal cortex likely represents further properties of perceived and imagined 
images, not present amongst the stimuli or untested here, such as visual field location26. Caution is also warranted 
in inferring from above-chance expression in the NN, of features defined a priori, that these are actually what is 
being represented. For example, although the present three-level scale for “animacy” revealed significant tuning 
in three of four conditions, it is likely that occipitotemporal cortex represents finer gradations along a dimension 
from less to more human-like65. Similarly, brain responses may be better described by other, possibly unintuitive, 
object features or computation processes that covary with the features chosen for investigation.

Decoding mental states using neuroimaging attracts much interest, and can have profound clinical impact21. 
Experiments typically identify which of a few pre-specified stimuli or tasks are being represented. To infer inter-
nal states more generally, a recent approach has been to train classifiers on neural response patterns to known 
stimuli, and attempt to predict responses to novel stimuli, or to predict a novel stimulus from its response66,67. 
Adaptive search through stimulus space provides a complementary strategy, perhaps especially powerful in com-
bination with parameterised spaces, as demonstrated in monkey electrophysiology68. However, the current results 
suggest caution in interpreting whether or not it is possible to decode a mental image. Firstly, since the relation-
ship between perceived and imagined representations depended on the particular object, different mental images 
may vary in their decodability, unless these dependencies are characterised. Secondly, since neural tuning cova-
ried with VVIQ scores, and exhibited across-participant clustering, imagery is unlikely to be equally decodable 
across people, and individual differences in style and ability should be considered.

In conclusion, the current results demonstrate that it is possible to measure the content of a mental image 
by analysing patterns of brain activity. Specifically, we were able to characterize imagined semantic and emo-
tional properties represented in occipitotemporal cortex. Despite similar response patterns during perception 
and imagery, this correspondence is shown to differ across features, with only a subset of perceptually represented 
properties being consistently represented during imagery. Importantly, this feature tuning depends upon both the 
imagined object, and individual differences in personal style and vividness of imagery.

Roger Shepard commented that mental images “have often appeared to play a crucial role in processes of 
scientific discovery, [but] have themselves seemed to remain largely inaccessible to those very processes”4. By 
characterising mental image content via its representation in occipitotemporal cortex, we offer a new approach to 
shed light on this internal world, and increase its accessibility to scientific discovery.

Methods
Stimuli and task. To generate the stimulus set, two images were selected from each of 100 categories in the 
Caltech256 database69. In each experiment, one image from the stimulus set was selected as a “referent image”. 
An image of kitchen knives was selected as the referent stimulus in experiment 1, and an image of a dolphin in 
experiment 2. The referent images were chosen to be perceptually, semantically, and emotionally distinct from 
each other. All stimuli were displayed sequentially in the centre of a mid-grey screen, and resampled to occupy 
a constant visual area (equivalent to a square of side 6° of visual angle). Presentation used DirectX and VB.net 
2008 Express Edition, running on a Windows PC. Stimuli were back-projected onto a screen and viewed through 
a mirror.

Prior to entering the scanner, participants completed the Vividness of Visual Imagery Questionnaire 
VVIQ58,59, to provide an individual measure of subjective imagery ability, and to allow participants to practise 
generating vivid mental images. Participants were next presented with a referent image (a set of knives in exper-
iment 1, and a dolphin in experiment 2) and were given as long as they wanted to memorise it and to practise 
imagining it as vividly as possible. Participants then completed two half-hour scanning sessions: An imagery 
session in which they imagined the previously memorized referent image whenever visually cued with an empty 
rectangle, and a perceptual session in which instead of the empty rectangle the referent image was displayed on 
the screen. In both cases, these referent events were interspersed amongst a stream of other stimuli, to which par-
ticipants were simply required to pay attention whilst maintaining central fixation. The order of the two sessions 
was counterbalanced across participants.

Participants. Each experiment tested a different group of 22 participants, who all reported normal or 
corrected-to normal vision, and no history of psychological or neurological impairment. In experiment 1 (knife 
referent), one block was excluded because the participant fell asleep; participants (11 female) were aged between 
18 and 32 (mean 23). In experiment 2 (dolphin referent), one participant was excluded due to frequent movement 
of > 3 mm; the remaining participants (13 female) were aged between 18 and 38 (mean 25). A separate group 
of thirteen participants provided subjective ratings of semantic and emotional properties of all images, using 
a five-point scale (Table 1). All participants gave informed, written consent, and were paid for taking part. The 
study was approved by the Cambridge Psychology Research Ethics Committee and carried out in accordance with 
the approved guidelines.

MRI acquisition. Scanning was performed using a Siemens 3T Tim Trio at the MRC CBU in Cambridge, 
UK. Functional magnetic resonance imaging (fMRI) acquisitions used Echo-Planar Imaging (TR  =   1 s, TE  =   
30 ms, FA  =   78 degrees) with a matrix size of 64 ×  64 and in-plane voxel size of 3 ×  3 mm. There were 16 slices 
with a rectangular profile, 3 mm thick and separated by 0.75 mm. Slices were oriented to cover the inferior surface 
of the occipital and temporal lobes. Each acquisition began with 18 dummy scans during which a countdown 
was shown to the participant. An MPRAGE sequence (TR  =   2.25 s, TE  =   2.98 ms, FA  =   9 degrees) was used to 
acquire an anatomical image of matrix size 240 ×  256 ×  160 with a voxel size of 1 mm3. Structural and functional 
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data analyses were performed in real-time using custom scripts written in Matlab (2006b; The MathWorks Inc.). 
SPM5 (Wellcome Department of Imaging Neuroscience, London, UK) was used to perform image pre-processing 
and statistical modelling. The analysis was run on a stand-alone RedHat Enterprise 4 Linux workstation. As each 
image volume was acquired, it was motion-corrected and the time-course was high-pass filtered (cut-off 128 s). 
No spatial smoothing or slice-time adjustment were applied.

Online adaptive stimulus selection. Dynamically Adaptive Imaging29, a recently developed fMRI meth-
odology, was used to iteratively select from the 200 stimuli those that evoked the most similar pattern of brain 
activity to the referent stimulus (Fig. 1, top). All 200 images were presented in the initial run, once each, in ran-
dom order. Images appeared for 2 s each, separated by a 2 s blank interval. Every 4th image was followed alter-
nately by either a blank screen or the referent stimulus, lasting 4 s, and again separated by a 2 s gap. In the imagery 
session the referent stimulus was simply a black rectangle cueing the participant to imagine the relevant image 
as vividly as possible. An occipitotemporal region of interest (ROI) was predefined from an independent study29 
that used a functional localizer to identify object-selective cortex70. This region is known to encode both semantic 
information and lower-level sensory features29, and is activated in an object-specific manner during both percep-
tion and imagery24,25,62. The ROI was inverse-normalised from the space of the MNI template back to the native 
space of each participant’s brain (with the resultant number of voxels ranging from 223–371). At the end of each 
run, data extracted from this ROI were submitted to a standard general linear model. 201 regressors modelled 
each stimulus and the referent, formed from boxcars during each presentation of that item (across all preceding 
runs), convolved with the canonical hemodynamic response as defined by SPM. Additional regressors were used 
to model and remove residual effects of participant motion, and a temporal high-pass filter was applied to the 
data and model (128 s cut-off). Using multivoxel pattern analysis (MVPA), a subset of stimuli was selected, whose 
evoked activity patterns were most similar to that of the referent. The similarity metric was the Spearman corre-
lation across voxels between the patterns of betas from the fitted model. Following completion of each run there 
was a 24 s interval, and the selected images were then presented again in a new run. This process was iterated 
to converge on the ten most similarly represented images, which defined the referent’s “neural neighbourhood” 
(NN). In each session there were six runs, with the number of (non-referent) stimuli in each being 200, 31, 25, 20, 
16 and 13, (presented once each), as optimized by simulations prior to the experiments29. In this way, neuroim-
aging was primarily used online to generate a neural neighbourhood of stimuli, and not for subsequent analyses.

Offline analysis of feature-tuning. Each referent was characterized by its NN, the set of ten items that 
evoked the most similar patterns of activity to it. To test whether given features or sets of features contributed to 
an item having a similar neural representation to the referent, a classifier was trained to predict, on the basis of an 
item’s features, whether or not it would make it into the NN. The features tested included simple, space-invariant 
visual properties computed directly from the images, as well as subjectively-rated semantic and emotional char-
acteristics, as listed in Table 2. A quadratic-discriminant naïve Bayes classifier was chosen (implemented by the 
“diagQuadratic” option of the “classify” function in MATLAB), because it allows for covariance to differ between 
categories, as might be expected for our asymmetric within-NN vs. outside-NN discrimination. A leave-one-out 
strategy was used to assess generalization across items. To maximise the amount of data contributing to train-
ing, on each fold the classifier was tested on a single item from a single participant, after training on all other 
items over all participants; this was then repeated for each item and each participant. To summarise the overall 
performance of the classifier, signal detection theory’s d’ was used. (The more common measure of percent cor-
rect classification would be misleading with our asymmetric categories, because a classifier that never selected 
“within-NN” could achieve 95% accuracy despite having a sensitivity of zero.) Significance was assessed using a 
permutation test, where the null distribution of the d’ statistic was computed from 1000 iterations in which the 
items’ category labels (within-NN vs. outside-NN) were randomly reassigned. Actual d’ was compared to the 95th 
percentile of this null distribution.

To decompose the pattern of selectivity into tuning along individual feature dimensions, whilst controlling the 
number of statistical tests, a hierarchical approach was taken. First, features were broken down into three broad 
sets: “sensory” (computed objectively from the image pixels or from the contour of the focal objects), “semantic” 
(subjectively rated properties of the image) or “emotional” (subjectively rated emotions evoked by the images). 
Separate, multivariate classifiers were trained and tested using just the features in a given set. For feature sets 
where significant prediction was found, separate univariate classifiers were then trained using each feature within 
this set individually. The Holm-Bonferroni procedure was used to control the false positive rate across multiple 
comparisons within each branch.

The classifier analysis revealed which features significantly predicted NN membership (e.g., emotional 
valence), but not whether positive or negative values of each feature were being selected for. To investigate this 
more directly, the direction of tuning of the NN for each feature was assessed by testing whether that feature was 
found in the NN more or less than would be expected by chance. For each feature, the distribution of values was 
standardized to a z-score across all 200 images. This allowed us to test how significant the expression of a feature 
in the NN was, by measuring the mean value of this feature across the ten images in the NN, and comparing this 
to zero (which would be expected if images were being selected at random).

Testing pattern consistency across repeated stimulus presentations. Because the analysis depends 
on the reliability of fMRI patterns for each stimulus, a standard MVPA classification was used to decode the iden-
tity of stimuli that were repeated in four or more runs. For each participant, a linear support vector machine was 
used to classify each pair of stimuli, training and testing on separate runs. Classification accuracy was averaged 
across cross-validation splits and stimulus pairs, and compared to chance using t-tests across participants.
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Feature Derivation Lowest scoring items Highest scoring items

Sensory

Image complexity Jpeg file size71

tripod_231_0039 elk_065_0039
mars_137_0003 fern_068_0023
llama_134_0019 fern_068_0002

Mean lightness Mean across image of L* channel in 
L*a*b* colour space

saturn_177_0082 ipod_117_0042
comet_044_0032 unicorn_236_0032
saturn_177_0029 tripod_231_0039

Red/green balance Mean across image of a* channel in 
L*a*b* colour space

hummingbird_113_0008 homer_104_0003
grape_092_0152 microscope_141_0006
kangaroo_121_0057 tomato_221_0007

Yellow/blue balance Mean across image of b* channel in 
L*a*b* colour space

killer-whale_124_0001 sword_209_0017
dolphin_057_0009 tomato_221_0007
killer-whale_124_0066 homer_104_0003

RMS contrast Standard deviation across image for 
L* channel

comet_044_0032 laptop_127_0002
frog_080_0065 headphones_101_0056
fighterjet_069_0044 backpack_003_0036

Luridness Mean standard deviation across image 
for a* and b* channels

elk_065_0093 homer_104_0019
tripod_231_0039 microscope_141_0006
dog_056_0028 homer_104_0003

Area of focal object(s) Number of pixels occupied by focal 
object(s)†

comet_044_0022 coin_043_0008
kayak_122_0009 racoon_168_0013
lightning_133_0135 tomato_221_0007

Object lightness L* difference between focal object(s) 
and background†

coin_043_0026 laptop_127_0043
headphones_101_0056 cake_026_0008
socks_194_0083 mars_137_0108

Object roundness Ratio of eigenvalues of pixel 
coordinates of focal object(s)†

comet_044_0032 spaghetti_196_0019
spoon_199_0002 coin_043_0026
knife_125_0034 mars_137_0108

Object thickness Area of focal object(s)† scaled by 
square of its perimeter

fern_068_0023 mars_137_0108
lightning_133_0013 spaghetti_196_0019
fireworks_073_0016 coin_043_0026

Horizontal spread Orientation* (1-roundness) 
(-π /4 =  vert., π /4 =  horiz.)†

sword_209_0040 pyramid_167_0001
harp_098_0058 lightning_133_0013
superman_205_0014 skateboard_185_0002

Semantic

Real-world size Ranked size, estimated by researcher
dice_055_0062 saturn_177_0082
coin_043_0008 galaxy_082_0029
coin_043_0026 galaxy_082_0050

Number of focal objects Rated by researcher (0 =  one, 1 =  two, 
2 =  more than two)

backpack_003_0036 sushi_206_0072
backpack_003_0145 tomato_221_0007
bat_007_0069 zebra_250_0048

Animacy 0 =  inanimate, 1 =  ambiguous, 
2 =  animate

backpack_003_0036 swan_207_0025
backpack_003_0145 zebra_250_0048
binoculars_012_0001 zebra_250_0083

Semantic association with 
knives

Rated by participants on 5-point scale 
(5 =  highly related)

bat_007_0069 sword_209_0040
bear_009_0021 knife_125_0034
bear_009_0071 knife_125_0006

Semantic association with 
dolphin

Rated by participants on 5-point scale 
(5 =  highly related)

backpack_003_0036 killer-whale_124_0066
backpack_003_0145 dolphin_057_0034
cake_026_0008 dolphin_057_0009

Implied motion Rated by participants on 5-point scale 
(5 =  most dynamic)

backpack_003_0036 fighterjet_069_0003
backpack_003_0145 fighterjet_069_0044
binoculars_012_0001 killer-whale_124_0001

Emotional

Subjective valence Rated by participants on 5-point scale 
(5 =  most pleasant)

spider_198_0001 killer-whale_124_0001
cockroach_040_0022 rainbow_170_0060
cockroach_040_0122 dolphin_057_0009

Subjective arousal Rated by participants on 5-point scale 
(5 =  most arousing)

fridge_171_0001 spider_198_0033
microwave_142_0069 fighterjet_069_0044
microwave_142_0081 scorpion_179_0071

Table 2.  Derivation of feature scores. The three highest and lowest scoring items on each feature are listed by 
category name followed by the image ID in the Caltech 256 dataset. †Contour of focal object(s) was traced by 
experimenter.
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Multi-dimensional scaling. To illustrate the representational space of the 200 stimuli (Fig.  3), 
multi-dimensional scaling (MDS) was used to convert the voxel pattern correlation distances between all pairs of 
stimuli into points on a 2D plane, whose euclidean distances approximate the distances in the original multidi-
mensional space. DISTATIS was used to optimally combine data across subjects and conditions40, with variability 
indicated by 95% confidence ellipses. The special status of the referents means that absolute distances between 
the referents and the 200 comparison stimuli are not directly comparable to distances amongst the 200 stimuli 
themselves. The location of each referent in the representational space is therefore illustrated as the mean coor-
dinate of the items in its mean neural neighbourhood, defined on the first two dimensions, with bootstrapped 
95% confidence ellipses illustrating variability across subjects. Procrustes transformation was used to rigidly align 
representational spaces across the conditions and experiments.
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