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Summary

Cereals (rice, maize, wheat, sorghum and the millets) provide over 50% of the world’s caloric

intake, a value that rises to > 80% in developing countries. Since domestication, cereals have

been under artificial selection, largely directed towards higher yield. Throughout this process,

cereals have maintained their capacity to interact with arbuscular mycorrhizal (AM) fungi,

beneficial symbionts that associate with the roots of most terrestrial plants. It has been

hypothesized that the shift from the wild to cultivation, and above all the last c. 50 years of

intensive breeding for high-input farming systems, has reduced the capacity of the major cereal

crops to gain full benefit from AM interactions. Recent studies have shed further light on the

molecular basis of establishment and functioning of AM symbiosis in cereals, providing insight

into where the breeding process might have had an impact. Classic phytohormones, targets of

artificial selection during the generation of Green Revolution semi-dwarf varieties, have

emerged as important regulators ofAMsymbiosis. Although there is stillmuch to be learnt about

themechanistic basis of variation in symbiotic outcome, these advances are providing an insight

into the role of arbuscular mycorrhiza in agronomic systems.

I. Introduction

Concern regarding the sustainability of current agricultural
practices and the nutritional quality of the food we produce has

for some time promoted interest in the potential benefit of
arbuscular mycorrhizal (AM) symbiosis in farming systems. While
AM symbiosis dates back over 450 million years, agriculture is a
relatively recent development. Our major crops were domesticated
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within the last c. 10 000 years, andmodern varieties are the product
of the last c. 50 years of intensive breeding for high input farming
systems (Fig. 1). It has been hypothesized that the dramatic shift
from the wild to cultivation has negatively affected the capacity of
crop plants to benefit from interactions with AM fungi (discussed
in Sawers et al., 2008; Schmidt et al., 2016). Environmental
differences between natural and cultivated systems (e.g. nutrient
input; resource homogeneity; fungicide, pesticide and herbicide
application; tillage; crop rotation and fallows) affect the rhizo-
sphere microbial community (P�erez-Jaramillo et al., 2016). The
question remains, however, as to what extent artificial selection
acting on the plant host genome has directly, or indirectly, affected
their interactions with AM fungi or other soil microbes. Have
modern crop varieties lost the ‘responsiveness’ genes required to
benefit fully from mutalistic symbioses? (Sawers et al., 2008).
Characterization of the rhizosphere microbiome has revealed a
significant effect of the plant genotype on themicrobial community
(Peiffer et al., 2013). Furthermore, common-garden studies have
found differences in the composition of the rhizosphere micro-
biome between cereals and their wild relatives, although, to date,
these studies have not had the resolution to specifically quantify
AM fungi (Bulgarelli et al., 2015; Szoboszlay et al., 2015; Shenton
et al., 2016). While there may be heritable differences in the
diversity and extent of AM colonization between crops and their
wild relatives, such differences may not necessarily be correlated
with differences in plant response (Lehmann et al., 2012; Sawers
et al., 2017). Here, we discuss how advances in the understanding
of these molecular mechanisms can generate hypotheses as to the
impact of domestication and breeding on AM symbiosis.We focus
on the role of plant hormones as both regulators of AM symbiosis

and as targets of selection in plant breeding. We also discuss the
possible mechanistic basis of differences in cereal response to AM
symbiosis.

II. Recruitment of plant metabolites and hormones as
signals in AM symbiosis

The establishment and maintenance of AM symbiosis requires an
exchange of multiple chemical signals between fungus and plant.
The current catalogue of signalling molecules includes the
butenolides strigolactone (Akiyama et al., 2005; Besserer et al.,
2006) and karrikin, N-acetylglucosamine (GlcNAc)-based chiti-
naceous molecules (Maillet et al., 2011; Genre et al., 2013; Nadal
et al., 2017), and the phytohormones auxin and gibberellin (Floss
et al., 2013; Etemadi et al., 2014; Yu et al., 2014; Takeda et al.,
2015). Mutation in either the synthesis or perception of any one of
these signals is sufficient to disrupt AM symbiosis. Interestingly,
many AM symbiotic signals also play a role in plant growth and
development: strigolactones regulate plant architecture; karrikins
are involved in seed dormancy, photomorphogenesis and leaf
development; GlcNAcylation modifies protein activity, and is
essential throughout development; auxin and gibberelin play
multiple roles throughout the life cycle of the plant. It has been
proposed that AM signalling and regulatory molecules have been
co-opted from ancestral functions in plant development, requiring
co-evolution between fungal and plant partners (Bonfante &
Genre, 2015). These central regulators of plant development have
also been targeted inmore recent times, during the processes of crop
domestication and improvement. How might such selection have
indirectly affected AM symbiosis?
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Fig. 1 The effect of domestication and
breeding on cereal morphology.
Morphological differences between modern
cereal varieties and their wild relatives,
illustrated through the example of wild
teosinte (Zea mays ssp. parviglumis; left) and
cultivated maize (Zea mays ssp.mays; right).
Characteristic differences in above-ground
plant morphology are given in the upper
portion of the figure. Below-ground
differences are shown in the lower portion –
although the root system architecture is more
variable, and wild and cultivated varieties are
less strongly differentiated (Burton et al.,
2013; Schmidt et al., 2016). Additional notes
are given on the distribution and differences in
environment, and differences characteristic of
other cereals. AM, arbuscular mycorrhiza.
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III. Phytohormones are regulators of AM symbiosis
and targets of plant breeding

The artificial selection of cereal crops has resulted in a loss of seed
dormancy, greater apical dominance, changes to photoperiod
sensitivity and flowering time, increased seed number and size, and
loss of shattering. Breeding efforts during the ‘Green Revolution’
have seen thewidespread adoption of semi-dwarf varieties of wheat,
rice and sorghum, generated by targeting plant hormones (Hedden,
2003). Selection on themorphology of the aboveground portion of
the plant can affect root system architecture (Burton et al., 2013;
Gaudin et al., 2014), with possible implications for AM coloniza-
tion (Schmidt et al., 2016). At the molecular level, pleiotropic
effects related to selection on hormone signalling can be predicted
to include an impact on AM symbiosis. In semi-dwarf varieties of
wheat and rice, gibberelic acid (GA) signalling is attenuated, by
reduced sensitivity or synthesis (Box 1; Hedden, 2003). In maize,
variation in GA signalling is related to differences in photoperiod
sensitivity and flowering time between tropical and temperate
maize (e.g. RomeroNavarro et al., 2017). Considerable insight has
been obtained since the first report of GA as a negative regulator of
AM symbiosis (El Ghachtouli et al., 1996). Exogenous application
of GA or a disruption of genes encoding the GA-sensitive DELLA
repressor proteins results in a reduction in AM colonization (Floss
et al., 2013; Yu et al., 2014; Takeda et al., 2015). In Medicago
truncatula, the effect of exogenous GA can be suppressed by the
introduction of degradation-resistant mutant versions of the
DELLA protein (Floss et al., 2013). Analogous degradation-
resistant DELLA proteins are produced by the dominant semi-
dwarfing alleles present inmodernwheat varieties (Box 1). To date,
the effect of dwarfing alleles on AM colonization has not been
characterized. Auxin indole-acetic acid (IAA) has been shown to
promote AM colonization (Etemadi et al., 2014). Auxin signalling
has been a target of selection during cereal improvement, notably in
relation to floral morphology. Again, it is not known how
differences in auxin signalling between cereal crops and their wild
relatives affects AM colonization.

IV. Variations in host response to AM symbiosis

It is hard to predict the impact of artificial selection on the outcome
of AM symbiosis (i.e. the net benefit to each partner), and it will be
informative to test empirically the effect of mutation or allelic
substitution at candidate loci. For example, while attenuated GA
signalling in semi-dwarf crop varieties might favour increased AM
colonization, this may, or may not, be to the benefit of the plant,
depending on the environmental conditions. The mechanistic and
genetic basis of variation in plant response to AM colonization
remains poorly characterized. The quantification of root-internal
fungal structures is often used as an indication of the fungal
contribution to host nutrition and benefit to the plant host. When
compared among diverse varieties, however, the abundance of
arbuscules is a poor predictor of plant response (e.g. Sawers et al.,
2017). When phosphorus is limiting, plant AM response is well
correlated with phosphate uptake (Jakobsen et al., 2001; Sawers
et al., 2017), focusing attention on the plant-encoded PHT1

proteins that take up phosphate from the peri-arbuscular space into
the host cells. Complete PHT1 gene families have now been
characterized from all major cereal crops (Box 2), opening the door
to the study of functional diversity. To date, however, variation in
the PHT1 family has not been linked to differences in plant
response, either amongmodern breeding lines or between wild and
domesticated varieties. In a study aimed at quantifyingmycorrhizal
phosphate uptake using radio-labelling, a single teosinte accession
in the study performed comparably to a panel of six maize inbred
lines (Svane, 2013). Under a given set of conditions, the extent of
root-external hyphaemay bemore important than the level of root-
internal colonization in driving variation in symbiotic outcome
(Jakobsen et al., 2001). The balance between root-internal and
root-external fungal development can differ depending on the host
genotype, indicating that involvement of plant genetic factors,
although this mechanism has not been characterized (Sawers et al.,
2017). The signalling molecules and plant hormones discussed
above in the context of pre-symbiotic signalling and root-internal
fungal development might also act to regulate the growth of the
root-external mycelium. It may be significant that in the absence of
arbuscule formation inMedicago truncatula della1/della2mutants,
root-internal hyphae were observed to hyper-proliferate (Floss
et al., 2013). In conjunction with this, carbohydrates and lipids
delivered to the fungus as a carbon source have the potential to act as
developmental regulators. A further intriguing possibility is that
plant encoded small RNAs move from host to fungus, regulating
fungal gene expression and development (e.g. Helber et al., 2011).

V. Outlook

The availability of complete genome sequences for a number of
major cereal crops has allowed the identification of the molecular
machinery required for AM symbiosis. Although many of these
genes were first characterized inMedicago or Lotus, significant new
components have been isolated directly through forward genetic
approaches in cereal species (e.g. Gutjahr et al., 2015; Nadal et al.,
2017), reflecting differences in gene copy number, and illustrating
the importance of using multiple ‘models’ in the study of complex
biological processes. With a greater understanding of the mech-
anisms underlying the regulation of AM symbiosis, it is becoming
possible to formulate specific hypotheses which address long
standing questions regarding the effect of plant breeding on AM
symbioses, and their potential application in agricultural systems.
To draw robust conclusions about the differences between
domesticated plants and their wild relatives, it will be important
to better sample diversity, using genomic information to take
population structure into account. Ideally, plant response will be
evaluated in mature field-grown plants, assessing a broad range of
traits, including yield components and grain quality, in conjunc-
tion with a characterization of the AM community and coloniza-
tion. Implementing field trials using crop wild-relatives poses
logistic problems. In addition, comparisons between wild relatives
and domesticated varieties are complicated by their range of
morphological and phenological differences. The development of
crop wild-relative introgression stocks (modern varieties carrying a
small, known component of a wild-relative genome) will greatly
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Box 1 Gibberellic acid is both a regulator of arbuscular mycorrhizal (AM) symbiosis and a target of plant breeding

Box 1 Figure Gibberellic acid (GA) promotes the degradation of DELLA domain repressor proteins, releasing the activity of downstream targets –
targets that, broadly, promote elongationgrowth, but inhibit arbuscularmycorrhizal (AM) colonization. Artificial selection and experimentalmanipulation
have acted on the GA-DELLAmodule to either relax or strengthen the level of repression acting on the downstream targets (indicated by colour bar, font
size and weight of line indicating repression: blue, high repression, low target activity; red, low repression, high target activity; large font, high activity;
heavy line weight, high repression). (a) Null mutations in DELLA encoding genes. (b) Increased synthesis/exogenous application of GA. (c) Loss of GRAS
domain function. (d) Ground state. (e) Reduced synthesis of GA. (f) Loss of DELLA domain function. Further details and citations given in the text.

The phytohormone gibberellic acid (GA) acts to promote elongation growth and flowering, but to inhibit AM symbiosis. GA acts through a ‘release-of-
repression’ mechanism, promoting the degradation of DELLA domain repressor proteins, and thereby freeing downstream targets for activation (see Van
DeVelde et al., 2017 for amore detailed discussion). DELLA target repression requires the C terminal GRAS domain, and the action of DELLA interacting
proteins. GA-mediated DELLA turnover requires the N-terminal DELLA and TVHYNP motifs. Diploid cereal genomes typically contain a single DELLA
encoding gene (in rice, SLR1; Yu et al., 2014; in maize, the paralogous gene pair Dwarf8 and Dwarf9 are retained following an ancient duplication; in
hexaploid bread wheat three paralogous Rht genes are present across the A, B and D genomes; Van De Velde et al., 2017). By contrast, three DELLLA
encoding genes are present inMedicago, and five in Arabidopsis. Grass genomes do encode an additional class of DELLA-related proteins that are not
found in model dicotyledonous plants, potentially allowing for more subtle control of GA signalling (Van De Velde et al., 2017).
Selection on plant architecture and photoperiod sensitivity in cereals has targeted the GA-DELLA module, to either relax or strengthen the level of
repression acting on the downstream targets. The wheat dominant semi-dwarfing alleles Rht-B1b and Rht-D1b encode degradation-resistant DELLA-
proteins, resulting in a constitutive repression of plant growth (Hedden, 2003). Dwarf rice varieties carry a mutation in the GA20Ox enzyme, resulting in
reduced GA synthesis (Hedden, 2003). In maize breeding, there has been less selection for dwarf varieties as robust hybrid maize plants can well support
high grain weight in ears borne low-down on the plant, in contrast to the panicles of other cereals. Variation in the maize DELLA encoding gene dwarf8

(d8), however, is related to variations in photoperiod sensitivity and flowering time that were significant in the spread of maize from the tropics to
temperate regions (e.g. RomeroNavarro et al., 2017).GAalso plays a key role in the regulationofAMsymbiosis. In themodel plantMedicago truncatula,
amutationof twoof the threeDELLAencodinggenespresent in thegenome results in a strong reduction inarbuscule formation. In the ricemutant slender
rice1, a loss-of-function of the single rice DELLA encoding gene, the phenotype is more marked, and all root-internal fungal structures are reduced (Yu
et al., 2014).

(a) GA DELLA GRAS

(b) GA DELLA GRAS

(c) GA DELLA GRAS

(d) GA DELLA GRAS

(f) GA GRAS

(e)
GA

DELLA GRAS

Inhibition of
AM colonization

Promotion of
AM colonization

TARGETS

TARGETS

TARGETS

TARGETS

TARGETS

TARGETS

Breeding

Ground state

AM symbiosis

d8 (Zm)
Variation linked to earlier
flowering in temperate maize

sd1 (Os)
sdw1 (Hv)
Recessive
semi-dwarf
Exogenous
inhibitors

Rht (Ta)
Dominant
semi-dwarf

della1–Δ18 (Mt)
Resistant to
GA-induced
arbuscule reduction

della1/2 (Mt)
Arbuscule reduction
Exogenous GA (Mt)
arbuscule reduction

slr1 (Os)
Severe reduction
in colonization

New Phytologist (2018) � 2018 The Authors

New Phytologist� 2018 New Phytologist Trustwww.newphytologist.com

Review Tansley insight
New
Phytologist4



facilitate this evaluation (Liu et al., 2016b). A further challenge in
the field evaluation of AM response is the need to control the native
AM community in order to establish a baseline level of plant
performance. In this context, the identification of mycorrhiza
resistant mutants in cereal species provides an attractive alternative
means of estimating the performance baseline (Gutjahr et al., 2008,
2015; Willmann et al., 2013). By combining mapping resources
andmycorrhizal resistantmutants, it will be possible to characterize
the genetic architecture of plant response in both domesticated
varieties and their wild relatives.
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