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SUMMARY

Dendritic cells (DCs), monocytes, and macrophages
are leukocytes with critical roles in immunity and
tolerance. The DC network is evolutionarily con-
served; the homologs of human tissue CD141hi

XCR1+CLEC9A+ DCs and CD1c+ DCs are murine
CD103+ DCs and CD64�CD11b+ DCs. In addition,
human tissues also contain CD14+ cells, currently
designated as DCs, with an as-yet unknown murine
counterpart. Here we have demonstrated that human
dermal CD14+ cells are a tissue-resident population
of monocyte-derived macrophages with a short
half-life of <6 days. The decline and reconstitution ki-
netics of human blood CD14+monocytes and dermal
CD14+ cells in vivo supported their precursor-prog-
eny relationship. The murine homologs of human
dermal CD14+ cells are CD11b+CD64+ monocyte-
derived macrophages. Human and mouse mono-
cytes and macrophages were defined by highly
conserved gene transcripts, which were distinct
from DCs. The demonstration of monocyte-derived
macrophages in the steady state in human tissue
supports a conserved organization of human and
mouse mononuclear phagocyte system.

INTRODUCTION

Dendritic cells (DCs) and macrophages are a heterogeneous

population of leukocytes that are critical in orchestrating immune

responses (Steinman, 2007). Human tissues are populated by at

least three DC subsets; CD141hi DCs (Haniffa et al., 2012;

Watchmaker et al., 2014), CD1c+ DCs (Lenz et al., 1993; Morelli

et al., 2005; Angel et al., 2006; Zaba et al., 2007), and CD14+ DCs

(Nestle et al., 1993; de Gruijl et al., 2006; Klechevsky et al., 2008;

Haniffa et al., 2009). Gene-expression studies suggest that hu-

man blood and tissue CD141hi DCs are homologous to murine

tissue CD103+ and splenic CD8+ DCs (Robbins et al., 2008;
Im
Bachem et al., 2010; Crozat et al., 2010; Jongbloed et al.,

2010; Poulin et al., 2010) and CD1c+ DCs are homologous to

CD11b+CD4+ DCs in the spleen and CD11b+CD24+CD64�

DCs in nonlymphoid tissues (Schlitzer et al., 2013). However,

the precise relationship of human CD14+ DCs to murine tissue

populations remains unclear (Haniffa et al., 2012). Excluding

Langerhans cells of the epidermis, the apparent paradox of three

DC subsets in human interstitial tissues but only two in murine

tissues remains unreconciled.

Human CD14+ DCs were first identified as a spontaneously

migrating population from dermal explants cultured ex vivo.

These cells were classified as DCs based onmajor histocompat-

ibility complex (MHC) class II glycoprotein expression and their

ex vivo migratory behavior. In vitro generated CD14+ DCs from

CD34+ hematopoietic stem cells (HSCs) have been used along-

side primary cells to dissect their immunological properties

(Caux et al., 1996; Klechevsky et al., 2008; Morelli et al., 2005;

de Gruijl et al., 2006; Angel et al., 2006; Haniffa et al., 2009; Ha-

niffa et al., 2012; Matthews et al., 2012; Penel-Sotirakis et al.,

2012). CD14+ DCs secrete interleukin-10 (IL-10) and IL-6 and

have been shown to induce regulatory T cells (Tregs) and helper

follicular T cells (Tfh) (Chu et al., 2012; Klechevsky et al., 2008). A

notable feature of CD14+ DCs is their poor ability to stimulate

allogeneic T cell proliferation (Klechevsky et al., 2008; Morelli

et al., 2005; de Gruijl et al., 2006).

CD14+ DCs also express CD141, which is further upregulated

during spontaneous migration from skin explant culture and

initially presumed to be related to blood CD141+ DCs (Chu et al.,

2012). More recently, the true counterpart of blood CD141+ DCs

has been shown to be tissue CD14�CD141hi DCs (Haniffa et al.,

2012). CD14+ cells are related to human andmouse bloodmono-

cytes by gene expression and are rapidly reconstituted by donor-

derived cells following hematopoietic stem cell transplantation

(HSCT), unlike dermal macrophages, which turn over at a much

slower rate (Haniffa et al., 2009; Haniffa et al., 2012).

In mice, steady-state DCs are derived from a lineage depen-

dent on FLT3, in contrast to monocytes and macrophages,

which are dependent on colony-stimulating factor-1 receptor

(CSF-1R) (Yoshida et al., 1990; McKenna et al., 2000; Dai

et al., 2002). Circulating murine Ly6Chi monocytes have been

shown to extravasate into tissues existing as tissue monocytes
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Figure 1. Tissue CD14+ Cells Are Phenotypically Related to Blood Monocytes and Tissue Macrophages

(A) Flow cytometry of enzymatically digested skin. Gating strategy used to identify tissue macrophages (AF+, purple gate), CD14+cells (blue gate), CD141+DCs

(red gate), and CD1c+ DCs (green gate) is shown. (A, lower panel) Overlay dot plots of CFSE-labeled purified blood CD14+ monocytes (cyan) cultured with

(legend continued on next page)
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(Jakubzick et al., 2013; Tamoutounour et al., 2012) and also

differentiate into DC-like and macrophage populations in the in-

testine and dermis (Bogunovic et al., 2009; Varol et al., 2009; Ta-

moutounour et al., 2012; Yona et al., 2013). Monocytes as a

source of tissue inflammatory DCs are also well-documented

(Zigmond et al., 2012; Plantinga et al., 2013; Tamoutounour

et al., 2013). Human blood monocyte differentiation into DCs

has been proposed in inflammation as the potential equivalent

of in vitro cultured GM-CSF and IL-4 monocyte-derived DCs

(Segura et al., 2013). However, the precise contribution of circu-

lating monocytes to human tissue DCs and macrophages in

steady state is unclear.

Altogether, these findings led us to question whether CD14+

cells were bona fide DCs and which murine population was their

homolog. In this study, we investigated the relationships be-

tween circulating blood CD14+ monocytes and tissue macro-

phages with tissue MHC classII+CD14+ cells, currently defined

as ‘‘DCs.’’ We defined the transcriptomic profile of the human

monocyte-macrophage lineage distinct from the DC lineage

and demonstrated the conserved gene transcripts defining these

two lineages in humans and mice. Our findings revealed that

CD14+ cells more closely resemble tissue resident, monocyte-

derived macrophages than bone fide DCs. In addition, we

showed that themurine dermal monocyte-derivedmacrophages

are the homolog of human dermal CD14+ cells.

RESULTS

Tissue CD14+ Cells Are Phenotypically Related to Blood
Monocytes and Interstitial Macrophages
We previously showed that CD14+ cells were distinct from

dermal macrophages, which possessed dense cytoplasmic

melanin granules by morphology, were autofluorescent by flow

cytometry analysis, were adherent and nonmigratory, although

both populations express CD14 (Haniffa et al., 2009). As the ex-

istence of tissuemonocytes derived from Ly6Chi classical mono-

cytes was recently demonstrated in mice (Jakubzick et al., 2013;

Tamoutounour et al., 2013), we therefore first set out to deter-

mine the phenotypic distinctions between dermal MHC classIIhi

autofluorescent (AF)�CD14+ cells (hereafter referred to asCD14+

cells), AF+CD14+ macrophages (hereafter referred to as dermal

macrophages), and blood CD14+ monocytes, the homologs of

murine Ly6Chi monocytes. To control for the preparation condi-

tions of freshly isolated CD14+ cells by enzymatic digestion, we

cultured CFSE-labeled purified blood CD14+ monocytes with

enzymatically-digested skin overnight. Gating on CFSE-labeled

cells allowed direct comparison of tissue CD14+ with CD14+

monocytes. Overlay dot plot of CFSE-labeled CD14+ monocytes

on digested skin cells showed that skin CD14+ cells were pheno-

typically distinct from blood monocytes with higher side scatter
enzymatically digested skin (red) and phenotypically compared to CD14+ cells (bl

panel and SSC versus HLA-DR from top panel is shown as red. Representative

(B) Relative expression of selected antigens on blood CD14+ monocytes and CD1

control (gray). Representative data from at least three donors are shown.

(C) Relative expression of ZBTB46, DCSIGN, LYVE1, F13A1, IL1A, GGT5 mRNA

monocytes. Composite data from six donors is shown, mean ± SEM, *p < 0.05,

(D) Pseudocolor images of whole-mount skin immunostained for LYVE-1 (gree

DC-SIGN+, FXIIIa�/lo cells corresponding to CD14+ cells. Scale bar represents 5

Im
(SSC) properties, expressing higher amounts of HLA-DR and

CD1c (Figure 1A). Both skin CD14+ cells and CFSE-labeled

CD14+ monocytes spiked into the skin preparation had variable

expression of CD141 (Figure 1A). We noted very few CD14+ cells

with an identical profile to the CFSE-labeled monocytes cultured

with digesting skin (Figure 1A), which might represent extrava-

sated tissue monocytes in healthy human skin.

We next compared the expression of selected antigens

characterizing monocyte-macrophage cells in human skin and

blood-antigen-presenting cell populations (Figure 1B). Unlike

CD1c+DCs frombloodandskin,CD14+cells hadvariableexpres-

sion of CD163 similar to blood monocytes and macrophages

(Figure 1B). We next compared the expression of skin antigen-

presenting cell subsets and blood CD14+ monocytes for the

following transcripts; DC transcription factor (TF) ZBTB46,

CD209, lymphatic vessel endothelial hyaluronan receptor

(LYVE1), and factor XIIIa (F13A1). The latter three antigens were

shown to identify dermal macrophages in situ (Wang et al.,

2014) (Figure 1C). SkinCD1c+andCD141hiDCsexpressedhigher

amounts of ZBTB46 transcripts and low amounts of CD209 and

LYVE1. In contrast, dermal CD14+ cells expressed 40%andmac-

rophages 15% of ZBTB46 transcript amounts compared to

CD1c+ DCs, consistent with previous reports on human inflam-

matoryDCs andmurinedermalmacrophagepopulations (Segura

et al., 2013; Tamoutounour et al., 2013). CD14+ cells and

macrophages expressed higher amounts of CD209 transcript

compared to all other subsets, but LYVE1 transcript expression

was highest inmacrophages (Figure 1C) similar to F13A1 expres-

sion (Haniffa et al., 2009). In addition, dermal CD14+ cells ex-

pressed high amounts of IL1A and gamma-glutamyl transferase

5 (GGT5) transcripts (Figure 1C), which were identified from our

previous microarray analysis (Haniffa et al., 2012). Immunostain-

ing of whole-mount dermal sheet for LYVE-1, CD209 (DC-

SIGN), and FXIIIa identified LYVE-1�FXIIIaloDC-SIGN+ cells

corresponding to the CD14+ cells in situ (Figure 1D).

Skin CD14+ Cells Are Derived from CD14+ Blood
Monocytes
Human tissue DCs are depleted in patients lacking circulating

DCs and monocytes as shown by patients with genetic defi-

ciency of monocytes and DCs due to GATA2 or IRF8 mutation,

but the exact precursor-progeny relationships are difficult to

demonstrate conclusively in humans (Bigley et al., 2011; Ham-

bleton et al., 2011). We previously showed that skin CD14+

cells are derived from donor bone marrow within 40 days of

HSCT (Haniffa et al., 2009), but the kinetics of this relationship

have not been resolved in detail. In this study, we followed the

course of blood and skin monocytes, macrophages, and DCs

during preparative cytotoxic therapy for transplantation and

for up to 2 weeks after HSCT (clinical data in Table S1).
ue). Bidirectional arrows depict equivalent cells. Corresponding plots in middle

data from at least four skin donors are shown.

c+ DCs, skin CD14+ cells, CD1c+ DCs, and macrophages compared to isotype

by skin CD14+ cells, CD1c+ DC, CD141+ DC, macrophages, and blood CD14+

Mann-Whitney U test.

n), CD209 (DCSIGN) (red), and FXIIIa (blue). White arrows identify LYVE-1�,
0 mm. Representative image from at least four donors is shown.
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Cytotoxic therapy induced bone-marrow suppression and ab-

solute monocytopenia by the day of transplantation (day 0)

(Figure 2A). This was mirrored by a rapid loss of CD14+ cells

from the skin within 6 days. After a delay of 6 days, macro-

phage numbers also declined to approximately 50%, where

they remained stable. In the early recovery phase after HSCT,

there was a rapid rise in CD14+ blood monocytes, which coin-

cided with a rapid reconstitution of skin CD14+ cells (Figure 2B).

The kinetics of DC recovery were slower in the blood and skin

and did not attain the same frequency as healthy controls (Fig-

ures 2A and 2B). The temporal relationship between blood

CD14+ monocytes and skin CD14+ cells is consistent with a

precursor-progeny relationship in which CD14+ monocytes

give rise to CD14+ cells within a short timeframe. In support

of the rapid differentiation step of CD14+ monocytes into skin

CD14+ cells suggested by our in vivo findings, we showed

that purified CD14+ monocytes upregulated antigens and

adopted morphological changes characteristic of CD14+ tissue

cells upon culture with primary endothelial cells over 3 days

(Figure 2C).

Skin CD14+ Cells Are Transcriptionally Aligned to
Human Monocytes and Macrophages
In order to evaluate the lineage identity of human skin CD14+

cells, we performed microarray transcription profiling of human

skin and blood dendritic cells, macrophages, and monocyte

subsets. Principal component analysis (PCA) of all subsets

analyzed showed separation of DCs from monocyte-macro-

phages in component one and further definition between mono-

cyte-macrophage subsets and plasmacytoid DCs (pDCs) from

myeloid DCs in component 2 (Figure 3A). We also performed a

supervised connectivity map (CMAP) gene set enrichment anal-

ysis and showed that the CD14+ cell gene set was enriched in

dermal macrophages and also weakly in CD14+ blood mono-

cytes but exhibited an inverse expression profile to blood and

skin DCs (Figure 3B). This suggests that CD14+ cells are more

closely aligned to tissue macrophages and CD14+ blood mono-

cytes than to blood or tissue DCs.

Further examination of the relationship between CD14+ cells,

monocytes, macrophages, and DCs revealed a number of

coregulated genes distinguishing monocytes, CD14+ cells, and

macrophages from blood and skin DCs (Figure 3C). Functional

pathways identified by the monocyte, CD14+ cell, and macro-

phage gene sets include retinoid X receptor signaling, TREM1

signaling, complement system, and communication between

innate and adaptive cell regulation (see Figure S1 available on-

line). In contrast, the human DC gene signature was enriched

for cell-cycle control and amino acid, nucleic acid and choles-

terol metabolism pathways (Figure S1).

We next performed cross-species analysis comparing human

monocyte, macrophage, and CD14+ cells with murine mono-

cytes, macrophages, and DC subsets obtained from ImmGen

(Gautier et al., 2012) and GSE49358 (Tamoutounour et al.,

2013) microarray data sets. This analysis identified a set of genes

that are differentially expressed in a conserved manner, which

include SLC11A1,MAFB, CD14, and FCGR2A (Figure 3D; Table

S2). Similarly, human and mouse DC lineage also shared close

homology of transcripts across species including FLT3, BTLA,

HLA-DOA, and CIITA (Figure 3D; Table S2).
468 Immunity 41, 465–477, September 18, 2014 ª2014 The Authors
Spontaneous Migration of Skin CD14+ Cells Does Not
Occur via Lymphatic Vessels
A defining property of tissue-resident DCs is their migratory ca-

pacity to lymph node (LN) directed by CCL19 and CCL21

signaling through CCR7. In vitro culture of explanted tissue

mimics this process and resident DCs might be observed

entering the lymphatic channels prior to emigrating from the tis-

sue (Stoitzner et al., 1999; Ohl et al., 2004; Wang et al., 2014). In

addition, this experiment showed that resident macrophages

remain fixed in the tissue (Haniffa et al., 2009; Wang et al.,

2014). The ability of CD14+ cells to leave tissue explants has

been invoked as a DC credential (Nestle et al., 1993), but their

route of migration in the ex vivo assay has not yet been estab-

lished. If CD14+ cells are not fixed in skin explants, then simple

redistribution in ex vivo culture would result in apparent emigra-

tion from the tissue. Like dermal macrophages, migrated and di-

gested CD14+ cells did not express CCR7 even upon stimulation

(Figure 4A) (Haniffa et al., 2009). Time-course analysis of skin ex-

plants showed the presence of CD14+ cells in the skin explant

medium as early as 12 hr after culture (Figure 4B). However, at

no stage were CD14+ cells observed within lymphatics as as-

sessed by whole-mount immunostaining of skin explants (Fig-

ure 4C). DC-SIGN expression is retained by spontaneously

migrating CD14+ cells (Figure S2) andwould have permitted their

localization within lymphatic channels if this had been the route

of migration. The presence of spontaneously migrated CD14+

cells, despite their absence within skin lymphatic lumen, sug-

gests that CD14+ cells exited from the skin without entering

the lymphatic vasculature. Dermal macrophages did not migrate

spontaneously (Figure 4C), in keeping with previous observa-

tions (Haniffa et al., 2009).

Migratory CD14+ cells have been much studied, but their rela-

tionship to CD14+ cells isolated by enzymatic digestion has not

been extensively evaluated. We compared cells isolated by

digestion and migration for the expression of a custom selection

of 96 genes reported in the literature to define DCs and macro-

phages by Taqman Low Density Array PCR. Unsupervised clus-

tering showed that migrated and digested CD1c+ DCs and

CD14+ cells clustered by subset rather than isolation method

(Figure 4D). CCR7, CYP27B1, FLT3, FSCN1, INDO, LAMP3,

and LY75 were expressed at higher amounts by CD1c+ DCs

compared to CD14+ cells, which expressed higher amounts of

CCL18, CCL3, CCR1, CD163, CD36, CLEC10A, FCGR1A and

3A, IL10, MARCO, MMP12, MSR1, SIGLEC1, and TREM2 (Fig-

ure 4D), transcripts characteristic of monocyte-macrophage

cells.

Skin CD14+ Cells Are Potent Inducers of Memory T Cell
Response but Poor Stimulators of Naive T Cells
A cardinal property of DCs as opposed to monocytes and mac-

rophages is their superior ability to activate naive T cell prolifer-

ation. It has been previously shown that CD14+ cells from the

skin are inferior to CD1c+ DCs in inducing allogeneic naive

T cell proliferation (Klechevsky et al., 2008; Angel et al., 2006),

but a direct comparison with dermal macrophages has never

been performed. After 5 days culture with CFSE-labeled alloge-

neic naive CD4+ T cells, CD14+ cells induced 80% lower pro-

liferation of naive CD4+ T cell compared to CD1c+ DCs with

negligible T cells proliferation observed with macrophages
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Figure 2. Skin CD14+ Cells Are Derived from CD14+ Blood Monocytes

(A) Absolute count of blood CD14+ and CD16+ monocyte subsets and CD1c+ DCs upon conditioning and up to 14 days after HSCT. HC, healthy controls. Data

from 17 patients and 15–20 HC are shown, mean ± SEM.

(B) Frequency of skin CD14+ cells, CD1c+ DCs andmacrophages upon conditioning and up to 14 days after HSCT as a%of nucleated cells. Data from 17 patients

are shown. Mean ± SEM. A maximum of two skin biopsies per patient were taken at different time points and were collagenase digested. Bottom panel depicts

representative dot plots of skin flow-cytometry analysis.

(C) Phenotype and morphology of CD14+ blood monocytes after culture with medium alone, HUVECS or fibroblasts for 0–3 days. Scale bar represents 10 mm.

Representative data from nine different donors is shown. Overlay histogram of DC-SIGN and CD16 expression (blue) compared to isotype control (gray).
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even at the highest APC: T cell ratio tested of 1:10 (Figure 5A).

However, CD1c+ DCs, CD14+ cells, and dermal macrophages

were potent inducers of memory CD4+ T cell proliferation and

cytokine production upon stimulation withCandida albicans (Fig-

ure 5B). Both CD14+ cells and dermal macrophages were com-

parable to CD1c in their ability to induce IL-17, IL-22, interferon-g

(IFN-g), and IL-4 production bymemory CD4+ T cells (Figure 5B).

Murine CD11b+Ly6C–CD64lo-hi Monocyte-Derived
Macrophages Are the Homolog of Human CD14+ Cells
Recent studies have demonstrated heterogeneity within murine

nonlymphoid tissues CD11b+ cells, which comprise DCs, mono-

cytes, monocyte-derived DCs, and resident macrophages

(Langlet et al., 2012; Tamoutounour et al., 2012). In order to pre-

cisely identify the murine equivalent of human CD14+ cells, we

performed comparative transcriptomics analysis by usingmicro-

array data of the recently described CD11b+ monocyte, DC, and

macrophage populations in murine dermis (Tamoutounour et al.,

2013). CMAP analysis revealed highest enrichment of human

CD1c+ DCs to their murine CD11b+ DC counterpart in both

steady state and upon inflammation induced by the contact hy-

persensitivity allergen DNFB (Figure 6A). The reciprocal relation-

ship was also observed that human dermal macrophages had

low but positive CMAP enrichment scores with murine macro-

phages and monocyte-derived cells (Figure 6A). Blood CD14+

monocytes had the highest enrichment score with mouse Ly6Chi

blood monocytes in the steady state (Figure 6A), in keeping with

previous analysis (Haniffa et al., 2012). Human CD14+ cells were

most enriched with murine macrophages (P4 and P5) followed

by Ly6CloMHC class II+ monocyte-derived DC-like cells (P2

and P3) (Figure 6A). These results suggest that human CD14+

cells are related to monocytes but are not the equivalent of

murine tissue monocytes (P1). The existence of murine mono-

cyte-derived dermal macrophages was recently reported by

Tamatounour et al. as observed by a reduction in P4 and P5

dermal macrophages in Ccr2�/� mice. We therefore hypothe-

sized that human CD14+ cells were the homolog of murine

dermal monocyte-derived macrophages. In order to confirm

the monocyte origin of some murine dermal macrophages, we

used the S100a4-cre 3 R26YFPmice in which >99% of hemato-

poietic stem cells (HSCs) and resultant blood monocytes ex-

press yellow fluorescent protein (YFP). This fate-mapping model

previously demonstrated the independence of resident tissue

macrophages from circulating monocytes and HSC progenitors

(Hashimoto et al., 2013). Our analysis of mouse dermal DC and

macrophage fractions showed that >90% of CD11b+ P1-P3

and 80%–90% of P4 and P5 macrophages were indeed mono-

cyte-derived (Figure 6B). Collectively, these results provide

further evidence of functional equivalence between monocyte-
Figure 3. Skin CD14+ Cells Are Transcriptionally Aligned to Human Mo

(A) Principal component analysis of CD141+ DCs, CD1c+ DCs, CD14+ cells, mono

sample. Rectangles depict skin subset and circles depict blood subset. Data fro

(B) CMAP enrichment scores for skin CD14+ cells signature compared to hum

individual sample. Enrichment scores were significant at p < 0.001 for CD14+ ce

(C) Heatmap showing 106 genes which were 2-log fold up (red) or downregulated

gene. Each row represents one sample.

(D) Scatterplot comparing genes that were >1.5 log fold up or downregulated

compared to DCs (red dots and square). p < 0.001 for each transcript.

Im
derived macrophages in the mouse dermis as the homologs of

human CD14+ cells.

DISCUSSION

The results presented here suggest that CD14+ ‘‘DCs’’ are not

related to the human DC lineage but are monocyte-derived mac-

rophages that are resident in healthy skin. Their gene-expression

program strongly overlaps with that of blood monocytes and

resident tissue macrophages, but they are distinguishable from

both of these by phenotypic and functional properties. Although

it is difficult to prove unequivocally that they have a monocyte

origin, their absence in monocyte deficiency states, kinetics of

renewal after HSCT, and similarity to monocytes in short-term

culture with endothelial cells are all consistent with a precur-

sor-progeny relationship. Their evident lack of ability to stimulate

naive T cell proliferation is consistent with their status as amono-

cyte-derived macrophage.

Tissue monocytes coexpressing Ly6C and MHC class II were

recently demonstrated as a distinct population in murine tissues

(Jakubzick et al., 2013; Tamoutounour et al., 2013). These cells,

derived from Ly6ChiMHC class II� circulating monocytes, upre-

gulate MHC class II upon contact with endothelium (Jakubzick

et al., 2013). In human, all blood and skin DCs, monocytes and

macrophages express MHC class II (reviewed in Haniffa et al.,

[2013]). The Lin�MHC class II� compartment in human blood

does not contain any CD14-expressing cells and primarily com-

prises basophils (Autissier et al., 2010). ‘‘Spiking’’ CFSE-labeled

blood CD14+ monocytes into digesting skin allowed us to

perform a direct comparison between dermal CD14+ and blood

monocytes.

The identity of the circulating precursors of human tissue DCs

andmacrophages has been a subject of intense debate. Despite

the widespread use of in vitro culture protocols to generate

monocyte-derived DCs and macrophages, in vivo evidence to

support the contribution of such monocyte-derived cells in

healthy tissue is limited (Chu et al., 2012). Here, we show the

rapid decline and reconstitution of dermal CD14+ cells that mir-

rors the kinetics of blood CD14+ monocytes in patients undergo-

ing HSCT. In contrast, blood and skin CD1c+ DCs remained

suppressed up to 14 days after HSCT and are thus unlikely to

be the precursors of dermal CD14+ cells. We also show that

blood CD14+ monocytes acquire the morphology and pheno-

typic characteristics of dermal CD14+ cells upon culture with

endothelial cells in line with previous reports (Randolph et al.,

1998; Chomarat et al., 2000). The reduction of dermal macro-

phages after HSCT by approximately 50% is in keeping with

the reduction in dermal macrophages in patients with GATA2

and IRF8 mutation who are deficient in peripheral blood DCs
nocytes and Macrophages

cyte subsets, macrophages, and pDCs. Each symbol represents an individual

m three to eight independent blood and skin donors are shown.

an skin and blood monocytes and DC subsets. Each symbol represents an

ll signature compared to other subsets.

(blue) in human monocyte-macrophages compared to DCs. p < 0.001 for each

in both human and mouse monocyte-macrophages (blue dots and square)
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A B Figure 5. CD14+ Cells Are Potent Inducers

of Memory T Cell Response

(A) Naive T cell stimulation: proliferation of alloge-

neic naive CD4+ T cells, (determined by CFSE

dilution) after coculture for 6 days with CD14+ cells,

CD14+CD1c+ cells, macrophages, CD1c+ DCs

from skin and CD14+monocytes from blood (n = 5,

mean ± SEM).

(B) Memory T cell stimulation: Intracellular

expression of IL-17, IL-22, IL-4, and IFN-g by PMA

and ionomycin restimulated autologous CFSE-

labeled bulk CD4+ T cells following coculture with

skin DC and macrophage subsets pulsed with

Candida albicans (n = 6, mean ± SEM).

Immunity

Human Dermal Monocyte-Derived Macrophages
and monocytes (Bigley et al., 2011; Hambleton et al., 2011).

Longer-term follow up after HSCT is required to evaluate macro-

phage recovery and whether proliferation of residual dermal

macrophages or differentiation from CD14+ cells is responsible

for dermal macrophage reconstitution.

The utility of transcriptomics analysis to map homologous

subsets between humans andmice (Robbins et al., 2008; Haniffa

et al., 2012; Schlitzer et al., 2013; Watchmaker et al., 2014) and

more recently to define DCs (Miller et al., 2012) and macro-

phages (Gautier et al., 2012) in mouse tissues is evident. Extend-

ing our previous CMAP analysis to human microarray data set

incorporating dermal macrophages and epidermal LCs, we

were able to precisely identify the monocyte-macrophage line-

age of dermal CD14+ cells. This identification enabled us to

define the human DC and monocyte-macrophage transcrip-

tomic signatures and to perform cross-species analysis with

the murine DC, monocyte, and macrophage ImmGen data set.

The extension of human DC, monocyte, and macrophage map-

ping further enhances the utility of the ImmGen data repository.

Our analysis confirms a high-degree of conservation for DC and

macrophage transcription networks between humans and mice

identifying shared genes such as MERTK, CD14, and SLC11A1

(NRAMP) to define monocytes and macrophage and FLT3,

BTLA, and KIT to define DCs. Comparative biology analysis of

DC subsets has supported the relevance of murine models for

both developmental and functional studies and the extension

of a similar analysis to the macrophage lineage could present

an additional perspective for future studies on these cells.

The phenotypic and transcriptional assignment of dermal

CD14+ cells asmonocyte-derivedmacrophages led us to reeval-

uate their ability to migrate spontaneously from skin explant cul-

tures ex vivo which has been presumed to simulate lymphatic

migration despite absent or very low expression of CCR7 even
Figure 4. Spontaneous Migration of Skin CD14+ Cells Does Not Occur
(A) Left panel shows gating strategy used to identify CD14+ cells and CD1c+C

spontaneous migration from skin explants (bottom). Right panel shows relative

migration, and migration in the presence of LPS, TNF-a, and IL-1b. Representat

(B) Frequency (as% of HLA-DR+ cells) of dermal CD14+ cells, CD1c+ DCs, CD141

mean ± SEM). Solid line represents migrated cells, and dotted line represents ce

(C) Pseudocolor immunofluorescence whole-mount microscopy of human skin (T

T0, depicts distribution of HLA-DR+ (green) and DCSIGN+ (red) cells outside LYV

lymphatics (blue). Lower panel; T48 depicts HLA-DR+ (green) cells mainly located

Bottom right; close up three-dimensional reconstruction of boxed area in left pa

(D) Heat map showing the expression of 96 genes, analyzed by Taqman Low Den

skin digestion. Data from five skin donors (pairs indicated by Roman numerals) a

Im
upon cytokine and LPS stimulation. We observed that although

1 in 5 HLA-DR+ cells after 12 hr and 48 hr culture of skin explant

were CD14+ cells, these cells were not observed within skin

lymphatic lumen. The dichotomy between spontaneous migra-

tion and lymphatic migration was previously observed with mu-

rine LCs and DCs from Ccr7�/� mice, which were capable of

spontaneously migrating from skin explants but failed to form

dermal cords indicative of lymphatic migration or enter skin

draining lymph node (Ohl et al., 2004).

It is well documented that CD14+ cells are poor stimulators of

naive T cells, a property that is expected of tissue-resident cells.

However, CD14+ cells and macrophages are on par with DCs in

regulating memory CD4+ T cell responses as shown here and in

previous reports. Dermal CD14+ cells express high amounts of

IL-1a and GGT5, a property not shared by any blood or skin

DCs, monocytes, and macrophages, suggesting a role in main-

taining epithelial integrity and regulation of skin inflammation

including neutrophil migration (Han et al., 2002; Chen et al.,

2007).

Murine tissue macrophages and epidermal Langerhans cells

(LCs) were recently shown to arise from embryonic yolk sac

and fetal liver precursors challenging the traditional dogma of

monocytes as precursors of all tissue macrophages (van Furth

and Cohn, 1968; Schulz et al., 2012; Hoeffel et al., 2012). How-

ever, recent evidence (Yona et al., 2013; Tamoutounour et al.,

2013) including this report suggests a contribution by circulating

monocytes to the murine tissue macrophage pool. The func-

tional differences between cells derived from these two origins

have not been defined. The contemporary view of the mononu-

clear phagocyte system encompasses several precursor origins

including circulating monocytes as precursors of tissue macro-

phages. Here, we report in humans, two populations of tissue

resident cells, CD14+ monocyte-derived macrophages and
via Lymphatic Vessels
D1a+ DCs from live, CD45+, HLA-DR+ cells isolated by digestion (top) and

expression of CCR7 by dermal CD14+ and CD1c+ DC isolated by digestion,

ive data from at least five donors is shown.
+ DCs, and macrophages in skin explant medium after 0–72 hr of culture (n = 6,

lls in digested skin remnant.

0 = freshly harvested, T48 = 48 hr culture of skin explant ex vivo). Top left panel;

E-1+ lymphatics (blue). Top right panel: DCSIGN+ (red) cells outside LYVE-1+

within lymphatic vessels but DCSIGN+ cells are outside the lymphatic vessels.

nel. Representative image from six donors is shown.

sity Array, by CD14+ cells and CD1c+ DCs isolated by migration and enzymatic

re shown.

munity 41, 465–477, September 18, 2014 ª2014 The Authors 473



A

B

Figure 6. Murine Homolog of Human Dermal CD14+ Cells

(A) CMAP enrichment scores for the signatures of human dermal CD14+ cells, CD1c+ DCs, macrophages, and CD14+ blood monocytes compared with murine

CD11b+ dermal cell populations found in steady state and upon contact sensitization with DNFB. P1, tissue monocytes; P2 and P3, dermal monocyte-derived

DC-like cells; P4 and P5, dermal macrophages, as described in (Tamoutounour et al., 2013). All enrichment scores were significant at p < 0.001.

(B) Flow cytometry analysis of S100a4xRosaYFP-flox mouse dermal ear cell suspension. Values in contour plots indicate percentage of cells in the respective

gates. %YFP� cells of the different populations are shown in histogram (lower panel). P1, tissue monocytes; P2 and P3, dermal monocyte-derived DC-like cells;

P4 and P5, dermal macrophages; as described in (Tamoutounour et al., 2013). Data shown is representative of six individually analyzed mice from two inde-

pendent experiments.
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fixed macrophages that map to the CD11b+ pool of mouse

macrophages. Further work is required to evaluate the long-

term contribution of monocytes to the resident macrophage

pools.

The functional classification of human tissue CD14+ cells as

monocyte-derived macrophages will redirect attention to func-
474 Immunity 41, 465–477, September 18, 2014 ª2014 The Authors
tional regulation in the skin as opposed to lymph node. A greater

understanding of the contribution of monocyte-derived cells in

steady state, inflammation, wound healing, and pathology char-

acterized by histiocytosis and granuloma formation will provide

further insights into exploiting their origin and functional proper-

ties for clinical therapy.
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EXPERIMENTAL PROCEDURES

Cell Isolation and Culture

Human samples were obtained in accordance with a favorable ethical opinion

from Newcastle, Singapore SingHealth, and National Health Care Group

Research Ethics Committees. Normal skin was obtained from mammoplasty

and breast reconstruction surgery and digested whole (1 3 1 cm2) as previ-

ously described (Haniffa et al., 2012) to obtain single-cell suspension.

Migrating cells were collected from whole skin pieces (1 3 1 cm2) cultured in

RPMI with 10% FCS, and analyzed at serial time points between 0 and

72 hr. Viability was >90% by DAPI exclusion (Sigma). Where stated, 100,000

CFSE-labeled CD14+ blood monocytes were cultured together with 1 3

1cm2 skin piece during collagenase digestion. Shave biopsies were performed

on HSC transplant patients with a DermaBlade� (Shuco). Whole single-cell

suspensions were then immunostained and analyzed by flow cytometry. Pe-

ripheral bloodmononuclear cells were isolated by density centrifugation (Lym-

phoprep; GE Healthcare). Blood and dermal DC subsets, naive and bulk CD4+

T cells were isolated to >91% purity by fluorescence-activated cell sorting

(FACS) using a FACSAriaII and FACSFusion (Becton Dickinson [BD]).

Flow Cytometry

Flow cytometry was performed on a BDLSRII, BDFortessa, and FACSCanto,

and data were analyzed with FlowJo (Treestar). Antibodies used are listed in

Supplemental Experimental Procedures.

Microscopy

Whole-mount immunofluorescence staining was performed with a previously

described protocol (Wang et al., 2014). We fixed a 200 mm skin sheet in PBS

containing 2% paraformaldehyde and 30% sucrose overnight at 4�C. Skin
was incubated overnight in PBS containing 0.5% BSA and 0.3% Triton X-

100 before staining with primary and secondary antibodies at 4�C overnight

at each stage. Antibodies used are listed in Supplemental Experimental Proce-

dures. After staining, tissue samples were immersed in VECTASHIELD

mounting medium with DAPI (Vector Laboratories). Specimens were viewed

using Axio Imager.Z2 fluorescence microscope with Axiovision software

v4.8 and Axiocam MR3 camera (Carl Zeiss, Inc.) or Leica Leica TCS SP2 UV

confocal microscope and LCS V 2.51 imaging software (Leica). Three-dimen-

sional reconstruction was performed with Imaris7.6.2 soft- ware (www.

bitplane.com).

T Cell Alloreaction and Cytokine Production Assays

We cultured 5,000 FACS-sorted dermal DC subsets with 100,000 CFSE-

labeled allogeneic naive (CD4+CD25�CCR7+CD45RO�) T cells in U-bottomed

96-well plate. Proliferation was measured by CFSE dilution on day 6. For

memory T cell stimulation, autologous blood CD4+ T cells were used to mea-

sure recall memory response to Candida albicans. We pulsed 5,000 FACS-

sorted dermal DC subsets with Candida albicans overnight, and cultured

them with 100,000 CFSE-labeled (Invitrogen) autologous blood CD4+

T cells on the following day. Media was replenished as necessary throughout

the duration of the culture. Cytokine production was measured on day 10,

upon stimulation with 20 ng/ml PMA (Sigma-Aldrich; Sigma) and 500 ng/ml

Ionomycin (Sigma) for 5 hr in the presence of 10 mg/ml Brefeldin A (Sigma-Al-

drich) for the last 2 hr. Cells were fixed and permeabilized (eBioscience Fix/

Perm Buffer Set) to allow intracellular cytokine staining. Viaprobe staining

(Becton Dickinson; BD) was performed prior to cell fixation to distinguish

viable cells.

Blood Monocyte Coculture with HUVECs and Dermal Fibroblasts

HUVECs were cultured in Endothelial Cell Basal Medium 2 (Promo Cell) with

the following supplements (FCS, endothelial cell growth supplement,

epidermal growth factor, Insulin-like growth factor, vascular endothelial

growth factor 165, ascorbic acid, heparin, hydrocortisone [Promo cell]).

Dermal fibroblasts were cultured in RPMI with 20% FCS, 1000 u/ml Penicillin

and Streptomycin and 2mM L-Glutamine. HUVECs or fibroblasts (30,000/well)

were seeded in a 24-well plate and cultured in their respective media (500 ml)

for 18 hr at 37�C, 5% CO2. FACS-purified blood monocyte subsets were

added to HUVECs or fibroblast cell cultures (50,000 monocytes/well to a final

volume 1 ml) and analyzed on days 1 and 3 after coculture.
Im
Trucount Processing and Analysis

Absolute whole-blood leukocyte analysis was performed as described

previously (Jardine et al., 2013). Briefly, 100 ml of whole blood was trans-

ferred directly to Trucount tubes (BD). Antibodies were added directly and

staining was performed at RT for 20 min, followed by red blood cell lysis

by adding 900 ml of BD PharmLyse reagent for 10 min at RT. Samples

were then analyzed directly by flow-cytometry. Absolute number of cells

per microliters of blood was calculated according to the manufacturer’s

protocol.

Mouse Dermal Skin Cells Preparation

S100a4-cre mice were purchased from Jackson Laboratory and crossed to

R26-stop-EYFP mice in house. Animals positive for the R26-stop-EYFP-flox

construct were used for the experiment. Only sex (female) and aged (6–

8 weeks) matched mice were used. Mouse skin cells were isolated as

described previously (Ginhoux et al., 2007). Briefly, mouse ears were split

into dorsal and ventral halves and floated in RPMI-1640 medium (Sigma) con-

taining 1mg/ml dispase (Invitrogen) for 60min to allow separation of epidermal

and dermal sheets. Dermal sheets were then cut into small pieces and

incubated in RPMI containing 10% serum and 0.8 mg/ml collagenase type

IV (Worthington-Biochem; 250 U/mg) for 2 hr. Cells were then passed through

19 G syringe and filtered through 100 uM cell strainer (BD Falcon) to obtain a

homogenous cell suspension.

Quantitative Real-Time PCR

Total RNA was extracted using the RNeasy Micro Kit (QIAGEN) and treated

with DNase I according to manufacturers’ instructions (QIAGEN). RNA was

used as a template for complementary DNA (cDNA) synthesis using the Re-

vertAid H Minus First Strand cDNA Synthesis Kit with the manufacturers’

protocol (Thermo Scientific, Fisher Scientific UK). Real-time PCR was per-

formed with TaqMan Gene-Expression Master Mix and recommended Taq-

Man Gene-Expression Assays according to manufacturers’ instructions (Life

Technologies). Reactions were performed using an ABI 7900HT Fast Real-

Time PCR System with the instrument’s default settings for a standard

run. Relative quantification of the messenger RNA (mRNA) amounts was

performed using the DCT method and glyceraldehyde-3-phosphate dehydro-

genase (GAPDH) as the reference gene. Taqman assay ID and sequence

details are available in Supplemental Experimental Procedures. Details of

transcriptomics analysis are available in Supplemental Experimental

Procedures.

Statistical Analyses

All statistical analyses were performed using Prism 5.0 (GraphPad Software).

All p values are two-tailed using Mann-Whitney U test.

ACCESSION NUMBERS

Themicroarray data used in these studies are available in the Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/gds) under the acces-

sion numbers GSE35459, GSE60317, GSE49358, and the ImmGen database

(www.immgen.org).
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