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Many meta-analyses combine results from only a small number of studies, a situation in which the between-study
variance is imprecisely estimated when standard methods are applied. Bayesian meta-analysis allows incorpo-
ration of external evidence on heterogeneity, providing the potential for more robust inference on the effect size
of interest. We present a method for performing Bayesian meta-analysis using data augmentation, in which we
represent an informative conjugate prior for between-study variance by pseudo data and use meta-regression
for estimation. To assist in this, we derive predictive inverse-gamma distributions for the between-study variance
expected in future meta-analyses. These may serve as priors for heterogeneity in new meta-analyses. In a sim-
ulation study, we compare approximate Bayesian methods using meta-regression and pseudo data against fully
Bayesian approaches based on importance sampling techniques and Markov chain Monte Carlo (MCMC). We
compare the frequentist properties of these Bayesian methods with those of the commonly used frequentist Der-
Simonian and Laird procedure. The method is implemented in standard statistical software and provides a less
complex alternative to standard MCMC approaches. An importance sampling approach produces almost iden-
tical results to standard MCMC approaches, and results obtained through meta-regression and pseudo data are
very similar. On average, data augmentation provides closer results to MCMC, if implemented using restricted
maximum likelihood estimation rather than DerSimonian and Laird or maximum likelihood estimation. The
methods are applied to real datasets, and an extension to network meta-analysis is described. The proposed
method facilitates Bayesian meta-analysis in a way that is accessible to applied researchers. © 2016 The Authors.
Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

In a meta-analysis, results of similar studies are combined in order to synthesise evidence available in
a specific research area. Differences among the results of the included studies arise through differences
in study design, through biases because of methodological flaws and through random variation. When
between-study heterogeneity exists, it may be appropriate to fit a random-effects meta-analysis model,
estimating a between-study variance and a summary effect [1]. Conventional methods to estimate the
random-effects meta-analysis model are justifiable provided that the number of studies is sufficiently
large. However, numerous meta-analyses in healthcare research combine results from only a small num-
ber of studies: of 22 453 meta-analyses within the Cochrane Database of Systematic Reviews (CDSR),
approximately 75% contained five or fewer studies [2]. For such meta-analyses, between-study variance
is imprecisely estimated when conventional methods are applied.
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A Bayesian approach to random-effects meta-analysis is beneficial in allowing a researcher to incor-
porate evidence on the likely extent of heterogeneity, providing the potential for more robust inference on
the summary effect of interest [3–6]. Other advantages of Bayesian meta-analysis include full allowance
for all sources of parameter uncertainty, the opportunity to ‘ borrow strength’ from other studies in esti-
mating an individual effect, and the ability to make predictions about the true intervention effects of future
studies [1]. Bayesian methods offer a flexibility, which allows us to perform more complex analyses.
Despite the advantages of Bayesian methods, the vast majority of published meta-analyses are frequen-
tist. Recently, however, Turner et al. [7] have proposed two easy-to-use methods for implementing fully
Bayesian meta-analyses using importance sampling techniques and numerical integration. The methods
do not have problems with convergence or mixing as in Markov chain Monte Carlo (MCMC), and they
have given similar meta-analysis results in example applications [7].

The standard approach for conducting Bayesian meta-analysis is to use simulation based methods such
MCMC methods within the WinBUGS (MRC Biostatistics unit, Cambridge, U.K.) software [8]. Although
MCMC methods are powerful for solving complex problems, they are computationally intensive and can
be potentially misleading if used without care [9]. In a typical meta-analysis containing data from only a
small number of studies, computational efficiency is not an issue. However, meta-analyses are very often
performed by applied researchers with only basic statistical training, who may be unfamiliar with the
implementation of MCMC methods. The use of MCMC methods requires the researcher to be confident
in determining whether or not the MCMC results may be considered valid to report.

A simpler method for Bayesian analysis is data augmentation [10–14], in which a conjugate prior
distribution is represented by pseudo data. Data augmentation may be considered to provide a semi-
Bayesian analysis, because it does not require prior distributions to be specified for unknown parameters.
The approach allows one to implement approximate Bayesian analyses using commonly used frequen-
tist methods within standard statistical regression software, thus removing the need to rely on specialist
software. It requires no simulation at all, and therefore runs much faster than methods using MCMC and
importance sampling techniques.

All Bayesian meta-analyses require prior distributions to be declared for unknown parameters. A prior
is referred to as a conjugate prior if the resulting posterior distribution is of the same parametric family
as the prior. In Bayesian analysis, use of a conjugate prior is sometimes preferred because the prior is
computationally and mathematically easy to deal with. An additional advantage of using a conjugate
prior is that the prior is interpretable as additional data [15], which will be useful in the data augmentation
method we develop in this paper. To enable a systematic reviewer to implement Bayesian meta-analyses
by data augmentation, it is desirable for conjugate prior distributions, describing the expected magnitude
of between-study variance 𝜏2 in different research settings, to be made available. Researchers carrying out
a meta-analysis could then select the informative prior distribution most suitable for the characteristics
of their meta-analysis.

The main contribution of this paper is to show that methods for Bayesian analysis by data augmen-
tation may be extended to Bayesian random-effects meta-analysis with an informative prior for the
between-study variance. A new set of predictive distributions for the between-study variance expected in
binary outcome meta-analyses is reported, to facilitate Bayesian meta-analysis with an informative con-
jugate inverse-gamma prior for between-study variance rather than existing log-normal priors [5]. This
paper formally compares approximate Bayesian methods using data augmentation against fully Bayesian
approaches using MCMC methods and importance sampling techniques, with computing code for all
methods available in Supporting Information. The frequentist properties of the Bayesian methods are
compared with those of the commonly used DerSimonian and Laird (DL) procedure. We demonstrate
that informative priors for between-study variance derived for meta-analysis can also be used in network
meta-analysis. As an example, we use a simple network meta-analysis comparing the effects of four
different interventions for smoking cessation counselling.

The rest of the paper is set out as follows. In Section 2, we present our method for implementing a
conjugate prior for the between-study variance in an approximate Bayesian meta-analysis. In order to
provide users with informative priors of the form developed in Section 2, Section 3 derives a new set
of predictive inverse-gamma distributions for between-study variance expected in future binary outcome
meta-analyses. We then apply our proposed method to two contrasting examples in Section 4 and to
simulation studies in Section 5, incorporating the predictive distributions obtained in Section 3 as prior
distributions for between-study heterogeneity. In Section 6, we apply our method to a simple network
meta-analysis. We conclude with a discussion in Section 7.
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2. Methods

In this section, we develop a method for implementing Bayesian meta-analysis based on data augmen-
tation and describe the standard approach using MCMC methods. The random-effects model [16–18]
frequently used in meta-analysis assumes that

Yi ∼ N
(
𝜇, 𝜎2

i + 𝜏2
)
,

where Yi is the observed intervention effect in study i (i = 1, 2,… ,K), 𝜇 is the summary intervention
effect for the meta-analysis and 𝜏2 is the between-study variance. The within-study variances 𝜎2

i are
estimated in practice but are treated as fixed and known in the analysis.

2.1. Data augmentation

This research aims to develop a method for implementing a conjugate prior for 𝜏2 in a meta-analysis,
using data augmentation. The basic idea is that a conjugate prior can be expressed as additional data.
This leads to a simple process for conducting an approximate Bayesian meta-analysis within standard
statistical software:

(1) Construct pseudo data ‘equivalent’ to the prior;
(2) Add those pseudo data to the observed study data as a distinct stratum;
(3) Fit a random-effects meta-regression model.

As a single covariate in the meta-regression model, we include an indicator for whether the data are
observed. The resulting estimates from the frequentist analysis of the augmented (pseudo+observed) data
correspond to approximate posterior estimates for each parameter.

2.1.1. Meta-regression model and pseudo data. In a general random-effects meta-regression model,
we assume

Yi|xi ∼ N
(
xi𝜷, 𝜎

2
i + 𝜏2

)
,

where Yi is the estimated effect from the i-th study (i = 1, 2,… ,K), xi is the 1 × p vector of covariates
associated with this study and 𝜷 is the vector of regression coefficients. Typically, the first ‘covariate’ is
taken to be one to include an intercept, unless an intercept free regression is required.

Our proposed approach to implement a prior for the between-study variance 𝜏2 in a meta-analysis is to
augment the observed data from K studies using pseudo data from K0 artificial studies. We propose the
following random-effects meta-regression for both the observed and pseudo data:

Yi|xi ∼ N
(
xi𝜇, 𝜎

2
i + 𝜏2

)
, (1)

where Yi is the intervention effect from the i-th study (i = 1,… ,K + K0), and the covariate xi in each
study is taken to be one if the study is observed or zero if the study is artificial (i.e. representing the
prior for 𝜏2). We set the intercept term to zero so that the effects of the artificial studies are centred
at zero, and 𝜇 estimates the combined effect of the K observed studies. The residual between-study
heterogeneity 𝜏2 is not modified by the indicator xi (we assume the same residual between-study variance
for the observed and pseudo data), and so, between-study variation is incorporated in the same way as in
a standard random-effects meta-analysis.

In other words, the observed data are modelled by

Yi ∼ N
(
𝜇, 𝜎2

i + 𝜏2
)
, i = 1,… ,K,

and so the pseudo data from the artificial studies are modelled by

Yi ∼ N(0, 𝜏2), i = K + 1,… ,K + K0.

It is mathematically convenient and standard practice in Bayesian analysis to work in terms of
precision. The likelihood of the between-study precision 𝜙 = 1∕𝜏2 from the artificial studies
yK+1, ...yK+K0

is

L(𝜙) =
K+K0∏
i=K+1

p(yi|𝜙) ∝ 𝜙K0∕2 exp

{
−𝜙

2

K+K0∑
i=K+1

y2
i

}
.
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Creation of the data for augmenting requires us to generate an effect yi for each artificial study indexed
i (i = K+1,… ,K+K0). Only

∑K+K0

i=K+1 y2
i matters (see previous equation), and so, we may as well choose

the simplest case of homogeneous artificial studies, all with effect y0. Then, the likelihood contribution
from the artificial studies yK+1, ...yK+K0

is

L(𝜙) =
K+K0∏
i=K+1

p(yi|𝜙) ∝ 𝜙K0∕2 exp

{
−𝜙

2
K0y2

0

}
. (2)

Gamma priors are commonly assigned to precision parameters in Bayesian analyses. The intuition
behind our proposed method to implement an inverse-gamma prior for 𝜏2, and so a gamma prior for 𝜙,
is that the aforementioned likelihood for 𝜙 = 1∕𝜏2 is proportional to the following probability density
function of a Gamma (𝛼, 𝛽) distribution:

p(𝜙) = 𝛽𝛼

Γ(𝛼)
𝜙𝛼−1 exp(−𝛽𝜙),

where 𝛼 = K0∕2 + 1 and 𝛽 = 1
2
K0y2

0.
Suppose that we want to implement a generic inverse-gamma(𝛼, 𝛽) prior for 𝜏2 in a Bayesian meta-

analysis. In order to implement this prior using data augmentation, we need to match the likelihood of
the between-study precision 𝜙 = 1∕𝜏2 given the data yi (i = K + 1,… ,K +K0) from the artificial studies
to the Gamma(𝛼, 𝛽) prior density. To replace a prior density with a likelihood term, the prior density
needs to be equivalent to a posterior given by the likelihood multiplied by a uniform prior. We therefore
need a parameter on the whole real line for which a flat prior is appropriate, and so, we work with the
logarithm of the between-study precision 𝜑 = log𝜙 = −2 log 𝜏 - this re-parametrisation will not affect
the maximum-likelihood analysis for which we are aiming. Based on a standard result for transforming
random variables [19], the Gamma(𝛼, 𝛽) prior density for the between-study precision 𝜙 in terms of its
logarithm 𝜑 = log𝜙 is, upon changing variable in the usual way,

p𝜑(𝜑) = p𝜙(exp(𝜑))| exp(𝜑)|
∝ exp((𝛼 − 1)𝜑) exp(−𝛽 exp(𝜑))| exp(𝜑)|
∝ exp(𝛼𝜑 − 𝛽 exp(𝜑)),

where | exp(𝜑)| is the Jacobian of the transformation.
In terms of the logarithm of the between-study precision 𝜑, the likelihood contribution from the pseudo

data in equation (2) is

L(𝜑) ∝ exp

(
K0

2
𝜑 −

K0y2
0

2
exp𝜑

)
.

This likelihood will exactly match the contribution for the prior density for 𝜑 if we choose K0 and y0

such that 𝛼 = K0∕2 and 𝛽 = K0y2
0∕2. That is, we set K0 = 2𝛼 and y0 =

√
2𝛽∕K0.

The intervention effect y0 chosen for the artificial studies and the number of artificial studies K0 there-
fore govern the prior mean on 𝜏2; an inverse-gamma(𝛼, 𝛽) prior has mean 𝛽∕(𝛼 − 1) that increases with
𝛽 = K0y2

0∕2. The number of artificial studies K0 determines the desired prior precision; the variance of the
inverse-gamma(𝛼, 𝛽) prior is 𝛽2∕((𝛼 − 1)2(𝛼 − 2)), which decreases as 𝛼 = K0∕2 increases. Visual repre-
sentations of pseudo data to represent inverse-gamma prior distributions for the between-study variance
𝜏2 are given in the Supporting Information (S1).

2.1.2. Proposed method. In summary, our proposed approach for performing an approximate Bayesian
random-effects meta-analysis with an inverse-gamma(𝛼, 𝛽) prior for the between-study variance 𝜏2 is to

(1) Add K0 = 2𝛼 precise studies (rounded to the nearest integer) with intervention effects y0 =√
2𝛽∕K0;

(2) Model these as having mean zero, the same heterogeneity 𝜏2 as the observed data, and within-study
variances 𝜎2

i of approximately zero (we set each 𝜎2
i = 10−20);

(3) Implement using a standard method to estimate the random-effects meta-regression model.

Note that our approach of adding extra studies to represent a prior for the between-study variance 𝜏2 in
a meta-analysis does not introduce bias in the intervention effect because we set the mean of the artificial
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studies to zero so that they do not contribute directly to the point estimate for the summary intervention
effect 𝜇. The extra studies do, however, affect the point estimate for the between-study variance 𝜏2 and
the mean squared error (MSE).

R and Stata code to perform an approximate Bayesian meta-analysis using meta-regression and pseudo
data is given in the Supporting Information (S2.1).

Conceptually, we replace the prior distribution for 𝜏2 with an equivalent likelihood contribution using
the pseudo data.

2.2. Methods to estimate the meta-regression model

Our meta-regression involves two parameters: the mean 𝜇 and the variance 𝜏2 of the random-effects
distribution. The between-study variance 𝜏2 is usually estimated and then treated as fixed and known
when drawing inference about the intervention effect [17]. This approximation performs well in large
samples. The most commonly used method to estimate this variance is the method-of-moments estimator
proposed by DL [16]. Maximum likelihood (ML) and restricted maximum likelihood (REML) estimation
are alternative procedures that require iteration and are therefore more computationally intensive. In
this paper, we investigate the use of these three methods for implementing an approximate Bayesian
meta-analysis using meta-regression and pseudo data.

2.3. Markov chain Monte Carlo methods

Markov chain Monte Carlo methods can be used to obtain summary statistics for the joint posterior
distribution of 𝜇 and 𝜏2, within the WinBUGS [8] software. We based results on 1 000 000 iterations,
following a burn-in period of 10 000 iterations, which was sufficient to achieve convergence and pro-
duced very low MC error rates. Convergence was assessed using the Brooks–Gelman–Rubin statistic [20],
with five chains starting from widely dispersed initial values, as implemented in WinBUGS. We declared
a vague N(0, 106) prior for the summary intervention effect 𝜇. WinBUGS code to perform Bayesian
random-effects meta-analysis by MCMC is given in the Supporting Information (S2.2).

3. Informative priors for heterogeneity

We now have some elegant theory for conducting an approximate Bayesian meta-analysis with an inverse-
gamma prior for 𝜏2. This was developed by working with the logarithm of the between-study precision
1∕𝜏2 and matching the corresponding likelihood from some pseudo data to the Gamma prior for 1∕𝜏2

in terms of −2log(𝜏). To use our method described in Section 2.1.2, we need inverse-gamma prior
distributions for the between-study variance 𝜏2.

Previously, we have provided ‘off-the-shelf’ data-based prior distributions for the between-study vari-
ance 𝜏2 in a meta-analysis [5, 6]. Turner et al. [5] and Rhodes et al. [6] investigated the influence of
meta-analysis characteristics on between-study heterogeneity in a meta-analysis. Turner et al. obtained
predictive log-normal distributions for 𝜏2 expected in future binary outcome meta-analyses of log odds
ratios in each of nine different research settings. Rhodes et al. reported predictive log-t5 and inverse-
gamma distributions for 𝜏2 expected in future continuous outcome meta-analyses of standardised mean
differences. The problem in using the existing predictive distributions available for 𝜏2 in binary outcome
meta-analyses as priors in our new data augmentation method is that they are log-normal and cannot be
represented as pseudo data in the same way as conjugate prior distributions. In the absence of informa-
tive inverse-gamma prior distributions, one possibility would be to match the mean and variance of the
published log-normal prior distributions to provide inverse-gamma prior distributions. However, this is
far from ideal because the mean and variance alone cannot describe the inverse-gamma distribution well
as this distribution is skew. A better approach is to construct inverse-gamma prior distributions using a
suitable database of meta-analyses, and we derive prior distributions of this type below. Our approach is
to repeat the procedures previously used for constructing informative priors for between-study hetero-
geneity 𝜏2, in this case, assuming an inverse-gamma distribution for underlying values of between-study
heterogeneity rather than a log-normal or log-t5 prior distribution.

3.1. Data set

The Nordic Cochrane centre provided us with the study data from meta-analyses included in the CDSR
(Issue 1, 2008). Most Cochrane reviews include multiple meta-analyses, which correspond to compar-
isons of interventions and the assessment of various outcomes within these comparisons. In some reviews,

© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5495–5511
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results from studies eligible for a meta-analysis were available but no combined results were present. We
treated these data in the same way as meta-analyses, because the extent of heterogeneity may have influ-
enced the decision not to report the pooled meta-analysis results. Reviews sometimes present results for
several subgroup analyses within meta-analyses. Because we are interested in the overall between-study
heterogeneity in a meta-analysis, study results were combined across subgroups. In some reviews, the
subgroups presented within a meta-analysis were not mutually exclusive; therefore, we checked for study
duplications and used data for only the first occurrence of each study in each meta-analysis [2].

For computational convenience, we analysed data from the first reported meta-analysis per pair-wise
intervention comparison, which included at least two studies. In total, the data set analysed includes 3873
binary outcome meta-analyses from 1967 Cochrane reviews, containing data from 21 902 individual
studies. This same data set has been analysed previously for the purpose of obtaining predictive distri-
butions for the I2 measure [21]. Each meta-analysis in the database was classified according to the type
of outcome, types of intervention compared and medical speciality, as described in an earlier paper [2].
The outcomes, interventions and medical specialities were assigned to fairly narrow categories, which
we grouped together in the same way as Turner et al. [5]. Outcomes were categorised into groupings
of ‘all-cause mortality’, ‘semi-objective’ and ‘subjective’. ‘Semi-objective’ outcomes are those that are
objectively measured but potentially influenced by judgement, for example caesarean section, hospital
admission and study withdrawal. ‘Subjective’ outcomes include self-reported outcomes such as pain and
satisfaction with care, and outcomes measured by an assessor whose method of measurement and judge-
ment may influence the outcome, for example hypertension and infection. The distributions of outcome
types, intervention comparison types and medical areas are summarised elsewhere in [21]. The Cochrane
database covers a very wide range of medical areas. ‘Obstetrics and gynaecology’ was the most frequent
medical area (18% of meta-analyses), followed by ‘Mental health and behavioural conditions’ (14% of
meta-analyses).

3.2. Inverse-gamma prior distributions obtained

We used Bayesian hierarchical models to analyse study data from each binary outcome meta-analysis in
the data set, while investigating the influence of meta-analysis characteristics on the degree of hetero-
geneity among results of included studies. For each research setting defined by the type of outcome and
type of intervention comparison, we obtained a predictive distribution for heterogeneity 𝜏2

new in a new
meta-analysis in that setting, within the full Bayesian model. Details of the hierarchical models for het-
erogeneity are available in the Supporting Information (S3) and have been described elsewhere in [5, 6].
We first report a predictive distribution for the between-study variance expected in a future meta-analysis
in a generic health-care setting. This was obtained from a hierarchical model fitted to all 3873 meta-
analyses in the data set, without including covariates representing meta-analysis characteristics. From
this model, the fitted distribution for 𝜏2

new is estimated as inverse-gamma(1.14,0.08), which has median
0.09 and 95% range (0.02, 1.79).

Table I summarises a set of inverse-gamma distributions fitted to the predictive distributions for
between-study variance expected in a future meta-analysis in each of nine different settings, defined by
the type of outcome and the type of intervention comparison. The differences among the different fitted
distributions reflect the findings reported by Turner et al. [5]. There are clear differences across the differ-
ent outcome types; the predictive distributions for meta-analyses of an all-cause mortality outcome have
much lower quantiles, whereas the fitted distributions for a subjective outcome have the highest quantiles.
Within outcome types, discrepancies among the different types of intervention comparisons seem small,
but levels of heterogeneity tend to be lower in pharmacological versus pharmacological comparisons.

For each predictive distribution reported in Table I, we provide the pseudo data that should be used
to implement the predictive distribution as an informative prior for 𝜏2 in an approximate Bayesian
meta-analysis by data augmentation. The intervention effects y0 of the pseudo study data are highest
in magnitude for subjective outcome meta-analyses and lowest in magnitude for meta-analyses assess-
ing all-cause mortality. Across the three different types of intervention comparisons, the intervention
effects y0 of the pseudo study data are consistently lower in magnitude for pharmacological versus
pharmacological comparisons.

4. Applications to example meta-analyses

In this section, we apply five different methods to two contrasting examples.
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Table I. Predictive inverse-gamma (IG) distributions for between-study variance 𝜏2 expected in
future binary outcome meta-analyses of log odds ratios. To implement a predictive distribution as
an informative prior for 𝜏2 in an approximate Bayesian meta-analysis by data augmentation, we
augment the observed study data using the pseudo data reported.

Pharmacological versus Pharmacological versus Non-pharmacological
placebo/ control pharmacological (any)

IG(1.06, 0.01) IG(2.93, 0.00003) IG(0.80, 0.007)
All-cause mortality Pseudo data: Pseudo data: Pseudo data:

2 studies with 6 studies with 2 studies with
effects y0 = 0.100 effects y0 = 0.003 effects y0 = 0.084

IG(1.32, 0.08) IG(1.04, 0.04) IG(0.88, 0.05)
Semi-objective Pseudo data: Pseudo data: Pseudo data:

3 studies with 2 studies with 2 studies with
effects y0 = 0.231 effects y0 = 0.200 effects y0 = 0.224

IG(1.45, 0.18) IG(1.13, 0.09) IG(1.39, 0.13)
Subjective Pseudo data: Pseudo data: Pseudo data:

3 studies with 2 studies with 3 studies with
effects y0 = 0.346 effects y0 = 0.300 effects y0 = 0.294

4.1. Example 1: fluoride for lower limb pain in patients with postmenopausal osteoporosis

The first example is a binary outcome meta-analysis combining results from four studies evaluating the
effectiveness of fluoride for lower limb pain in patients with postmenopausal osteoporosis [22]. In a
conventional random-effects meta-analysis by DL estimation [16], the estimate of between-study hetero-
geneity is high at 1.78, and imprecisely estimated (95% CI: 0.39 to 52.2 obtained iteratively using the
Q-profile method [23]). The summary log odds ratio is estimated as 1.42 (95% CI: -0.08 to 2.91). This
meta-analysis compares a pharmacological intervention against a control, with respect to a subjective
outcome, so we choose an inverse-gamma(1.45, 0.18) distribution as an informative prior for 𝜏2 (Table I),
which has a median of 0.16, and 95% range 0.04 to 1.87.

When implementing an inverse-gamma(1.45, 0.18) prior distribution for 𝜏2 using MCMC methods,
the central estimate (posterior median) for 𝜏2 reduces to 0.52, with 95% credible interval 0.07 to 4.21
(Table II). In the Bayesian meta-analysis, the combined log odds ratio for the intervention effect reduces
to 1.24 (95% CI: 0.18 to 2.56).

4.2. Example 2: penicillin for prevention of perinatal death/ death prior to discharge from hospital

As a second contrasting example, we also re-analyse data from a published meta-analysis in which het-
erogeneity is low, but again imprecisely estimated (𝜏2 = 0, 95% CI: 0 to 7.61). This meta-analysis was
taken from a Cochrane review with the objective to assess whether certain antibiotics given to women
whose waters have broken early will improve their babies health. The meta-analysis compares all peni-
cillin (excluding co-amoxiclav) against a placebo in terms of perinatal death/death prior to discharge
from hospital [24]. When using MCMC to perform Bayesian meta-analysis with an informative inverse-
gamma(1.06, 0.01) prior for 𝜏2, the central estimate for 𝜏2 increases slightly to 0.01, and the 95% credible
interval narrows considerably to (0.003, 0.21). The Bayesian approach produces a slightly wider interval
for the combined log odds ratio in comparison with a conventional random-effects meta-analysis by DL
estimation (Table II), allowing for uncertainty in 𝜏2.

4.3. Exploring discrepancies between data augmentation and Markov chain Monte Carlo

In both examples of applying an informative inverse-gamma prior distribution for 𝜏2, the point estimate
for the effect size of interest obtained using the DL procedure by data augmentation is close to that
resulting from the standard approach by MCMC (Table II). However, the approach yields a noticeably
smaller estimate for the between-study variance in Example 1. For the first example meta-analysis in
which heterogeneity is high, point estimates for both the combined log odds ratio and 𝜏2 are closer to those
from MCMC, if data augmentation is implemented using ML estimation instead of the DL procedure.

A standard method to estimate the meta-regression model is to use REML estimation. Therefore, we
explore how results from data augmentation would compare to MCMC, if REML estimation is used

© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5495–5511

5501



K. M. RHODES ET AL.

Ta
bl

e
II

.
R

es
ul

ts
fr

om
re

-a
na

ly
si

ng
da

ta
fr

om
pu

bl
is

he
d

m
et

a-
an

al
ys

es
to

ex
pl

or
e

di
sc

re
pa

nc
ie

s
be

tw
ee

n
da

ta
au

gm
en

ta
tio

n
an

d
M

C
M

C
.

P
ri

or
as

si
gn

ed
A

ch
ie

ve
d

pr
io

r
M

et
ho

d
D

at
a

se
t

to
𝜏

2
fo

r
𝜏

2
L

og
O

R
(9

5%
C

I)
M

C
er

ro
r

𝜏
2

(9
5%

C
I)

M
C

er
ro

r
I2

R
ev

ie
w

:
F

lu
or

id
e

fo
r

tr
ea

ti
ng

po
st

m
en

op
au

sa
lo

st
eo

po
ro

si
s

C
om

pa
ri

so
n:

F
lu

or
id

e
vs

co
nt

ro
l.

O
ut

co
m

e:
lo

w
er

lim
b

pa
in

C
on

ve
nt

io
na

l(
D

L
es

tim
at

io
n)

O
bs

er
ve

d
1.

42
(−

0.
08

,2
.9

1)
1.

78
(0
.3

9,
52

.2
)1

80
%

D
at

a
au

gm
en

ta
tio

n
by

D
L

A
ug

m
en

te
d4

IG
(1

.4
5,

0.
18

)3
IG

(1
.5

,0
.1

8)
1.

15
(0
.4

8,
1.

83
)

0.
12

(0
.1

7,
8.

48
)1

D
at

a
au

gm
en

ta
tio

n
by

M
L

A
ug

m
en

te
d4

IG
(1

.4
5,

0.
18

)3
IG

(1
.5

,0
.1

8)
1.

21
(0
.3

5,
2.

07
)

0.
36

(0
.1

7,
8.

48
)1

D
at

a
au

gm
en

ta
tio

n
by

R
E

M
L

A
ug

m
en

te
d4

IG
(1

.4
5,

0.
18

)3
IG

(1
.5

,0
.1

8)
1.

24
(0
.3

0,
2.

19
)

0.
51

(0
.1

7,
8.

48
)1

M
C

M
C

O
bs

er
ve

d
IG

(1
.4

5,
0.

18
)3

IG
(1

.4
5,

0.
18

)
1.

24
(0
.1

8,
2.

56
)2

0.
00

09
0.

52
(0
.0

7,
4.

21
)2

0.
00

3

R
es

ul
ts

fo
r

ex
pl

or
in

g
di

sc
re

pa
nc

ie
s

be
tw

ee
n

da
ta

au
gm

en
ta

ti
on

an
d

M
C

M
C

M
C

M
C

A
ug

m
en

te
d4

𝜏
∼

IG
(0

.0
01

,0
.0

01
)

IG
(1

.5
,0

.1
8)

1.
24

(0
.2

0,
2.

53
)2

0.
00

06
0.

50
(0
.0

7,
3.

97
)2

0.
00

2
M

C
M

C
O

bs
er

ve
d

IG
(1

.5
,0

.1
8)

5
IG

(1
.5

,0
.1

8)
1.

24
(0
.2

0,
2.

53
)2

0.
00

06
0.

50
(0
.0

7,
3.

98
)2

0.
00

2

R
ev

ie
w

:
A

nt
ib

io
ti

cs
fo

r
pr

et
er

m
ru

pt
ur

e
of

m
em

br
an

es
C

om
pa

ri
so

n:
P

en
ic

ill
in

(e
xc

lu
di

ng
co

-a
m

ox
ic

la
v)

vs
pl

ac
eb

o.
O

ut
co

m
e:

de
at

h
be

fo
re

di
sc

ha
rg

e

C
on

ve
nt

io
na

l(
D

L
es

tim
at

io
n)

O
bs

er
ve

d
−

0.
28

(−
1.

28
,0
.7

2)
0
(0
,7
.6

1)
1

0%
D

at
a

au
gm

en
ta

tio
n

by
D

L
A

ug
m

en
te

d4
IG

(1
.0

6,
0.

01
)6

IG
(1

,0
.0

1)
−

0.
28

(−
1.

29
,0
.7

3)
0.

01
(0
.0

02
,0
.5

2)
1

D
at

a
au

gm
en

ta
tio

n
by

M
L

A
ug

m
en

te
d4

IG
(1

.0
6,

0.
01

)6
IG

(1
,0

.0
1)

−
0.

28
(−

1.
29

,0
.7

3)
0.

01
(0
.0

02
,0
.5

2)
1

D
at

a
au

gm
en

ta
tio

n
by

R
E

M
L

A
ug

m
en

te
d4

IG
(1

.0
6,

0.
01

)6
IG

(1
,0

.0
1)

−
0.

28
(−

1.
29

,0
.7

3)
0.

01
(0
.0

02
,0
.5

2)
1

M
C

M
C

O
bs

er
ve

d
IG

(1
.0

6,
0.

01
)6

IG
(1

.0
6,

0.
01

)
−

0.
28

(−
1.

31
,0
.7

4)
2

0.
00

3
0.

01
(0
.0

03
,0
.2

1)
2

0.
00

02

R
es

ul
ts

fo
r

ex
pl

or
in

g
di

sc
re

pa
nc

ie
s

be
tw

ee
n

da
ta

au
gm

en
ta

ti
on

an
d

M
C

M
C

M
C

M
C

A
ug

m
en

te
d4

𝜏
∼

IG
(0

.0
01

,0
.0

01
)

IG
(1

,0
.0

1)
−

0.
28

(−
1.

31
,0
.7

4)
2

0.
00

3
0.

01
(0
.0

03
,0
.2

4)
2

0.
00

02
M

C
M

C
O

bs
er

ve
d

IG
(1

,0
.0

1)
5

IG
(1

,0
.0

1)
−

0.
28

(−
1.

31
,0
.7

4)
2

0.
00

3
0.

01
(0
.0

03
,0
.2

4)
2

0.
00

02
1
T

he
co

nfi
de

nc
e

in
te

rv
al

fo
r
𝜏

2
is

ob
ta

in
ed

ite
ra

tiv
el

y
vi

a
th

e
Q

-p
ro

fil
e

m
et

ho
d

[2
3]

.
2
Po

st
er

io
r

m
ed

ia
ns

an
d

95
%

cr
ed

ib
le

in
te

rv
al

s
ar

e
re

po
rt

ed
.

3
E

m
pi

ri
ca

lly
ba

se
d

in
ve

rs
e-

ga
m

m
a(

1.
45

,0
.1

8)
pr

io
r

fo
r

a
ph

ar
m

ac
ol

og
ic

al
vs

pl
ac

eb
o/

co
nt

ro
lm

et
a-

an
al

ys
is

w
ith

a
su

bj
ec

tiv
e

ou
tc

om
e.

4
O

bs
er

ve
d

da
ta

au
gm

en
te

d
us

in
g

ps
eu

do
da

ta
to

re
pr

es
en

tt
he

ac
hi

ev
ed

in
ve

rs
e-

ga
m

m
a

pr
io

r
fo

r
𝜏

2
.

5
T

he
pr

io
r

w
e

ac
hi

ev
e

in
da

ta
au

gm
en

ta
tio

n,
du

e
to

ro
un

di
ng

th
e

nu
m

be
r

of
ar

tifi
ci

al
st

ud
ie

s
to

be
an

in
te

ge
r.

6
E

m
pi

ri
ca

lly
ba

se
d

in
ve

rs
e-

ga
m

m
a(

1.
06

,0
.0

1)
pr

io
r

fo
r

a
ph

ar
m

ac
ol

og
ic

al
vs

pl
ac

eb
o/

co
nt

ro
lm

et
a-

an
al

ys
is

w
ith

an
al

l-
ca

us
e

m
or

ta
lit

y
ou

tc
om

e.
M

C
M

C
,M

ar
ko

v
ch

ai
n

M
on

te
C

ar
lo

;D
L

,D
er

Si
m

on
ia

n
an

d
L

ai
rd

;M
L

,m
ax

im
um

lik
el

ih
oo

d;
R

E
M

L
,r

es
tr

ic
te

d
m

ax
im

um
lik

el
ih

oo
d.

5502

© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5495–5511



K. M. RHODES ET AL.

instead of DL or ML estimation. For the first example meta-analysis in which heterogeneity is high, point
estimates for both the combined log odds ratio and 𝜏2 are closer to those from MCMC, if data augmen-
tation is implemented using REML estimation. For the second example in which heterogeneity is low,
results obtained through data augmentation are almost identical, regardless of the method of implemen-
tation. In both examples, the interval for 𝜏2 resulting from data augmentation is wider than the interval
resulting from MCMC. This is as expected because the Q-profile method is not fully efficient for ML
estimators. We note that the estimate of 𝜏2 in data augmentation is more precise than in the conventional
meta-analysis using the DL procedure.

The results obtained through data augmentation are similar to those from MCMC but show some
discrepancies (Table II). We would not expect data augmentation to lead to precisely the same results as
MCMC because data augmentation provides an approximate Bayesian analysis, and MCMC is affected
by simulation error. The extent to which these discrepancies are due to the simulation error in MCMC
or the rounding of the prior shape parameter in data augmentation is investigated in this section. For this
investigation, we again apply MCMC and data augmentation methods to study data from the two example
meta-analyses. In each example, we consider two different prior distributions for 𝜏2: the empirically based
inverse-gamma(𝛼, 𝛽) prior and the inverse-gamma prior with the shape parameter 𝛼 rounded to force the
number of artificial studies K0 = 2𝛼 to be an integer. For the first meta-analysis, we chose to implement
an empirically based inverse-gamma(1.45,0.18) prior for 𝜏2 and an inverse-gamma(1.5,0.18) prior for 𝜏2.
For the second meta-analysis, we chose to implement an empirically based inverse-gamma(1.06,0.01)
prior for 𝜏2 and an inverse-gamma(1,0.01) prior for 𝜏2.

When implementing an inverse-gamma(𝛼, 𝛽) prior such that K0 = 2𝛼 is an integer, differences between
point estimates obtained through MCMC and data augmentation are not mathematical but arise due to the
fact that data augmentation is not a fully Bayesian approach. In data augmentation, we do not need to spec-
ify priors for all unknown parameters, therefore not all sources of parameter uncertainty are accounted
for. In both examples, the implementation of an inverse-gamma(𝛼, 𝛽) prior constructed to force 2𝛼 to be
an integer by MCMC leads to a very similar estimate for the intervention effect size of interest to that
obtained through data augmentation methods (Table II). Point estimates for the between-study variance
𝜏2 resulting from data augmentation and MCMC show more noticeable discrepancies. Again, we find that
point estimates for model parameters are consistently closer to those based on MCMC methods, when
data augmentation is implemented using REML estimation instead of ML estimation.

For each of the two examples, we also analyse the augmented data set used for meta-analysis by data
augmentation, under a fully Bayesian framework, using MCMC within WinBUGS. For these analyses,
we declare a vague normal(0, 106) prior for unknown location parameters and an inverse-gamma(0.001,
0.001) prior for 𝜏. When implementing an inverse-gamma(𝛼, 𝛽) prior constructed such that 2𝛼 is an
integer, the results from analysing only the augmented data set using MCMC with a vague prior for hetero-
geneity are almost identical to those from analysing only the observed data using MCMC with the same
inverse-gamma(𝛼, 𝛽) prior for heterogeneity (Table II). The comparability of MCMC results indicates
that the pseudo data we use to augment the observed study data in data augmentation are appropriate.

When implementing an empirically based inverse-gamma prior for 𝜏2, the MCMC results based on
analyses of the observed data alone with an informative prior for heterogeneity are quite similar to those
based on analyses of the augmented data set with a vague prior for heterogeneity (Table II). However,
in view of the stronger similarities between these results when implementing an inverse-gamma(𝛼, 𝛽)
prior for 𝜏2 constructed such that 2𝛼 is an integer, it is clear that differences between MCMC results
and those obtained using data augmentation may arise because of the rounding of prior parameters in an
empirically-based Bayesian meta-analysis by data augmentation.

Meta-analysts should be aware that our data augmentation method for implementing Bayesian
meta-analysis will achieve a slightly different prior for the between-study variance 𝜏2 to the inverse-
gamma(𝛼, 𝛽) prior declared, if 2𝛼 is non-integer. When 2𝛼 is an integer, the results in this section suggest
that the pseudo data constructed to represent the inverse-gamma(𝛼, 𝛽) prior are appropriate.

5. A simulation study

We conducted a simulation study with three objectives: (i) to compare the frequentist properties of the
Bayesian methods with those of the DL approach; (ii) to compare approximate Bayesian methods using
data augmentation against a fully Bayesian approach using importance sampling techniques; and (iii)
to show that importance sampling techniques yield approximately the same results as MCMC meth-
ods. We simulated data from K = 5, 10 and 20 studies. We used five values of between-study variance

© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5495–5511
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𝜏2 = 0, 0.029, 0.069, 0.206, 1.302, because these values correspond to I2 = 0%, 30%, 50%, 75%, 95%
[25]. Additional details of the simulation study are provided in the Supporting Information (S4).

Here, we report the results of the simulation study to compare methods of random-effects
meta-analysis.

5.1. Comparing frequentist properties of Bayesian methods and DL

Figure 1 summarises the average estimators of between-study variance 𝜏2 from the simulation studies
using 20 000 meta-analyses simulated under each combination of 𝜏2 and K. When 𝜏2 = 0, the results
demonstrate that the DL procedure slightly overestimates 𝜏2, even though the data are homogeneous. The
two Bayesian methods, incorporating information on heterogeneity, behave similarly in comparison with
the conventional method by DL estimation. Specifically, when the DL estimator of 𝜏2 is extremely low,
both Bayesian methods allow appropriately for imprecision in 𝜏2; yielding a larger estimate of 𝜏2 and
providing a wider interval for the summary intervention effect 𝜇 on average (Figure 2). On the contrary,
methods for Bayesian meta-analysis provide a reduced estimate for 𝜏2 and a narrower interval for 𝜇 on
average, when the DL estimator of 𝜏2 is high. As the number of studies K increases, average estimates
of 𝜏2 follow a similar pattern, but the discrepancies between methods fade for a given 𝜏2 ⩾ 0.029.

Figure 1 displays the root mean squared error (RMSE) of the different estimators for 𝜏2. When 𝜏2 = 0,
the Bayesian methods implementing an inverse-gamma(1.14,0.08) prior for 𝜏2 yield larger RMSE than
the frequentist approach using the DL procedure, but perform better than the DL procedure when 𝜏2 is
sufficiently large (𝜏2 ⩾ 0.029).

For each method, we display coverage probabilities and average lengths of 95% intervals for 𝜇 graphi-
cally in Figure 2. For importance sampling and data augmentation, it is important to note that these results
are not based on the credible intervals for 𝜇, but have been obtained from the point estimates and model-
based standard errors for 𝜇. Although we expect the model-based credible intervals to be typically wider
and have higher coverage probabilities than reported here, the intervals provided are useful to compare
methods because they would be similarly influenced by 𝜏2. Coverage probabilities are the proportion of
nominal estimated 95% intervals that cover the true value 𝜇 = 0, using the standard normal quantile.
When 𝜏2 = 0, the coverage probabilities for all methods are greater than 95% because each Bayesian
method provides an increased estimate for 𝜏2, and the DL procedure can overestimate 𝜏2. In general,

Figure 1. Average estimates [top row] and root mean squared error (RMSE) [bottom row] of between-study
variance 𝜏2 from the simulation study, using 20 000 simulations for each combination of 𝜏2 and K, plotted on the
logarithm scale. In each case, DL denotes conventional estimation by the DerSimonian and Laird procedure. DA

and IS denote Bayesian methods by data augmentation and importance sampling, respectively.

5504

© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5495–5511



K. M. RHODES ET AL.

Figure 2. Average estimates with corresponding 95% intervals [top row] and coverage probabilities of estimated
95% intervals for the summary effect 𝜇 [bottom row] from the simulation study, using 20 000 simulations for each
combination of 𝜏2 and K, plotted on the logarithm scale. In each case, DL denotes conventional estimation by the
DerSimonian and Laird procedure. DA and IS denote Bayesian methods by data augmentation and importance

sampling, respectively.

the coverage probabilities decrease and the interval lengths widen with increasing 𝜏2. For non-zero 𝜏2

values, these results corroborate findings of other simulation studies [26, 27], which demonstrate severe
under-coverage of Wald intervals for 𝜇 based on DL estimation. Under most scenarios, Bayesian meth-
ods outperform conventional DL estimation, providing higher coverage probabilities that are typically
closer to 0.95.

5.2. Comparing Bayesian methods using data augmentation and importance sampling

Comparing methods to implement a prior for the between-study variance, it appears that the method using
importance sampling generally gives a slightly higher estimate for 𝜏2, on average, than the method by
ML estimation via data augmentation. Nonetheless, the method by data augmentation performs approx-
imately as well as the method by importance sampling when 𝜏2 ⩾ 0.029, as the number of studies K in
the meta-analysis increases. The results show that estimators of 𝜏2 obtained through data augmentation
by REML estimation are, on average, very close to the importance weighted estimators of 𝜏2, regardless
of the number of studies K in the meta-analysis.

We compare the estimated coverage probabilities of intervals for 𝜇 between the two Bayesian
approaches for meta-analysis. As shown in Figure 2, for K = 5, the intervals from importance sam-
pling tend to be wider and provide higher coverage than those estimated using data augmentation. For
𝜏2 = 0.069, the coverage of the intervals from importance sampling is greater than 0.95 whereas data
augmentation has lower than nominal coverage. When K = 10 and 20, the coverage and lengths of inter-
vals for 𝜇 follow a similar pattern, but results from the three different methods of analysis are closer as
the number of studies in the meta-analysis increases. We note that the interval for 𝜇 obtained through
data augmentation is, on average, closer to the interval based on importance sampling, if REML estima-
tion is used rather than ML estimation. Overall, the results from our simulation studies are reassuring
and demonstrate that meta-analysis results from the proposed Bayesian approach by data augmentation
perform similarly to those from the existing method for a fully Bayesian meta-analysis by importance
sampling with increasing 𝜏2.

© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5495–5511
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Table III. Properties of estimates for 𝜇 and 𝜏2 from the simulation study with K = 5 studies,
using 1000 simulations for each 𝜏2 value. In each case, IS denotes values using Bayesian
methods by importance sampling. ‘Z length’ denotes the average length of the nominal 95%
interval for 𝜇 using the standard normal quantile, and ‘Z coverage’ denotes the proportion
of nominal 95% intervals that cover the true value, using the standard normal quantile.

Properties of estimates for 𝜇

Empirical mean Empirical std dev Z length Z coverage

IS MCMC IS MCMC IS MCMC IS MCMC

𝜏2 = 0 −0.001 −0.001 0.106 0.106 0.771 0.771 0.9993 1
𝜏2 = 0.029 0.003 0.003 0.143 0.144 0.800 0.805 0.995 0.995
𝜏2 = 0.069 0.001 0.001 0.170 0.169 0.840 0.842 0.985 0.985
𝜏2 = 0.206 0.005 0.005 0.260 0.260 0.971 0.984 0.996 0.996
𝜏2 = 1.302 0.013 0.012 0.556 0.554 1.654 1.839 0.991 0.992

Properties of estimates for 𝜏2

Empirical mean Empirical std dev

IS MCMC IS MCMC

𝜏2 = 0 0.064 0.064 0.018 0.018
𝜏2 = 0.029 0.073 0.073 0.027 0.027
𝜏2 = 0.069 0.084 0.084 0.040 0.040
𝜏2 = 0.206 0.141 0.142 0.112 0.111
𝜏2 = 1.302 0.767 0.787 0.646 0.682

MCMC, Markov chain Monte Carlo.

5.3. Comparing methods using Markov chain Monte Carlo and importance sampling

The main results of our analyses are shown in Table III; the same data were used for both methods
of Bayesian meta-analysis implementing an inverse-gamma(1.14,0.08) prior for 𝜏2. Table III shows
estimates relating to the summary intervention effect 𝜇 and the between-study variance 𝜏2. The results
from performing Bayesian meta-analysis using importance sampling and MCMC methods are almost
identical, as we expect. Discrepancies between importance weighted estimators for 𝜇 and 𝜏2 and esti-
mates from MCMC are only apparent in meta-analyses simulated with the highest heterogeneity value
𝜏2 = 1.302. There is such a high amount of variation under this scenario, and we would require many
more simulations over 1000 for this extreme test of agreement between the two methods.

6. Extensions to more complex meta-analysis models

In principle, informative prior distributions for between-study variance could be used in more complex
meta-analysis models. In a multivariate meta-analysis combining estimates of intervention effect for mul-
tiple outcomes over multiple studies, the priors could be applied directly if the heterogeneity variances and
correlations are separated in the between-study variance-covariance matrix [28,29]. In a meta-regression
assessing the relationship between one or more study-level covariates and intervention effect, informa-
tive prior distributions derived for heterogeneity in a standard random-effects meta-analysis can be used,
as demonstrated by Jackson et al. [30].

Obtaining empirical evidence on heterogeneity for specific meta-regression models would be very dif-
ficult, because there are many combinations of study-level covariates that could be used in the regression
models. Because the covariates included in a meta-regression model might be expected to explain some
heterogeneity, we anticipate the between-study variance to be smaller than in the corresponding random-
effects meta-analysis. If the between-study variance is indeed smaller in the meta-regression, using priors
derived in the context of meta-analysis for meta-regression models can be viewed as being conservative.

Network meta-analyses comparing multiple interventions are becoming increasingly widely used. The
method involves the simultaneous analysis of both direct comparisons within studies and indirect compar-
isons across studies, via a common comparator. Over recent years, a variety of approaches to modelling
the variance parameters in a network meta-analysis have been proposed [28,31–33]. Models for network
meta-analysis can be expressed as standard uni-variate meta-regression models when all studies are two-
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arm trials [34]. Because the methods developed in this paper are applicable to meta-regression, this means
that our methods are relevant and directly applicable to network meta-analysis of two-arm trials.

Suppose a simple network compares p + 1 different interventions (0,… , p). We regard intervention 0
as the overall reference intervention in the network, and the p contrasts with the reference intervention,
𝜇01, 𝜇02,… , 𝜇0p, are referred to as the basic parameters in the network meta-analysis. Under the assump-
tion of consistency, the remaining intervention contrasts can be written in terms of the basic parameters,
for example 𝜇12 = 𝜇02 − 𝜇01 [35].

For an approximate Bayesian network meta-analysis using data augmentation, we assume the same
heterogeneity variance 𝜏2 for each intervention contrast in order to use standard meta-regression tech-
niques [36]. We follow the method proposed in Section 2.1.1 for a standard pairwise meta-analysis, fitting
the following random-effects meta-regression model with no intercept term:

Yi ∼ N

(∑
j

𝜇0jIij, 𝜎
2
i + 𝜏2

)
, (3)

where Yi is the intervention effect from the i-th study (i = 1,… ,K + K0). Iij is a dummy variable
corresponding to basic parameter 𝜇0j in the network meta-analysis for j = 1,… , p. If study i includes
the reference intervention 0 for the whole network, then Iij = 1 for the other intervention j in that study
and Iij = 0 otherwise. If study i does not include the reference intervention, then Iij = 1 if intervention
j is the non-reference arm in the study, Iij = −1 if intervention j is the reference arm in the study and
Iij = 0 otherwise. In each of the K0 artificial studies representing the prior for 𝜏2, we set Iij to be zero for
all j . That way, the effects of the artificial studies are centred at zero, as in the standard pairwise meta-
analysis setting, and each 𝜇0j estimates the combined effect of intervention j relative to intervention 0 for
the observed studies.

6.1. Application to an example network meta-analysis

As an example application to network meta-analysis, we use a data set comprising 24 studies comparing
four interventions for smoking cessation: A =no intervention, B =self-help, C =individual counselling,
D =group counselling. This data set has been analysed previously by Hasselblad [37] and Lu and Ades
[38] among others. The outcome is successful smoking cessation at 6–12 months. There is direct evidence
available on all six possible pair-wise comparisons: AB (3 studies), AC (15 studies), AD (2 studies), BC
(2 studies), BD (2 studies), CD (4 studies). Two of the studies are three-arm studies, which we treat as
independent two-arm studies, in order to use standard methods for meta-regression.

As an informative prior for the between-study variance 𝜏2, we chose an inverse-gamma(1.39,0.13)
distribution. This prior corresponds to the predictive distribution for between-study variance in a non-
pharmacological meta-analysis examining a subjective outcome (Table I).

In a conventional random-effects meta-regression using the DL procedure, the estimate of between-
study variance is quite high at 0.60 (95% CI: 0.21 to 1.32 obtained iteratively using the Q-profile method
[23]). When implementing a Bayesian meta-analysis with an informative inverse-gamma prior for 𝜏2

using standard MCMC methods, the central estimate (posterior median) for 𝜏2 reduces to 0.37, with 95%
credible interval 0.18 to 0.83 (Table IV). The 95% intervals for the log odds ratios 𝜇AB, 𝜇AC and 𝜇AD have
narrowed somewhat.

Table IV. Results from re-analysing data from the network meta-analysis to compare interventions for smok-
ing cessation. Bayesian approaches apply an empirically based inverse-gamma(1.39, 0.13) prior for 𝜏2 in a
non-pharmacological meta-analysis with a subjective outcome.

Method 𝜇AB (95% CI) 𝜇AC (95% CI) 𝜇AD (95% CI) 𝜏2 (95% CI)

Conventional (DL estimation) 0.46 (−0.24, 1.16) 0.70 (0.27, 1.12) 0.98 (0.13, 1.84) 0.60 (0.21, 1.32)1

Data augmentation by DL 0.35 (−0.03, 0.72) 0.59 (0.38, 0.80) 0.85 (0.34, 1.37) 0.09 (0.19, 1.07)1

Data augmentation by ML 0.42 (−0.13, 0.96) 0.64 (0.32, 0.97) 0.92 (0.23, 1.61) 0.31 (0.19, 1.07)1

Data augmentation by REML 0.42 (−0.14, 0.99) 0.65 (0.31, 1.00) 0.93 (0.22, 1.64) 0.35 (0.19, 1.07)1

MCMC 0.43 (−0.16, 1.05)2 0.66 (0.31, 1.04)2 0.94 (0.20, 1.70)2 0.37 (0.18, 0.83)2

1The confidence interval for 𝜏2 is obtained iteratively via the Q-profile method [23].
2Posterior medians and 95% credible intervals are reported for the log odds ratios 𝜇AB, 𝜇AC and 𝜇AD and for the common
heterogeneity variance 𝜏2.
DL, DerSimonian and Laird; ML, maximum likelihood; REML, restricted maximum likelihood; MCMC, Markov chain
Monte Carlo;
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Results from approximate Bayesian analyses using data augmentation compare favourably to those
from fully Bayesian analyses using MCMC methods (Table IV). In particular, point estimates and corre-
sponding credible intervals for the log odds ratios 𝜇AB, 𝜇AC and 𝜇AD obtained using REML estimation by
data augmentation are close to those obtained using standard MCMC methods. As before, we find that
discrepancies between results from data augmentation and MCMC methods are most apparent when the
data augmentation method is implemented by the DL procedure.

7. Discussion

Numerous meta-analyses in healthcare research combine results from only a small number of studies,
for which estimation of between-study heterogeneity is difficult. Bayesian meta-analysis is advanta-
geous because it allows the incorporation of external information on heterogeneity between studies to
potentially improve precision of results. In this paper, we have described an easy-to-use method for imple-
menting Bayesian meta-analysis, based on commonly used frequentist methods via data augmentation.
We have demonstrated the use of this method and provided examples where point estimates obtained
through data augmentation are similar to more computationally intensive approaches using MCMC
methods and importance sampling techniques.

Our method for an approximate Bayesian meta-analysis with a inverse-gamma prior for the between-
study variance 𝜏2 was developed by working with the logarithm of the between-study precision 1∕𝜏2, and
matching the corresponding likelihood from some pseudo data to the Gamma prior for 1∕𝜏2 in terms of
−2log(𝜏). The more straightforward approach would have been to work with the untransformed between-
study precision 1∕𝜏2 and match the likelihood from some pseudo data to the Gamma prior for 1∕𝜏2. In
fact, our initial method to an approximate Bayesian meta-analysis followed this approach, using K0 =
2(𝛼 − 1) studies with effects y0 =

√
2𝛽∕K0 to represent an inverse-gamma(𝛼, 𝛽) prior for the between-

study variance 𝜏2. But, it was immediately obvious through applications to examples that this approach
does not work well and is not recommended.

Bayesian analysis via data augmentation has already been proposed by Sander Greenland, for exam-
ple in papers that describe methods for regression analysis [11, 12, 14]. To our knowledge, this paper
represents the first application of data augmentation as a method for applying a prior to a variance param-
eter and for Bayesian meta-analysis. Compared with alternative methods by importance sampling and
MCMC, data augmentation is the most computationally rapid, running in about the same time as maxi-
mum likelihood estimation. Our approach by data augmentation does not require convergence checking
and is simple to use with the R or Stata computing code available in the Supporting Information (S2.1).
All that is required of the analyst is to input their observed study data and selected inverse-gamma
prior parameters in order to implement the Bayesian meta-analysis with an inverse-gamma prior for the
between-study variance 𝜏2. The representation of the prior as pseudo data in data augmentation pro-
vides an insight into the strength of the prior and the information that the prior is incorporating into the
Bayesian analysis.

Review Manager (RevMan) is the Cochrane Collaboration’s software for preparing and maintain-
ing Cochrane reviews [39]. RevMan assists in the preparation of protocols and full reviews and can
perform meta-analysis of the study data entered. Compared with alternative approaches for Bayesian
meta-analysis, the proposed method by data augmentation has the advantage that it could potentially be
made accessible in user-friendly software such as RevMan, once meta-regression techniques are made
available. Should an analyst prefer to use standard approaches by MCMC, alternative methods are nev-
ertheless useful. For example, importance sampling techniques provide a useful diagnostic check that
MCMC estimates are correct.

In a simulation study, we have formally compared the proposed method for an approximate Bayesian
meta-analysis using data augmentation to a fully Bayesian meta-analysis using importance sampling
techniques. When conventional DL procedures produce an extremely low estimate of between-study
variance 𝜏2, the Bayesian approaches tend to be more conservative, yielding a larger 𝜏2 estimate and
a wider interval for the summary effect 𝜇. When the conventional heterogeneity estimate is high, the
two methods typically provide a reduced estimate for 𝜏2 and a more precise estimate for 𝜇. We would
not expect methods by data augmentation and importance sampling to lead to precisely the same results
because data augmentation is approximately Bayesian and also importance sampling is susceptible to
simulation error. Nonetheless, our simulation study has shown good agreement between point estimates

5508

© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5495–5511



K. M. RHODES ET AL.

from the two methods, particularly as the number of studies increases. Results from the simulation study
demonstrate that meta-analysis results obtained through data augmentation are, on average, closer to
those resulting from importance sampling, when implemented using REML estimation rather than DL
or ML estimation. The DL procedure had overall poorer performance characteristics. These findings
are not surprising because REML estimation has a Bayesian justification [40], and the DL procedure
has potential for bias in the method-of-moments estimator of the between-study variance 𝜏2 that uses
estimates of study-specific variances [41, 42].

The simulation studies we have conducted to compare methods by data augmentation and importance
sampling are useful to help understand the validity of data augmentation as an alternative to MCMC.
We showed in a further simulation study that importance sampling yields approximately identical results
to standard MCMC methods within WinBUGS. Point estimates obtained through data augmentation and
importance sampling have shown close similarities, but further work needs to be done in order to obtain
comparable credible intervals for 𝜏2. In data augmentation, the current method is to obtain an interval
iteratively, as for ML estimation, via the Q-profile method. Based on previous research, underlying values
of heterogeneity variance conform better to a log-normal or log t5 distribution than an inverse-gamma
distribution [5, 6]. Limitations of our method by data augmentation are that we are restricted to use of
an inverse-gamma prior for 𝜏2 and that we have not estimated posterior percentiles. For these purposes,
numerical integration routines can be used, as can importance sampling techniques which are limited in
accuracy only by the length of time required to draw sufficient samples from the posterior distribution [7].

A disadvantage of the easy-to-use methods by data augmentation, numerical integration and impor-
tance sampling is that they use normal approximations for the observed study-level effects. When
modelling the CDSR data set to obtain predictive distributions for the between-study variance, we used
the binomial likelihood approach to analyse binary outcome data, which is preferable in principle [41].
The approximate method can be expected to provide biased estimates, particularly in cases where studies
are small or the event is rare. More research is needed in order to extend the methods described in this
paper to exact likelihood approaches based on the binomial within-study distribution. This would be a
challenging area for further work.

We have demonstrated the use of data augmentation for implementing a conjugate prior for the residual
between-study variance in a network meta-analysis of two-arm trials. For simplicity, our approach to
network meta-analysis makes an assumption of ‘consistency’, which is reasonable for the purpose of
our example, but more sophisticated methods are available [33]. When combining the results of direct
and indirect comparisons in practice, it is important to examine the extent to which these results are
consistent (in agreement) with each other. Our simple approach to network meta-analysis assumed that
all heterogeneity variances in the network were equal, which will be adequate in some network meta-
analyses. It would be much more difficult to specify informative priors, when allowing heterogeneity
variances to differ across some treatment comparisons, because the priors for heterogeneity must ensure a
valid between-study variance-covariance matrix [28]. We plan to extend our work in the future to explore
how to specify informative priors for heterogeneity while allowing the heterogeneity variances to differ
across intervention comparisons.

In summary, Bayesian meta-analysis with an informative prior for the between-study variance is rec-
ommended for use in small meta-analyses. Bayesian estimation need not be computationally difficult
and require specialist software, but can be implemented using our easy-to-use method by data augmen-
tation. We hope that the work developed in this paper could help increase the accessibility of Bayesian
meta-analysis and promote Bayesian meta-analysis for use in many applications.
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