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The C statistic is a commonly reported measure of screening test performance. Optimistic estimation of the

C statistic is a frequent problem because of overfitting of statistical models in small data sets, and methods exist

to correct for this issue. However, many studies do not use suchmethods, and those that do correct for optimism use

diverse methods, some of which are known to be biased. We used clinical data sets (United Kingdom Down syn-

drome screening data from Glasgow (1991–2003), Edinburgh (1999–2003), and Cambridge (1990–2006), as well

as Scottish national pregnancy discharge data (2004–2007)) to evaluate different approaches to adjustment for

optimism. We found that sample splitting, cross-validation without replication, and leave-1-out cross-validation

produced optimism-adjusted estimates of the C statistic that were biased and/or associated with greater absolute

error than other available methods. Cross-validation with replication, bootstrapping, and a new method (leave-pair-

out cross-validation) all generated unbiased optimism-adjusted estimates of theC statistic and had similar absolute

errors in the clinical data set. Larger simulation studies confirmed that all 3 methods performed similarly with 10 or

more events per variable, or when the C statistic was 0.9 or greater. However, with lower events per variable or

lower C statistics, bootstrapping tended to be optimistic but with lower absolute and mean squared errors than

both methods of cross-validation.

logistic models; models, statistical; multivariate analysis; receiver operating characteristic curve

Abbreviation: EPV, events per variable.

The ability to predict outcomes (e.g., disease, death, re-
lapse) is important in many areas of medicine, such as popu-
lation screening and assessment of prognosis and response
to treatment. With expansion in the technology around bio-
marker development (including genomics, proteomics, and
metabolomics), there is increasing capacity to generate mul-
tiple biomarkers for a given condition (1). Moreover, in-
creasingly sophisticated biomedical technology allows more
accurate phenotyping of adverse outcomes, leading to analy-
ses of smaller subgroups of disease (2). Consequently, many
studies end up evaluating multiple potential predictors using
data sets with relatively small numbers of cases. Analysis of
multiple markers generally involves fitting a statistical model
to the data. Because models are generated to provide the best
fit for the available data, there is the potential that a model
will be overfitted and, hence, provide an optimistic assess-
ment of the predictive ability, quantified here by the C sta-

tistic (also known as the area under the receiver operating
characteristic curve).
It is generally recognized that external validation of a

model is required. Some studies split samples into 2, but then
the validation is not truly external. Moreover, when external
data are studied for validation, the analysis may be weakened
by small sample size. Hence, it is important in the initial in-
ternal evaluation of a candidate model to correct estimates of
predictive ability for optimism. A number of statistical meth-
ods have been proposed to address this (3). Commonly used
approaches include sample splitting, cross-validation, and
bootstrapping. Variants of cross-validation include its use
with or without replication, leave-1-out cross-validation,
and a more recently described development of the approach,
called leave-pair-out cross-validation. The aim of the present
study was to compare these approaches to correcting for
optimism.
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METHODS

Overview

We evaluated different methods of correcting the C statis-
tic using similar approaches to those of Steyerberg et al. (4).
We obtained 2 large clinical data sets. In each of these, we
divided the large data set into multiple distinct small data
sets (without resampling), each containing approximately 5
events per variable (EPV) (which was, intentionally, well
below the generally recommended EPV of 10 (3)) and ap-
proximately 4 controls per case. We reduced the number
of controls to better simulate the type of study in which
optimism is an issue. We fitted models to each of the small
data sets and assessed their predictive ability in the rest
of the large data set (i.e., all of the other small data sets
pooled together), which we used as a “gold standard.” We
then compared the performance of each method by com-
paring the optimism-adjusted C statistic estimated from the
small data set with the gold standard. The use of a case-
control design was simply for convenience, and the methods
we used are appropriate for any application of logistic
regression.

Clinical data

The first source of data was United Kingdom Down syn-
drome screening laboratories located in Glasgow (1991–
2003), Edinburgh (1999–2003), and Cambridge (1990–2006)
(5). All records that included data on maternal age, maternal
serum level of α-fetoprotein, and maternal serum human cho-
rionic gonadotropin were used. The pooled data from the 3
centers included 466,309 records and 785 cases of Down
syndrome (0.17%). The 3 predictors evaluated were maternal
age, maternal serum α-fetoprotein, and maternal serum
human chorionic gonadotropin (both expressed as the log10
of the multiple of the median for gestational age, as is con-
ventional (6)). We randomly created 50 small data sets each
containing 15 or 16 cases and 66 or 67 controls. The second
source of data was the Scottish Morbidity Record 2, a
national registry of pregnancy discharge data, from which
we selected records from 2004 to 2007 (7). Data from all
women in spontaneous labor at term in their first pregnancies
and in which the babies were in a cephalic presentation were
included. The outcome was emergency cesarean delivery.
The registry contained a total of 32,868 eligible records,
3,817 (19.9%) of which had documented emergency cesar-
ean deliveries. The 5 predictors used were maternal age,
height, week of gestational age, infant sex, and birth weight
percentile (corrected for sex and week of gestational age). We
randomly created 150 small data sets, each containing 25
or 26 cases and 102 or 103 controls. Approval for the analy-
ses was provided by the privacy advisory committee of the
Information Services Division of National Health Service
Scotland and by the Cambridge Local Research Ethics
Committee 2.

Assessment of optimism

All analyses were performed using Stata, version 12.1,
software (StataCorp LP, College Station, Texas). The predic-

tion models used for both clinical examples were logistic re-
gression models, which included linear terms for continuous
covariates and excluded interaction terms. We used the C sta-
tistic (the proportion of all possible pairwise combinations of
cases and controls in which the case has a higher predicted
probability of failure than the control) to assess predictive
ability. The optimism of a model derived from a given
small data set was assessed as follows. First, the model was
fitted to all observations in the given small data set, and the C
statistic was calculated, which we called the naïve C statistic.
The model was then applied to a data set formed by pooling
all of the other small data sets, and the C statistic was calcu-
lated, which we called the “true” C statistic. The difference
between the naïve and true C statistics was the “optimism”
for that small data set.

Existing methods of adjustment of clinical

data for optimism

In sample splitting, the small data set was randomly split
into 2 separate groups of two-thirds and one-third. The pre-
dictive model was fitted to the data from the larger group, and
the optimism-corrected estimate of the C statistic was calcu-
lated by applying this fitted model to the smaller group.
Cross-validation was performed by randomly splitting the
small data set into k equally sized groups. We used k = 10.
Data on 1 group were excluded, and the model was fitted to
the data on the other k− 1 groups. The resulting model was
then applied to the excluded group, and the C statistic was
calculated. This process was repeated k times, excluding
each of the groups in turn. The resulting k C statistics were
averaged to produce a single, overall optimism-corrected es-
timate of the C statistic. We also carried out cross-validation
with replication. Here the cross-validation was replicated
r times, with a different random split into k groups each
time. It has been suggested that analyses should include de-
velopment and testing of at least 200 models to generate an
average (8). Hence, we used 20 replications of 10-fold cross-
validation. The optimism-corrected estimate of the C statistic
was the mean of the 200 values.

In leave-1-out cross-validation, a single observation was
omitted from the small data set, and a model was fitted to
the remaining observations and used to predict the probabil-
ity of the outcome in the omitted observation. This process
was repeated, omitting a different observation until all of
the observations in the data set had an estimated probability
calculated from a model fitted to all of the others. The C sta-
tistic was then calculated from these probabilities.

Bootstrapping was performed as described by Harrell et al.
(3). The small data set was repeatedly resampled to produce b
replicated data sets, each the same size as the original. We
used b = 200. The predictive model was fitted to each of
the b replicated data sets in turn. Each fitted model was
then applied both to the resampled data set from which it
was generated and to the original data set; the C statistic
was calculated for both, and the difference between these 2
statistics was calculated. The b differences were then aver-
aged to give an estimate of the optimism. The optimism-
corrected estimate of the C statistic was then calculated as
the naïve C statistic minus the estimated optimism.
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Leave-pair-out cross-validation

We developed a modification of cross-validation in which
1 case and 1 control were omitted from the small data set, a
model was fitted to the remaining observations, and the fitted
model was then used to predict the probability of the outcome
in each member of the omitted pair. This process was re-
peated for every possible pairwise combination of case and
control in the small data set. The C statistic was then calcu-
lated as the proportion of all pairwise combinations in which
the predicted probability was greater for the case than for the
control. We subsequently found that the method had previ-
ously been described in the machine learning literature,
where it was called “leave-pair-out cross-validation” (9).

Evaluating methods for optimism adjustment

All methods were performed in all of the small data sets.We
quantified the systematic error of each method by subtracting
the true C statistic, described above, from the optimism-
corrected C statistic, calculated by the given method. System-
atic error was inferred when the median signed difference for
all of the small data sets was significantly different from 0. We
also assessed the absolute error (i.e., the unsigned difference
between the C statistic calculated by the given method and
the true C statistic). The absolute error was calculated for all
of the small data sets (50 for Down syndrome and 150 for ce-
sarean delivery) using all of the methods. Then, for each small
data set and for each pair of methods, we calculated the differ-
ence between the absolute errors. A pair of methods is inferred
to have different absolute errors when the median (of the small
data sets) difference in absolute error was significantly differ-
ent from 0 using theWilcoxon signed-rank test. The variability
associated with repeated application of the same method to the
same small data set was assessed by the standard deviation and
range of 50 repeated analyses of a single representative small
data set for each outcome.

Simulation studies

To simulate a single data set resembling the original Down
syndrome data set, we generated age, log maternal serum
α-fetoprotein, and log maternal serum human chorionic go-
nadotropin values and the binary outcome variable for each
of a large population of individuals and then sampled cases
and controls from this population. Fifteen cases and 60 con-
trols were selected to yield an EPVof 5 and a ratio of 4 controls
per case. For each individual in the population, age was gen-
erated from a triangular distribution with minimum 15, max-
imum 47, andmode 31, and log maternal serum α-fetoprotein
and log maternal serum human chorionic gonadotropin were
generated from a bivariate normal distribution with mean
dependent on age. These distributions were chosen after an
exploratory analysis of the original Down syndrome screen-
ing data set. To generate the binary outcome, the logistic
regression model estimated from the original data set was
used but with coefficients multiplied by the same constant
to ensure that the C statistic of this model was 0.90.
Likewise, to simulate a single data set resembling the orig-

inal cesarean delivery data set, we generated data for each of a

large population of individuals and then sampled 25 cases
and 100 controls. For each individual in the population, we
independently generated gestational age from a triangular
distribution with minimum 37, maximum 42, and mode
39.5; maternal age from a uniform distribution with mini-
mum 16 and maximum 37; and weight (measured as a cen-
tile) as uniform on 0–100. Height was normally distributed
with mean depending on age, gestational age, and weight.
Sex was generated by simulating a binary variable whose
probability depended on the other 4 variables. These distribu-
tions were chosen after an exploratory analysis of the original
data set. To generate the binary outcome, we used the logistic
regression model estimated from the original data set, but
with coefficients multiplied by the same constant to ensure
that the C statistic was 0.71.
To modify the EPV, we scaled the numbers of cases and

controls (e.g., 60 cases and 240 controls for an EPV of 20 in
the data sets based on the Down syndrome study). The true
area under the receiver operating characteristic curve was
changed by scaling the coefficients in the logistic regression
model for the binary outcome. In all simulations, we calculated
the difference between the optimism-adjusted and true C sta-
tistics for 1,000 data sets for each outcome. We evaluated
methods using the mean signed difference, the mean absolute
(unsigned) difference, and the mean squared error.

RESULTS

Analysis of Down syndrome prediction

The C statistic for the large data set (n = 4,111) was 0.901
(i.e., this is from a model fitted to the whole data set without
correction for optimism). Themean of the naïveC statistics of
the 50 small data sets was 0.915 (range, 0.761–0.993). The
mean of the 50 true C statistics (defined above) was 0.886
(range, 0.817–0.903). The median and interquartile ranges
of the difference between the true C statistic and the other
methods for estimating the C statistic are plotted in Fig-
ure 1A. The naïveC statistic was overestimated; theC statistic
corrected using leave-1-out cross-validation was systemati-
cally underestimated, but none of the other differences was
significantly different from 0. The median and interquartile
ranges of the absolute (unsigned) difference between the
true C statistic and the methods for estimating the C statistic
are plotted in Figure 2A. The pairwise differences in the C
statistic comparing all the methods are tabulated in Table 1.
Sample splitting, 10-fold cross-validation with no repli-
cations, and leave-1-out cross-validation all had greater
absolute errors when compared with at least 1 of the other
methods. There were no significant differences in the abso-
lute errors of 10-fold cross-validation with 20 replications,
bootstrapping, and leave-pair-out cross-validation.

Analysis of cesarean delivery prediction

The C statistic for the large data set (n = 19,215) was 0.711.
The mean of the naïve C statistics from the 150 small data sets
was 0.741 (range, 0.602–0.856). The mean of the 150 true C
statistics was 0.681 (range, 0.581–0.709). The medians and in-
terquartile ranges of the difference between the true C statistic
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and the methods for estimating the C statistic are plotted in
Figure 1B. The naïve C statistic was overestimated, and the
C statistics that were corrected using sample splitting and
leave-1-out cross-validation were systematically underesti-
mated, but none of the other medians was significantly different
from 0. Themedian and interquartile ranges of the absolute (un-
signed) difference between the true C statistic and the methods
for estimating the C statistic are plotted in Figure 2B. The pair-
wise differences in the C statistic comparing all of the methods
are tabulated in Table 1. Sample splitting, 10-fold cross-
validationwith no replications, and leave-1-out cross-validation
all had greater absolute errors when compared with at least 1 of
the other methods. There were no significant differences in the
absolute errors of 10-fold cross-validation with 20 replications,
bootstrapping, and leave-pair-out cross-validation. The vari-
ability of the estimates from repeated analyses of a representa-
tive small data set for each outcome is illustrated in Figure 3.

Simulation studies

In both simulation studies, the signed difference was sim-
ilar for bootstrapping and all forms of cross-validation in
which the EPV was 10 or more, with the exception of the ce-
sarean delivery simulation with a true C statistic of 0.61, for

which bootstrapping was optimistic (Web Figure 1 available
at http://aje.oxfordjournals.org/). When the EPV was 5 or
less, bootstrapping tended to be optimistic, particularly when
the C statistic was 0.71 or less. All forms of cross-validation
tended to be pessimistic, although there was 1 simulation in
which it was optimistic. The degree of pessimism associated
with cross-validation was less than the degree of optimismwith
bootstrapping. Bootstrapping, 10-fold cross-validation with
replications, and leave-pair-out cross-validation all had sim-
ilar absolute errors when the EPV was 5 or more, or when the
C statistic was 0.9 or greater (Web Figure 2). The absolute
error was slightly lower with bootstrapping when the EPV
was 2 and theC statistic was 0.61. Themean squared error was
generally lower with bootstrapping when the EPV was 2, or
when the EPV was 5 and the C statistic was less than 0.7
(Web Figure 3).

DISCUSSION

When analyzing 2 clinical data sets, we found that 3 com-
monly used methods for correcting the C statistic for opti-
mism performed poorly. Sample splitting generated results
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Figure 1. Themedians and interquartile ranges of the difference be-
tween the C statistic estimated using different methods and the true C
statistic for A) 50 small Down syndrome data sets and B) 150 small
cesarean delivery data sets. The data are United Kingdom Down syn-
drome screening results from Glasgow (1991–2003), Edinburgh
(1999–2003), and Cambridge (1990–2006), as well as Scottish na-
tional pregnancy discharge data (2004–2007)). Bars, 95% confidence
intervals. CV, cross-validation.
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Table 1. Pairwise Comparison of Absolute Errors Using Different Methods of Adjustment for Optimism Using Data on Down Syndrome and Cesarean Delivery, United Kingdom, 1990–2007

Method of Adjustment
by Data Set

Median Difference in Absolute Error (IQR)a

Sample Splitting Bootstrapping 10-Fold CV 10-Fold CV (20 Replications) Leave-Pair-Out CV

Down syndrome data set

Bootstrapping 0.022*** (–0.005–0.053)

10-Fold CV 0.015 (–0.028–0.046) –0.006** (–0.024–0.003)

10-Fold CV (20 replications) 0.025*** (–0.008–0.0520) 0.002 (–0.006–0.007) 0.011*** (–0.003–0.025)

Leave-pair-out CV 0.018*** (–0.005–0.052) 0.000 (–0.004–0.005) 0.007** (–0.004–0.024) –0.002 (–0.005–0.003)

Leave-1-out CV 0.014** (–0.006–0.053) –0.003 (–0.031–0.016) 0.010 (–0.016–0.029) –0.006 (–0.028–0.014) –0.010* (–0.026–0.013)

Cesarean delivery data set

Bootstrapping 0.012*** (–0.018–0.079)

10-Fold CV 0.013** (–0.032–0.066) –0.008** (–0.035–0.017)

10-Fold CV (20 replications) 0.015*** (–0.023–0.069) –0.001 (–0.014––0.008) 0.008 (–0.018–0.028)

Leave-pair-out CV 0.015*** (–0.023–0.072) 0.000 (–0.009–0.006) 0.007* (–0.018–0.030) –0.001 (–0.006–0.007)

Leave-1-out CV 0.016** (–0.031–0.060) –0.012** (–0.037–0.023) 0.000 (–0.026–0.029) –0.009** (–0.029–0.016) –0.019*** (–0.029–0.020)

Abbreviations: CV, cross-validation; IQR, interquartile range.

* P < 0.05, **P < 0.01, ***P < 0.001.
a The absolute error associated with the method in the row is subtracted from the absolute error associated with the method in the column, and the medians and IQRs are presented for the 50 subgroups.

Hence, positive values indicate greater absolute error using themethod in the column, and negative values indicate lower absolute error. Statistical comparison is by theWilcoxon signed-rank test versus the

null hypothesis of no difference.
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the cesarean delivery analysis, the absolute error in the C sta-
tistic was greater than with other methods. Leave-1-out cross-
validation produced estimates that were both biased and had
greater absolute errors than other methods in both analyses.
We found that bootstrapping, 10-fold cross-validation with
20 replications, and leave-pair-out cross-validation all per-
formed similarly in the clinical data sets, with unbiased esti-
mates of the C statistic and comparable absolute errors.

In the simulation studies, we found that bootstrapping,
10-fold cross-validation with 20 replications, and leave-pair-
out cross-validation all performed similarly when the EPV was
10 or greater or theC statistic was 0.9 or greater.When the EPV
and C statistic were lower, the absolute and mean squared error
tended to be lower with bootstrapping than with the different
methods of cross-validation. However, when comparing the
signed error, bootstrapping tended to be optimistic, and cross-
validation (with replication and leave-pair-out) tended to be
pessimistic, but the absolute magnitude of the bias tended to
be lower for cross-validation than for bootstrapping. Hence,
no single method clearly outperformed all of the other methods
in terms of random and systematic errors.

When the different methods of cross-validation were
compared, 10-fold cross-validation without replication was
clearly inferior to the other methods, with much higher abso-
lute and mean squared errors. Leave-pair-out cross-validation
had signed and absolute errors that were similar to those of
the other methods of cross-validation with replication. Our
findings that it generated unbiased estimates of the C statistic
with low absolute errors are similar to those of evaluations in
the machine learning literature (9). Although the method has
the advantage that it always generates the same value when
applied repeatedly to the same data set, the far greater compu-
tational requirements are likely to limit its usefulness.

The problem of optimistic prediction

The potential problem of optimistic prediction in multivar-
iate models is well recognized (3). However, this issue is not
dealt with in detail in some of the key literature. Many jour-
nals require that reports of new diagnostic tests conform to
the Standards for the Reporting of Diagnostic Accuracy Stud-
ies guidelines (10). However, the guidelines do not require
authors to address optimism. Moreover, methodological re-
views about the development and validation of diagnostic
tests did not address this issue in detail (11, 12). A systematic
review of papers describing prognostic models for cancer
using molecular markers found that correction for optimism
was performed in only 3 of 129 articles (13). Moreover, when
studies do correct for optimism, various methods are used.
For example, predictive models for preeclampsia generated
by recent (in the last 3 years) large-scale, multicenter, inter-
national, prospective cohort studies included correction
using bootstrapping (14) and correction using 10-fold cross-
validation with no replications (15).

Why different methods perform differently

There are a number of issues that might explain differences
betweenmethods.A keyaspect is uncertainty in the coefficients
fitted to models and in the estimate of model performance.

Both are present to a major degree in sample splitting, in
which the model is more uncertain because of the exclusion
of cases for validation, and the validation is more uncertain
because of the exclusion of cases for generating the model.
In cross-validation, the model is evaluated in all of the sub-
jects. However, each model always includes a smaller sample
size than the total, typically 90% (i.e., in the case of 10-fold
cross-validation); hence, there remains more uncertainty in
the coefficients than if the entire data set had been used. It fol-
lows, therefore, that cross-validation might be most effective
when the number of subjects omitted when generating a
given predictive model is lowest. However, leave-1-out cross-
validation performed poorly. The issue here is that, although
each omitted subject has an estimated probability derived
from a model fitted to the whole of the rest of the data set,
all of the models used to generate these probabilities were
slightly different. Pooling probabilities from different models
has previously been shown to result in biased (pessimistic)
estimates of the C statistic (16), and we also found this in
the current analysis. Leave-pair-out cross-validation has the
advantage, therefore, that each model contains the largest
possible number of subjects required to generate valid out-of-
sample comparisons. However, there are still fewer subjects
in any model than in bootstrapping, which uses resampling to
increase the number of subjects to be the same as the com-
plete data set.

A second issue that may explain different results is random
sampling. Leave-pair-out cross-validation does not involve
random sampling because it evaluates every possible pair-
wise combination of case and control for validation. In con-
trast, conventional cross-validation and bootstrapping both
involve random sampling and, hence, no 2 analyses will yield
identical results. It is recommended that analyses adjusting
for optimism should include development and testing of at
least 200 models (8), and this informed our choice of 20 rep-
lications of 10-fold cross-validation and 200 replications in
bootstrapping. We found greater absolute errors when using
cross-validation without replication than when using the
other unbiased methods, and this likely reflects the greater
random error, which is clearly illustrated in Figure 3. In con-
trast, cross-validation with 20 replications and bootstrapping
with 200 samples showedmuch smaller degrees of variability
between repeated analyses of the same small data set and, in
both cases, the standard deviation of the C statistic was less
than 0.01, which was small in relation to the absolute error
(Figure 2). Hence, when we use these methods, most of the
variability associated with estimating the C statistic reflects
the inherent uncertainty of using a small data set rather
than the variability associated with methods using random
sampling. Nevertheless, the range of C statistics that was es-
timated across 50 analyses was approximately 0.02 for both
10-fold cross-validation with 20 replications and bootstrap-
ping with 200 replications. Hence, studies using these meth-
ods should assess the variability of repeated analyses and
should consider using greater numbers of replications.

Finally, we confirmed that the use of the naïve approach in
small data sets resulted in biased (optimistic) estimation of
the C statistic. This arises because the model is fitted to
best describe the given data set. As studies become larger,
this becomes less of an issue, because the potential for any
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single observation to have an important overall effect on any
fitted model or on the evaluation of a fitted model diminishes
with the size of the data set. In cross-validation, there is no
potential for a single observation to have a major effect on
either model development or validation, because there is no
overlap between the subjects used for these processes in gen-
erating or validating a given model. In contrast, with bootstrap-
ping, there is overlap between the 2 through the process
of resampling. It is possible that this might explain the biased
(optimistic) estimates of the C statistic in both simulation
studies.

Limitations of the present study

The number of models fitted for the leave-pair-out method
increases with the size of the data set. It may therefore be
computationally impractical in large data sets. We were able
to perform 1,000 analyses of 60 cases and 240 controls (Down
syndrome simulation with EPV = 20). Hence, it is practical in
small data sets and, with further improvements in computa-
tional power, it is likely to become practical in large data
sets in the future. In the present study, the number of cases
per predictor was less than in other contexts (e.g., expression
gene array). Further studies will be required to compare the
performance of these methods in situations with larger num-
bers of predictors.

Further work

There are a number of other aspects to building a predictive
model when overfitting may be an issue, and further studies
should compare the methods evaluated in the present analysis
to address these issues. This could include the selection of
variables, the inclusion of interaction terms, and the use of
nonlinear transformations. It is possible that leave-pair-out
cross-validation will perform less well in these roles, because
all models share n− 2 observations, and the same variables
(or transformations of variables, or interactions) will tend
to be selected unless there is a single highly influential
observation.
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