
Inverse Probability Weighting with Missing Predictors of

Treatment Assignment or Missingness

Abstract

Inverse probability weighting (IPW) can deal with confounding in non-randomised
studies. The inverse weights are probabilities of treatment assignment (propensity
scores), estimated by regressing assignment on predictors. Problems arise if pre-
dictors can be missing. Solutions previously proposed include assuming assignment
depends only on observed predictors and multiple imputation (MI) of missing predic-
tors. For the MI approach it was recommended that missingness indicators be used
with the other predictors.

We determine when the two MI approaches (with/without missingness indicators)
yield consistent estimators and compare their efficiencies. We find that, although in-
cluding indicators can reduce bias when predictors are missing not at random, it can
induce bias when they are missing at random. We propose a consistent variance esti-
mator and investigate performance of the simpler Rubin’s Rules variance estimator.
In simulations we find both estimators perform well.

IPW is also used to correct bias when an analysis model is fitted to incomplete
data by restricting to complete cases. Here weights are inverse probabilities of being
a complete case. We explain how the same MI methods can be used in this situation
to deal with missing predictors in the weight model, and illustrate this approach
using data from the National Child Development Survey.

Running title: IPW with Missing Predictors

1 Introduction

In a randomised controlled trial individuals are randomly assigned to one of two or more

treatments and an outcome is measured. The randomisation ensures that the measured

effect of treatment on outcome is not confounded by other variables. In an observational

study the assignment of individuals to a treatment is not random, and so the observed

association between treatment and outcome may be confounded. If the confounding vari-

ables are observed, they can be adjusted for in the analysis. This may be done using

regression models, in which confounders are included as covariates alongside treatment, or

by using propensity scores (PS) (Rosenbaum and Rubin, 1983). Cepeda et al. (2003) and

Stürmer et al. (2005) discuss the relation between, and relative advantages of, these two

approaches. In the present article we are concerned with the PS approach in the situation

of a binary treatment variable. We shall call the two treatments ‘active’ and ‘control’. The

term ‘treatment’ should be interpreted liberally: it could be any binary exposure.
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In the PS approach a model is specified for the probability that an individual receives the

active treatment. The covariates,X, in this model are called treatment predictor variables,

and the fitted probabilities from the model are called propensity scores. Rosenbaum and

Rubin showed that if the set of treatment predictor variables include all confounders in the

association between treatment and outcome, then adjustment for the PS is sufficient to

obtain an unconfounded estimate of the treatment effect. Adjustment can be performed by

stratifying or matching on the PS or by weighting by the reciprocal of the PS. The latter

approach is known as inverse probability weighting (IPW). When the PS model is correctly

specified, IPW yields a consistent estimator of treatment effect, unlike stratification, which

is subject to residual confounding (Lunceford and Davidian, 2004). In the present article

we are concerned with IPW.

IPW can also be used when estimating a population mean outcome from a sample in

which the outcome variable is sometimes missing. In this situation one might estimate the

population mean by the sample mean in individuals with observed outcome (the ‘complete

cases’). This ‘complete-case’ analysis yields consistent estimation when the probability

that an individual’s outcome is observed does not depend on that outcome, but it may

be biased otherwise. The Horwitz-Thompson (IPW) estimator (Horwitz and Thompson,

1958) provides a straightforward way of correcting this bias. Again, only individuals with

observed outcome are included, but weights are used to rebalance the set of complete cases

so that it is representative of the whole sample. Each individual’s weight is the inverse

of their probability of being a complete case. Normally, this probability is unknown and

needs to be estimated. This is done by specifying a model for the conditional probability

of an individual being a complete case given a set of predictor variables. This application

of IPW is also used when fitting a more general regression model (known as the ‘analysis

model’). In this more general situation, the complete cases are those individuals for whom

all variables in the analysis model are observed.

There is a strong parallel between using IPW to deal with missing data and using it to

deal with confounding in non-randomised studies. Estimating a population mean outcome

when outcome can be missing in the sample is analogous to estimating the mean outcome
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that would result if everyone were assigned to active treatment using data from a sample

in which some individuals are assigned to control treatment. In the latter case, the PS is

the probability of being assigned to active treatment; in the former, it is the probability of

being a complete case. In this paper, our real-data example (Section 7) concerns the use of

IPW to deal with missing data. We shall study methods in the more complicated situation

of confounding in non-randomised studies and then show how these methods transfer to

the simpler situation of missing data.

When there are missing values inX, estimation of the PS is not straightforward. A number

of approaches have been suggested in the setting of estimating a treatment effect in a non-

randomised study. D’Agostino and Rubin (2000) assume that the PS depends only on

observed predictors. This implies that the PS model is different in different individuals: if

all predictors are observed on an individual, his/her PS may depend on all predictors; if

some are missing, his/her PS may not depend on these. Once this assumption has been

made, the simplest approach is to stratify the individuals according to which predictors

have been observed and then fit a separate PS model to each stratum. The number

of individuals in some strata may, however, be small, which could cause problems when

fitting the PS models in these strata. D’Agostino and Rubin proposed instead modelling

the joint distribution of X, T and R, where T = 1 if the individual is assigned to active

treatment and T = 0 if assigned to control, and R denotes the missingness pattern of X,

i.e. it denotes which predictors of propensity are observed. The model is fitted using an

Expectation Conditional Maximisation algorithm. One drawback with this approach is

its unappealing assumption that the PS depends on a predictor of propensity only if it is

observed, i.e. that a variable is not a confounder if it is unobserved. A second drawback is

the difficulty of interpreting the parameter constraints needed to make the joint model for

(X, T, R) estimable.

Qu and Lipkovich (2009) proposed multiply imputing missing values of X using the ob-

served values of X, T and the outcome, thus creating M multiple datasets in which X is

complete. For each completed dataset, the PS model is fitted, PS’s are estimated and the

inverse PS’s are used as weights in the estimator of treatment effect. The M treatment
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effect estimates are then averaged. In a refinement of this approach, Qu and Lipkovich

(2009) propose including R as an additional covariate in the PS model. They explain that

this may reduce bias when X is missing not at random. However, no formal justification

for their methods is provided.

Mitra and Reiter (2011) also proposed multiply imputing missing X. Their aim was to

make inference more robust to misspecification of the imputation model. A drawback of

their method is that the imputation model excludes the outcome data, and so missing X

are imputed without using the observed outcome. This means that X is imputed using a

model which assumes X is not a confounder.

In applied work, Mattei (2009) and Song et al. (2001) also deal with missing predictors

of propensity by using MI, but without investigating the properties of their methods or

providing theoretical justification for them. Their descriptions of the methods they used

are somewhat limited, but these methods would appear to be the same as, or very similar

to, that of Qu and Lipkovich (2009). Hayes and Groner (2008) multiply impute missing

predictors and calculate propensity scores for each imputed dataset. However, they then

choose one PS at random for each individual. Uncertainty in PS is ignored.

The purpose of the present article is fourfold. First, we investigate Qu and Lipkovich’s

(2009) two imputation methods, showing under what conditions each yields consistent

parameter estimation and comparing their efficiencies. Second, as these estimators are not

maximum likelihood estimators (MLE), it is not obvious that Rubin’s Rules will apply in

this case (Robins and Wang, 2000; Nielsen, 2003). Qu and Lipkovich (2009) proposed that

variance estimates be obtained by bootstrapping, a computationally intensive procedure.

We investigate how the simple Rubin’s Rules variance estimator performs in this setting.

Third, MI may be proper or improper. In proper MI, the uncertainty in the parameters of

the imputation model is accounted for by including in the imputation procedure a random

draw from the posterior distribution of these parameters. In improper MI, this step is

omitted and the MLEs of the parameters are used instead. In most applications of MI,

proper imputation is used, because it enables the variance to be estimated using Rubin’s

Rules. For improper MI, on the other hand, a closed-form variance estimator is available
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(Robins and Wang, 2000). This latter estimator is complicated, but has the advantage

of being valid even when the parameter estimator is not a MLE, as is the case here. Qu

and Lipkovich (2009) use proper MI. We describe the analogous improper MI procedure

and its closed-form variance estimator. Fourth, Qu and Lipkovich (2009) were concerned

with estimating a simple treatment difference in a non-randomised study. We show how

these methods can also be used to estimate the population mean of an outcome when this

outcome can be missing, and extend them to more general analysis models.

The structure of the article is as follows. In Section 2 the PS approach with fully observed

predictors of propensity is described. In Section 3 we describe Qu and Lipkovich’s (2009)

imputation method and prove consistency of their parameter estimator when R is not in

the PS model. In Section 4 we examine the effect of including R. Section 5 contains a

simulation study comparing various approaches for handling missing predictors. We look at

asymptotic and finite-sample biases and at the coverage of confidence intervals constructed

using both our explicit variance estimator and the Rubin’s Rules variance estimator. In

Section 6 we show how Qu and Lipkovich’s (2009) methods transfer to the estimation of

a population mean from a sample with missing outcomes and to more general analysis

models. An application of these methods to data from the National Child Development

Survey (NCDS) is described in Section 7. We end with a discussion.

2 PS Approach with Fully Observed Predictors

Let D1 denote an individual’s potential outcome if assigned to active treatment and D0

denote the outcome if assigned to control. Only one of these can be observed. If T = 1,

D1 is observed and D0 is missing; if T = 0, D0 is observed and D1 is missing. Let

θ = E(D1) − E(D0) denote the average treatment effect and let θ0 denote the true value

of θ. Let Dobs = TD1 + (1 − T )D0 denote the observed outcome.

A model (e.g. a logistic regression model) π(X;α) is specified for π(X) = P (T = 1 |X),

where α denotes unknown parameters. This is the PS model. Assume this is correctly

specified and let α0 denote the true value of α. So, π(X) = π(X;α0). The following
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additional assumptions are made:

(A1) T ⊥⊥ D1, D0 |X

(A2) ∃c > 0 such that P{c < π(X;α0) < 1 − c} = 1

(A1) means that, given X, treatment assignment is independent of the two potential

outcomes. (A2) means that, with probability one, a randomly chosen individuals will have

positive probabilities of being assigned to each of the two treatments.

Suppose a sample of n individuals is drawn. Let subscript i denote individual i, and let α̂

denote the solution to a set of consistent estimating equations
∑n

i=1 Sα(α;Xi, Ti) = 0 for

α. For example, if π(X;α) is a logistic regression model fitted by maximum likelihood,

then Sα(α;Xi, Ti) is the contribution of individual i to the score equations of, and α̂ is

the MLE from, the logistic regression of T1, . . . , Tn on X1, . . . ,Xn.

A consistent estimator of θ is (Lunceford and Davidian, 2004)

θ̂ =
1

n

n
∑

i=1

{

TiDobs,i

π(X; α̂)
−

(1 − Ti)Dobs,i

1 − π(X; α̂)

}

(1)

and a consistent estimator of the variance of β̂ = (θ̂T , α̂T )T is

(

n
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i
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∣

∣

∣

∣
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)

−1

(2)

where Ui = (STθ (θ;Xi, Dobs,i, Ti),S
T
α (β;Xi, Ti))

T and

Sθ(θ,α;X, Dobs, T ) =
TDobs

π(X;α)
−

(1 − T )Dobs

1 − π(X;α)
− θ (3)

3 PS Approach with Missing Predictors

We now describe two MI procedures for estimating θ when X is not fully observed.

Let Xobs and Xmis denote the observed and missing parts of X, respectively, and let

W = (Xobs, Dobs, T ). We shall use M to denote the number of imputations. A model

f(X | Dobs, T ;ψ), with parameters ψ, is specified for the distribution of X given Dobs

and T . If a component, Xfull, of X is fully observed, a model may instead be specified

for f(X | Xfull, Dobs, T ;ψ), the distribution of X given Xfull, Dobs and T . Assume that
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this model and the PS model π(X;α) are correctly specified. Qu and Lipkovich (2009)

propose the following proper MI procedure.

1. Calculate the posterior distribution ofψ implied by likelihood function f(X | Dobs, T ;ψ),

observed data W1, . . . ,Wn and a non-informative prior.

2. Sample ψ(1), . . . ,ψ(M) from this posterior distribution.

3. For each m = 1, . . . ,M and i = 1, . . . , n, sample X
∗(m)
mis,i from the distribution

g(Xmis,i |Wi;ψ
(m)) implied by model f(X | Dobs, T ;ψ(m)). LetX

∗(m)
i = (Xobs,i,X

∗(m)
mis,i ).

4. For each m = 1, . . . ,M , let α̂(m) denote the solution to estimating equations

n−1
∑n

i=1 Sα(α̂
(m);Ti,X

∗(m)
i ) = 0.

5. For each m = 1, . . . ,M , calculate

θ̂(m) =
1

n

n
∑

i=1

{

TiD1i

π(X
∗(m)
i ; α̂(m))

−
(1 − Ti)D0i

1 − π(X
∗(m)
i ; α̂(m))

}

. (4)

6. Calculate θ̂A = M−1
∑M

m=1 θ̂
(m).

An alternative, improper MI procedure is as follows.

1. Calculate the MLE, ψ̂, of ψ from likelihood function f(X | Dobs, T ;ψ) and observed

data W1, . . . ,Wn.

2. For each m = 1, . . . ,M and i = 1, . . . , n, generate X
∗(m)
mis,i from g(Xmis,i |Wi; ψ̂). Let

X
∗(m)
i = (Xobs,i,X

∗(m)
mis ).

3. Calculate α̂ as the solution to (nM)−1
∑n

i=1

∑M
m=1 Sα(X

∗(m)
i , T ; α̂) = 0.

4. Calculate

θ̂B =
1

nM

n
∑

i=1

M
∑

m=1

{

TiD1i

π(X
∗(m)
i ; α̂)

−
(1 − Ti)D0i

1 − π(X
∗(m)
i ; α̂)

}

(5)

These two MI procedures differ in two ways. The first procedure estimates θ using proper

imputation of X and Rubin’s Rule for the mean, i.e. α and θ are estimated separately
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for each of the M imputed datasets and then the estimates of θ are averaged. The second

procedure uses improper imputation and calculates a single estimate of (α, θ) directly from

the whole set of M imputations.

Assume (A1), (A2) and (A3) are true, where (A3) is

(A3) p(R |X, Dobs, T ) = p(R |Xobs, Dobs, T )

(i.e. X is MAR given Dobs and T ). In Appendix B we prove that when these conditions

are satisfied and M = ∞, θ̂A and θ̂B are asymptotically equivalent, consistent estimators of

θ. Moreover, assuming that θ̂A and θ̂B are consistent when M < ∞, θ̂B is asymptotically

more efficient than θ̂A when M < ∞ and the variance of θ̂B is consistently estimated

by the formula given in Appendix C. For the Rubin’s Rules variance estimator of θ̂A the

complete-data variance estimator we use is that given by equation (2).

In Appendix A we present an alternative pair of estimators of treatment effect, in which

equations (4) and (5) are modified by dividing by the sum of the weights. We also present

estimators of the treatment ratio, E(D1)/E(D0).

4 Including R in the PS Model

Qu and Lipkovich (2009) recommend additionally including R in the PS model, saying it

may reduce the bias in θ̂A when Assumption (A3) is violated, i.e. when X is not MAR

given Dobs and T . We now explore the consistency of θ̂A and θ̂B when R is included in the

PS model and the efficiency relative to when R is not included.

Including R in the PS model implies replacing Assumption (A1) by (A1′):

(A1′) T ⊥⊥ D1, D0 |X, R

When (A1) and (A3) are true, (A1′) is not true in general. An example illustrates this.

Suppose that R = r, X = x and P (R = r | X = x, Dobs, T ) = P (R = r | Xobs =

xobs, Dobs) is an increasing function of Dobs. Then the probability that T = 1 is greater if

D1 > D0 than if D0 > D1. Therefore (A1′) is false.
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If (A1) and (A4) are true, where (A4) is

(A4) R ⊥⊥ D0, D1 |X, T

then (A1′) is also true, and so including R will not induce bias. A stronger assumption

than both (A3) and (A4) is (A5):

(A5) p(R |X, D0, D1, T ) = p(R |Xobs, T )

So, when Assumptions (A1) and (A5) are true, Assumptions (A1′) and (A3) are also true.

In this case, including R in the PS model should not induce bias, although there is no

need to include R, because it is not a confounder in the relation between T and (D0, D1)

given X. Moreover, there may be some loss of efficiency if it is included. This is because

including R will cause individuals with the same values of T andX but different values of R

to receive different weights, and because (D0, D1) is distributed equally in such individuals,

efficiency is lost by weighting them differently. Asymptotically, however, the efficiency loss

tends to zero (Tsiatis, 2006).

Qu and Lipkovich (2009) describe a simulation study in which p(R |X, D0, D1, T ) = p(R |

X), so that (A4) is true. They found that including R made no difference to bias (as

expected) and that the efficiency loss was very small.

Qu and Lipkovich (2009) suggested that including R would reduce bias when (A3) is false,

i.e. when X is MNAR given T and Dobs. They imagined an extreme MNAR scenario in

which X = (Xa, Xb), where Xa is fully observed and Xb is binary. The variable Xb was

assumed to be always observed (R = 1) if Xb = 0 and always missing (R = 0) if Xb = 1.

In this extreme situation R is a one-to-one mapping of Xb and so R can replace Xb in the

PS model. In realistic situations the MNAR mechanism will be weaker and the missing

variables may not be binary, so R will not be a one-to-one mapping. Whether including

R increases or reduces the bias resulting from X not being MAR given Dobs and T will

depend on the strength of the association between Xmis and R given Xobs and on the

extent of deviation from Assumption (A4). Qu and Lipkovich (2009) describe a MNAR

simulation in which R is independent of T , D0 and D1 givenX. They found that including

R reduced bias in this situation. As including R does not introduce bias when (A4) is true,
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this is as expected. In the next section we consider bias under a wider range of MNAR

mechanisms.

5 Asymptotic and Simulation Study

We now describe a study of asymptotic bias and finite-sample bias and efficiency, com-

paring several methods for dealing with missing predictors of propensity when using the

PS approach to estimate average treatment effect. Both MAR and MNAR predictors of

propensity will be considered.

We consider scenarios in which the outcome, D, and the predictors of propensity, X1

and X2, are binary variables and X1 is fully observed. We assume P (X1 = 1) = 0.5,

P (X2 = 1) = 0.2 + 0.6X1, P (T = 1 | X1, X2) = {1 + exp(1.5 − X1 − 2X2)}
−1, and

P (Dt = 1 | X1, X2) = {1 + exp(1 − X1 − X2 − 2t)}−1. So, X1 and X2 are positively

correlated, X1 and X2 both increase the probability of assignment to active treatment, and

X1, X2 and active treatment all independently increase the probability of outcome D = 1.

With these choices, P (T = 1) = 0.5, P (D = 1) = 0.64, the treatment effects (i.e. treatment

differences) are 0.46, 0.38, 0.38 and 0.22 in the four strata defined by (X1, X2) = (0, 0),

(0, 1), (1, 0) and (1, 1), respectively, and the overall treatment effect is θ0 = 0.35. Let R = 1

if X2 is observed; R = 0 otherwise. The probability that X2 is missing (i.e. R = 0) was

{1+exp(−γ0−X1−γ2X2−γTT −γDDobs)}
−1. When γ2 = 0,X is MAR given Dobs and T .

A variety of values of γT and γD were considered; γ0 was chosen to make P (R = 1) = 0.5.

We used the method of Rotnitzky and Wypij (1994) to calculate the asymptotic biases of

the estimators of treatment effects from seven methods:

Complete Data (Comp): using X1 and X2 in the PS model (before deleting missing X2

values).

No Adjust (NoAdj): no adjustment for confounding, i.e. the difference between the

means of the observed outcomes in the two treatment groups.

Partly Adjusted (PartAdj): using only X1 in the PS model.
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Missing indicator method (MissI): Using X1, RX2 and R in PS model.

Separate PS models by R (SepPS): Using X1, RX2, R and RX1 in PS model (so

effectively using two different PS models: one for individuals with observed X2 and

one for those with missing X2).

Improper MI (Imp): using X1 and X2 in the PS model, and imputing missing X2 values

using improper MI with M = ∞.

Improper MI with R (ImpR): Same as Imp, but also using R in the PS model.

As mentioned earlier, when M = ∞ the treatment effect estimators from proper MI are

asymptotically equivalent to those from improper MI. For Imp and ImpR, a saturated

imputation model was used, i.e. P (X2 = 1 | X1, T,Dobs) was allowed to be different for

each of the eight combinations of X1, T and Dobs.

The asymptotic biases of Comp, NoAdj and PartAdj do not depend on γ; they are 0.000,

0.174 and 0.064, respectively. Table 2 shows asymptotic biases for the other four methods

for a variety of values of γ0, γ2, γD and γT . We consider four MAR scenarios: one where

neither outcome nor treatment assignment affects the probability that X2 is observed

(γT = γD = 0); one where only treatment assignment affects it (γT = 1, γD = 0); one where

only outcome affects it (γT = 0, γD = 1); and one where both affect it (γT = γD = 1). As

expected, we see that Imp is asymptotically unbiased in all four MAR scenarios, but ImpR

is only unbiased when outcome does not affect the probability that X2 is observed. MissI

and SepPS are biased in all scenarios.

Table 2 also shows asymptotic biases when γ2 = 2, and so X is MNAR. As expected, Imp

is no longer asymptotically unbiased. Its bias may be more or less than the biases of the

other three methods. We also examined what happens when γ2 assumes larger values (data

not shown), concentrating on the case where γD = γT = 0. As γ2 increases, whether X2

is observed increasingly predicts whether X2 = 1 and, as this happens, ImpR is expected

to become less asymptotically biased than Imp, for the reasons explained in Section 4.

Indeed, when γ2 = 4, the asymptotic bias is 0.024 for Imp but only −0.011 for ImpR; when
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γ2 = 8, the biases were, respectively, 0.056 and −0.003. Likewise, the asymptotic biases

of MissI and SepPS tend to diminish: when γ2 = 4 they are 0.026 and 0.017, respectively;

when γ2 = 8 they are 0.005 and 0.003.

By simulating 1000 datasets, each with sample size n = 500, for each scenario, we also

estimated the finite sample biases, empirical SEs and coverages of 95% confidence inter-

vals. The biases of Comp, NoAdj and PartAdj were estimated as 0.0008, 0.173 and 0.064,

respectively, agreeing closely with the asymptotic biases. The corresponding empirical SEs

were 0.062, 0.036 and 0.045. Coverages were 95%, 0% and 69%. The imputation methods

that we applied were Imp1 and Imp10 (missing X2 imputed using improper MI with M = 1

and M = 10, respectively), Pro10 (proper MI with M = 10), and ImpR10 and ProR10

(like Imp10 and Pro10 but with R included in the PS model). A saturated imputation

model was used for each imputation method, and for proper MI independent Beta(1, 1)

(i.e. uniform) priors were used for each element of ψ. Confidence intervals were based on

the Robins’ variance estimator (see Appendix C) for Imp1, Imp10 and ImpR10, and on

the Rubin’s Rules variance estimator for Pro10 and ProR10.

Table 1 shows empirical SEs and coverages of confidence intervals for these imputation

methods and for MissI and SepPS. Finite-sample biases are not shown, as these are very

close to the corresponding asymptotic biases reported in Table 2; biases for Pro10 and

ProR10 are very similar to those for Imp10 and ImpR10, respectively. Empirical SEs are

reduced by using M = 10 imputations rather than M = 1 (compare Imp10 and Imp1). As

expected (see Section 4), including R in the PS model leads to an increase in the empirical

SE when γD = 0 and γT = 1. This difference becomes increasingly marked as γT increases:

the SEs of Imp10 and ImpR10 are 0.065 and 0.085, respectively, when γT = 3, γD = γ2 = 0

(data not shown). Coverages of Imp10 and Pro10 were close to their nominal levels when

X is MAR given Dobs and T , suggesting that Rubin’s Rule for the variance is valid.

The empirical SEs of Pro10 are generally slightly smaller than those of Imp10. Asymptot-

ically (as n → ∞), the SE of Imp10 should be smaller than that of Pro10 when M < ∞,

and asymptotically equal to it when M = ∞ (Robins and Wang, 2000). So, we investi-

gated further the case of γT = 3 and γD = γ2 = 0, which was the MAR scenario where the
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difference was greatest. With independent Beta(1, 1) priors for the parameters, ψ, of the

imputation model, the SEs of Imp10 and Pro10 were 0.065 and 0.062, respectively. When

these priors were replaced by Beta(0, 0) priors, the SE for Pro10 was 0.067, greater than

that of Imp10 (0.065). Under improper Beta(0, 0) priors, the posterior mean of ψ is equal

to its MLE, whereas Beta(1, 1) priors cause the posterior mean of each element of ψ to

be closer to 0.5 than its corresponding MLE. This will slightly reduce the variance of the

distribution of weights and hence reduce the SE. As the sample size n increases, the prior

should become less influential. Indeed, when n = 5000 and Beta(1, 1) priors were used, the

SE of Imp10 (0.0192) was slightly less than that of Pro10 (0.0193).

6 IPW Complete Case Analysis

Now consider the second use of IPW described in Section 1, i.e. the estimation of a pop-

ulation mean outcome when this outcome can be missing. This problem is analogous to

that of estimating an average treatment effect. Let D denote the outcome and θ denote

the population mean of D. Let T = 1 if D is observed; T = 0 otherwise. Let X be a

vector of predictors of T , and Dobs = TD. The earlier results for a treatment difference

imply that if the proper imputation procedure is used to impute missing values of X, then

1

nM

M
∑

m=1

n
∑

i=1

TiD1i

π(X
∗(m)
i ; α̂(m))

is a consistent estimator of θ when M = ∞, provided that T ⊥⊥ D |X and (A2) and (A3)

are true. This estimator comes from ignoring the second half of equation (4). An analogous

estimator for the improper imputation procedure comes from ignoring the second half of

equation (5). Note that since Xmis is imputed using Dobs and Dobs is non-zero only in

complete-cases (T = 1), it may be desirable to impute Xmis separately in complete-cases

(using Dobs) and incomplete cases (not using Dobs).

Now consider the more general problem of using IPW when fitting a general analysis

model to complete cases. Let D and θ denote the variables and parameters, respectively,

in an analysis model of interest. Let T = 1 if the individual is a complete case (i.e. D

is observed) and T = 0 otherwise (i.e. at least one element of D is missing). Let X

13



be a vector of predictors of T , and let Dobs = TD. Let Qθ(θ;D) denote an individ-

ual’s contribution to the complete-data estimating equations
∑n

i=1Qθ(θ;Di) = 0. So,

the true value of θ is the solution of E{Qθ(θ;D)} = 0. Let Sθ(θ,α;Dobs, T,X) =

TQθ(θ;D)/π(X;α) denote an individual’s contribution to the IPW estimating equa-

tions
∑n

i=1 Sθ(θ,α;Dobs,i, Ti,Xi) = 0. Assume that T ⊥⊥ D | X and that (A.2) and

(A.3) are true. Proper or improper imputation can be used for missing values of X.

First, consider proper imputation. Let θ̂(m) denote the solution of estimating equations
∑n

i=1Sθ(θ, α̂
(m);Dobs,i, Ti,X

∗(m)
i ) = 0. Then θ̂A = M−1

∑M
m=1 θ̂

(m) is a consistent estima-

tor of θ when M = ∞. Now, consider improper imputation. The solution θ̂B to estimating

equations (nM)−1
∑M

m=1

∑n
i=1 Sθ(θ, α̂;Dobs,i, Ti,X

∗(m)
i ) = 0 is a consistent estimator of

θ when M = ∞. The variance of θ̂B can be estimated using the formula given in Ap-

pendix C. As in the special case of estimating a population mean outcome, it may be better

to impute Xmis separately in complete cases (using Dobs) and incomplete cases (not using

Dobs). This was done in the analysis described in Section 7.

7 Application to NCDS Data

In this section, we demonstrate the use of IPW to reduce bias in a complete-case analysis.

Note that the analysis we present is intended to be illustrative rather than definitive. The

NCDS consists of 17638 people born in Britain during one week in 1958. 920 immigrants

with the same birth dates were added later. Data were collected at birth, ages 7, 11,

16, 23, 33 and 45. 16334 non-immigrants were still alive and free from type-1 diabetes

at age 45, and 8953 (55%) of these participated in a biomedical survey. Data from this

biomedical survey have been previously used to investigate the effects of characteristics

measured at birth and of adult adiposity (BMI and waist circumference at age 45) on

glucose metabolism at age 45 (Thomas et al., 2007). Following Thomas et al. (2007), we

classified subjects as having high blood glucose if their glycosylated haemoglobin (A1C)

was > 6% or they had type-2 diabetes. Immigrants and subjects with type 1 diabetes

were excluded. After these exclusions, 5673 partipants (‘complete cases’) had complete

data for variables in the analysis model. The complete-case analysis will be valid if the
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5673 complete cases are representative of the 16334 non-immigrants still alive and free

from type 1 diabetes. Otherwise it may be biased. We use IPW to allow for possible

unrepresentativeness of the complete cases.

For the missingness model, i.e. the model for the probability that an individual is a com-

plete case, we used potential predictors of missingness recorded at birth and age 7 that

were identified by Atherton et al. (2008) as well as further predictors measured at age

11. All were categorical. They were sex, mother’s husband’s social class (non-manual /

manual III or IV / manual V or no husband), mother leaving school at or before mini-

mum statutory age, breast-feeding < 1 month, short stature at age 7, overweight at age 7,

hospitalisation prior to age 7, social care prior to age 7 (all yes/no) and housing tenure at

age 7 (owned/rented). Maths and reading scores (normal/low) and internalising and ex-

ternalising hehaviour (normal/intermediate/problem) at ages 7 and 11 were also included,

as were verbal and non-verbal scores at age 11 (normal/low).

Some missingness predictors were themselves incomplete. Most of this missingness was due

to some individuals failing to attend the age-7 or 11 visits: 77% of the cohort attended

both visits; 13% just the age-7 visit; 4% just the age-11 visit; 6% attended neither visit.

The proportion of missing values in each missingness predictor among those attending the

visit at which the missingness predictor should have been measured ranged from 0 to 13%.

All missing values in missingness predictors were multiply imputed using the ice function

(Royston, 2005) in STATA. This implements the chained equations (or ‘fully-conditional

specification’) MI method, which is a proper imputation procedure. Ten imputed datasets

were created (i.e. M = 10). Imputation was carried out separately in complete and incom-

plete cases (i.e. complete and incomplete for the variables in the analysis model). For the

complete cases, the variables in the analysis model were also used for the imputation.

Two missingness models were used: one with just the missingness predictors described

above, and one with an additional categorical variable describing the pattern of missingness

in the missingness predictors. The first of these corresponds to not including R in the

model; the second, to including it. As the main cause of missingness in the predictors was

the failure of some individuals to attend the age-7 and 11 visits, the additional categorical
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variable we used in the second model was visit attendance: equal to 1 if both visits were

attended; 2 if only age-7 visit was attended; 3 if only age-11 visit; and 4 if neither visit was

attended.

When fitting the analysis model to each multiply imputed dataset in turn, SEs were es-

timated using a sandwich estimator that accounts for the weights and the uncertainty in

these weights (i.e. the uncertainty in the parameters α of the missingness model). Rubin’s

Rules were used to combine point estimates and SEs.

For the first missingness model (the model not including visit attendance), the mean weight

in the complete cases averaged over the ten imputed datasets was 2.88, the 95th centile was

4.27 and the maximum was 9.25. For the second missingness model (the model including

visit attendance), the mean, 95th centile and maximum were 2.89, 4.75 and 33.68, respec-

tively. The greater variability in the second set of weights indicates that visit attendance is

a strong predictor of being a complete case for the variables in the analysis model. This is

also evident from the estimated odds ratio of being a complete case associated with missing

both age-7 and 11 visits relative to attending both visits: 0.21 (95% CI 0.17–0.25). In this

application it seems plausible for the following reasons that including visit attendance in

the weighting model may reduce bias in the analysis model. First, it seems quite possible

that the missingness predictors may not be MAR: e.g. whether or not social care prior to

age 7 is observed may depend on social care prior to age 7 even after adjusting for the

missingness predictors that are observed. Second, the relation represented by the analysis

model, i.e. that between high blood glucose and its predictors, may be different in indi-

viduals who attend both age-7 and 11 visits from that in individuals who attend neither,

even after adjusting for the missingness predictors.

Table 3 shows results for the analysis model using IPW with the weights from both miss-

ingness models. (Unweighted) complete-case estimates are also shown. As can be seen,

using IPW with either missingness model does not substantially change the results. The

biggest differences are in the ORs for short gestation, pre-eclampsia and smoking during

pregnancy. The effects of short gestation and pre-eclampsia have increased slightly when

the second missingness model is used. On the other hand, the effect of smoking during
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pregnancy has increased slightly when the first missingness model is used. As expected,

all SEs have increased slightly, especially when the second missingness model is used. No

variable except pre-pregnancy BMI has changed from being non-significant to significant

or vice versa; pre-pregnancy BMI is on the borderline of significance in all three cases.

These data were also analysed by Thomas et al. (2007) and Seaman and White (2011).

Seaman and White (2011) used IPW but dealt with missing X using the missing indicator

method. Thomas et al. used essentially a complete-case analysis, but increased the number

of complete cases by imputing some of the missing variables in the analysis model. Both

sets of authors reached similar conclusions to those reported here.

8 Discussion

We have shown that the MI procedure described by Qu and Lipkovich (2009) that does

not use the missingness pattern of X in the PS model yields consistent estimation when

X is MAR given observed outcome Dobs and treatment T . Including R may induce bias if

it is associated with the outcome. However, when X is MNAR given Dobs and T , inclusion

of R may reduce bias. The decision of whether to include R might reasonably depend on

one’s beliefs in a particular given application about whether X is approximately MAR

given Dobs and T , about whether R is likely to be associated with the outcome, and about

how useful R is as a predictor of missing X.

Two MI procedures have been presented in the current article: proper and improper.

The improper procedure has the advantage that an asymptotically unbiased estimator

for sampling variance is available. It has the disadvantages that this estimator is quite

complicated and has not been implemented in current software, and that a parametric

imputation model is required, thus ruling out the chained equations MI approach. The

proper imputation procedure is more flexible, but the properties of the Rubin’s Rules

variance estimator when used in this case are not fully understood. In our simulation,

however, we found it gave good coverage. Seaman et al. (2011) also found good performance

of the Rubin’s Rules variance estimator when it was applied in another situation involving
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IPW. Schafer (2003) comments that “although we may find it difficult to prove good

performance for [the Rubin’s Rules variance estimator when not using the MLE], that

does not imply that good performance will not be seen in practice. Experience suggests

that Bayesian MI does interact well with a variety of semi- and non-parametric estimation

procedures.” On this basis, we cautiously recommend that Rubin’s Rules can be used with

the proper imputation procedure. An alternative method of variance estimator for either

MI procedure is bootstrap.

Finally, note that we have treated the situation where adjustment for confounding is done

using IPW, but the proper imputation procedure could also be used when adjustment is

by stratification or matching on the PS.

Acknowledgements: We thank Chris Power for valuable discussion and assistance in

obtaining the NCDS data, Claudia Thomas for preparing the variables we used. The

Centre for Longitudinal Studies provided the official NCDS data. S. Seaman and I. White

were funded by MRC grants U105260558 and MC US A030 0015.

References

Atherton, K., Fuller, E., Shepherd, P., Strachan, D. P., and Power, C. (2008). Loss and

representativeness in a biomedical survey at age 45 years: 1958 British birth cohort.

Journal of Epidemiology and Community Health 62, 216–223.

Cepeda, M. S., Boston, R., Farrar, J. T., and Strom, B. L. (2003). Comparison of logistic

regression versus propensity score when the number of events is low and there are multiple

confounders. American Journal of Epidemiology 158, 280–287.

D’Agostino, R. B. and Rubin, D. B. (2000). Estimating and using propensity scores with

partially missing data. Journal of the American Statistical Association 95, 749–759.

Hayes, J. R. and Groner, J. I. (2008). Using multiple imputation and propensity scores to

test the effect of car seats and seat belt usage on injury severity from trauma registry

data. Journal of Pediatric Surgery 43, 924–927.

18



Horwitz, D. G. and Thompson, D. J. (1958). A generalisation of sampling without re-

placement from a finite universe. Journal of the American Statistical Association 47,

663–685.

Lunceford, J. K. and Davidian, M. (2004). Stratification and weighting via the propen-

sity score in estimation of causal treatment effects: a comparative study. Statistics in

Medicine 23, 2937–2960.

Mattei, A. (2009). Estimating and using propensity scores in presence of missing back-

ground data: an application to assess the impact of childbearing on wellbeing. Statistical

Methods and Applications 18, 257–273.

Mitra, R. and Reiter, J. P. (2011). Estimating propensity scores with missing covariate

data using general location mixture models. Statistics in Medicine 30, 627–641.

Nielsen, S. F. (2003). Proper and improper multiple imputation. International Statistical

Review 71, 593–627.

Qu, Y. and Lipkovich, I. (2009). Propensity score estimation with missing values using a

multiple imputation missingness pattern (MIMP) approach. Statistics in Medicine 28,

1402–1414.

Robins, J. M. and Wang, N. (2000). Inference for imputation estimators. Biometrika 87,

113–124.

Rosenbaum, P. R. and Rubin, R. J. A. (1983). The central role of the propensity score in

observational studies for causal effects. Biometrika 70, 41–55.

Rotnitzky, A. and Wypij, D. (1994). A note on the bias of estimators with missing data.

Biometrics 44, 1163–1170.

Royston, J. P. (2005). Multiple imputation of missing values: Update of ice. Stata Journal

5, 527–536.

Schafer, J. L. (2003). Multiple imputation in multivariate problems when the imputation

and analysis models differ. Statistica Neerlandica 57, 19–35.

19



Seaman, S. R. and White, I. R. (2011). Review of inverse probability weighting for dealing

with missing data. Statistical Methods in Medical Research (in press).

Seaman, S. R., White, I. R., Copas, A. J., and Li, L. (2011). Combining multiple imputation

and inverse-probability weighting. (submitted).

Song, J., Belin, T. R., Lee, M. B., Gao, X., and Rotheram-Borus, M. J. (2001). Handling

baseline differences and missing items in a longitudinal study of HIV risk among runaway

youths. Health Services and Outcomes Research Methodology 2, 317–329.

Stürmer, T., Schneeweiss, S., Brookhart, M. A., Rothman, K. J., Avorn, J., and Glynn,

R. J. (2005). Analytic strategies to adjust confounding using exposure propensity scores

and disease risk scores: Nonsteroidal antiinflammatory drugs and short-term mortality

in the elderly. American Journal of Epidemiology 161, 891–898.

Thomas, C., Hypponen, E., and Power, C. (2007). Prenatal exposures and glucose

metabolism in adulthood. Diabetes Care 30, 918–924.

Tsiatis, A. A. (2006). Semiparametric Theory and Missing Data. (pp. 30, 206), Springer,

New York.

Appendix A

An alternative estimator of treatment difference, E(D1)−E(D0), is obtained by replacing

equation (4) in the proper MI procedure by

θ̂(m) =

{

n
∑

i=1

TiD1i

π
∗(m)
i

/

n
∑

i=1

Ti

π
∗(m)
i

}

−

{

n
∑

i=1

(1 − Ti)D0i

1 − π
∗(m)
i

/

n
∑

i=1

1 − Ti

1 − π
∗(m)
i

}

, (6)

where π
∗(m)
i = π(X

∗(m)
i ; α̂(m)). Another estimator of treatment difference can be obtained

by replacing equation (5) in the improper MI procedure by

θ̂B =

{

n
∑

i=1

TiD1i

π∗

i

/

n
∑

i=1

Ti
π∗

i

}

−

{

n
∑

i=1

(1 − Ti)D0i

1 − π∗∗

i

/

n
∑

i=1

1 − Ti
1 − π∗∗

i

}

, (7)

where π∗−1
i = M−1

∑M
m=1 π(X

∗(m)
i ; α̂)−1 and (1−π∗∗

i )−1 = M−1
∑M

m=1{1−π(X
∗(m)
i ; α̂)}−1.
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To estimate treatment ratio, E(D1)/E(D0), replace equations (6) and (7) by

θ̂(m) =

{

n
∑

i=1

TiD1i

π
∗(m)
i

/

n
∑

i=1

Ti

π
∗(m)
i

}/{

n
∑

i=1

(1 − Ti)D0i

1 − π
∗(m)
i

/

n
∑

i=1

1 − Ti

1 − π
∗(m)
i

}

(8)

and θ̂B =

{

n
∑

i=1

TiD1i

π∗

i

/

n
∑

i=1

Ti
π∗

i

}/{

n
∑

i=1

(1 − Ti)D0i

1 − π∗∗

i

/

n
∑

i=1

1 − Ti
1 − π∗∗

i

}

, (9)

respectively. Appendix B contains a proof of the consistency of these estimators when

M = ∞. The formula in Appendix C for a consistent variance estimator of θ̂B still applies.

An alternative to the estimator given in Section 6 of a population mean outcome when

outcomes may be missing is

1

M

M
∑

m=1

{

n
∑

i=1

TiD1i

π(X
∗(m)
i ; α̂(m))

/

n
∑

i=1

Ti

π(X
∗(m)
i ; α̂(m))

}

Appendix B

Consider the improper MI procedure of Section 3. Let Sψ(ψ;W ,Xmis) = ∂ log f(X |

Dobs, T ;ψ)/∂ψ and ψ0 be the true value of ψ. The MLE, ψ̂, of ψ is the solution to

observed-data score equations n−1
∑n

i=1 Sobsψ(ψ;Wi) = 0, where Sobsψ(ψ;W ) =

EXmis
[Sψ(ψ;W ,Xmis) |W ]. If (A3) is true, ψ̂ is a consistent estimator of ψ and

EW ,R[Sobsψ(ψ0;W )] = 0. (10)

Let S̄α(α,ψ;W ) = EX∗

mis
[Sα(α;T,X) |W ] and S̄θ(θ,α,ψ;W ) = EX∗

mis
[Sθ(θ,α;W ,X∗

mis) |

W ], where X∗

mis is distributed g(Xmis |W ;ψ).

If (A3) is true, the distribution ofXmis givenW andR is g(Xmis |W ;ψ0). So, S̄α(α,ψ0;W ) =

EXmis
[Sα(α;T,X) |W ] = EXmis

[Sα(α;T,X) |W , R] and S̄θ(θ,α,ψ0;W ) =

EXmis
[Sθ(θ,α;W ,Xmis) |W ] = EXmis

[Sθ(θ,α;W ,Xmis) |W , R].

Let α̃ and θ̃ be the solutions to estimating equations n−1
∑n

i=1 S̄α(α̃, ψ̂;Wi) = 0 and
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n−1
∑n

i=1 S̄θ(θ̃, α̃, ψ̂;Wi) = 0, and let α0 denote the true value of α. Then

EW ,R[S̄α(α0, ψ0;W )] = EW ,R EXmis
[Sα(α0;T,X) |W , R]

= EW ,R,Xmis
[Sα(α0;T,X)]

= EX,T [Sα(α0;T,X)]

= 0 (11)

and EW ,R[S̄θ(θ0,α0, ψ0;W )] = EW ,R EXmis
[Sθ(θ0,α0;X, Dobs, T ) |W , R]

= EW ,R,Xmis
[Sθ(θ0,α0;X, Dobs, T )]

= EX,Dobs,T [Sθ(θ0,α0;X, Dobs, T )]

= 0 (12)

Lines (11) and (12), respectively, follow because the PS model is correctly specified and

because

EX,Dobs,T

[

TD1

π(X;α0)
−

(1 − T )D0

1 − π(X;α0)

]

= θ0

It follows from equations (10), (11) and (12) that, subject to regularity conditions on

the missingness and imputation models for X (Tsiatis, 2006), (ψ̂, α̃, θ̃) → (ψ0,α0, θ0) as

n→ ∞. That is, θ̃ is consistent.

S̄α(α,ψ;W ) and S̄θ(θ,α,ψ;W ) can be estimated by Monte Carlo integration, by sam-

pling M values of X∗

mis from g(Xmis |W ,ψ). When M = ∞, this Monte Carlo integration

is exact and so θ̃ = θ̂B and α̃ = α̂.

This improper MI procedure is a special case of the improper MI discussed by Robins and

Wang (2000). It follows that θ̂A and θ̂B are asymptotically (n → ∞) equivalent when

M = ∞. Moreover, assuming θ̂A and θ̂B are also consistent when M < ∞, θ̂B will be

asymptotically more efficient than θ̂A when M <∞.

After replacing θ by θ = (δ, θ) and Sθ(θ,α;X, Dobs, T ) in equation (3) by

Sθ(θ,α;X, Dobs, T ) =

[

1−T
1−π(X;α)

(D0 − δ)
1−T

1−π(X;α)
(D0 − δ) + T

π(X;α)
(D1 − δ − θ)

]

, (13)

22



the preceding proof shows that equations (6) and (7) yield consistent estimators of treat-

ment difference when M = ∞. If Sθ(θ,α) in equation (3) is replaced by

Sθ(θ,α;X, Dobs, T ) =

[

1−T
1−π(X;α)

(D0 − δ) + T
π(X;α)

(D1 − δθ)
T

π(X;α)
(D1 − δθ)

]

, (14)

then the proof shows that equations (8) and (9) yield consistent estimators of the treatment

ratio when M = ∞.

Appendix C

Let β = (θT ,αT )T and β0 = (θT0 ,α
T
0 )T . Assuming β̂ is consistent and the regularity con-

ditions for Corollary 1 of Robins and Wang (2000), a consistent estimator of the asymptotic

variance of n1/2(β̂ − β0) is τ−1Ω(τ T )−1, where τ and Ω are given below.

Let U = U(β;W ,Xmis) = (STθ (β;W ,Xmis),S
T
α (β;W ,Xmis))

T and let Ū = Ū(β;W ) =

M−1
∑M

m=1U(β;W ,X
∗(m)
mis ). Let U

(m)
i = U(β;Wi,X

∗(m)
mis,i ), let Ūi = Ū (β;Wi) and let

Sobsψi(ψ) = Sobsψ(ψ;Wi). Let

Ω = ΩC + κ∆κT +
1

n

n
∑

i=1

[

κDiŪ
T
i +

(

κDiŪ
T
i

)T
]

,

τ = −
1

n

n
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∂Ūi

∂βT

∣

∣

∣

∣

β=β̂

, ΩC =
1

n

n
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ŪiŪ
T
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nM

n
∑
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i S

(m)T
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1
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DiD
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Di = −

{

1

n

n
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∂Sobsψi(ψ)

∂ψT

∣

∣

∣

∣

ψ=ψ̂

}

−1

Sobsψi(ψ),

S
(m)
misψi = ∂f(Xi,X

∗(m)
mis,i |Wi;ψ)/∂ψ |ψ=ψ̂= Sψ(ψ̂;Wi,X

∗(m)
mis,i ) − Sobsψi(ψ̂).

If they are unavailable analytically, Sobsψi(ψ) and ∂Sobsψi(ψ)/∂ψT
∣

∣

ψ=ψ̂
can be estimated

by Monte Carlo integration. Note that S
(m)
misψi = 0 if Xi is observed.
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Table 1: Empirical standard errors and 95% coverages of estimators of average treatment
effect, θ, for seven methods of handling missing values of X2 in PS model. Monte Carlo
SEs are 0.0013 for SEs when true SE is 0.06, and 0.7% for coverage when true coverage is
95%.

γT γD γ2 MissI SepPS Imp1 Imp10 ImpR10 Pro10 ProR10
Empirical SE

MAR
1 1 0 0.057 0.054 0.061 0.058 0.061 0.058 0.061
1 0 0 0.053 0.050 0.060 0.058 0.061 0.056 0.059
0 1 0 0.051 0.049 0.062 0.060 0.059 0.059 0.059
0 0 0 0.051 0.048 0.062 0.058 0.058 0.057 0.057
MNAR

1 1 2 0.055 0.052 0.061 0.059 0.067 0.056 0.063
1 0 2 0.052 0.050 0.060 0.057 0.063 0.056 0.061
0 1 2 0.051 0.049 0.072 0.069 0.073 0.062 0.064
0 0 2 0.051 0.048 0.071 0.068 0.069 0.062 0.062

95% Coverage
MAR

1 1 0 93 92 96 96 83 96 87
1 0 0 82 89 95 94 94 95 96
0 1 0 92 93 95 95 93 95 95
0 0 0 92 90 95 93 93 94 94
MNAR

1 1 2 93 90 87 87 97 88 94
1 0 2 87 92 92 93 97 93 97
0 1 2 93 94 89 89 96 91 96
0 0 2 87 91 92 92 95 93 95
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Table 2: Asymptotic biases of estimators of average treatment effect, θ, for four methods
of handling missing values of X2 in PS model

P (X2 miss) Asymptotic Bias
γT γD γ2 MissI SepPS Imp ImpR

MAR
1 1 0 −0.003 −0.024 0.000 −0.062
1 0 0 0.055 0.035 0.000 0.000
0 1 0 0.021 0.014 0.000 −0.017
0 0 0 0.029 0.032 0.000 0.000
MNAR

1 1 2 −0.016 −0.028 0.039 −0.047
1 0 2 0.039 0.022 0.016 −0.009
0 1 2 0.014 0.003 0.033 −0.019
0 0 2 0.039 0.028 0.004 −0.008

Table 3: log ORs and SEs for predictors of high blood glucose, using CC and IPW. Binary
predictors are gestational age < 38 weeks, pre-eclampsia, smoking during pregnancy, pre-
pregnancy BMI ≥ 25 Kg/m2, and manual socio-economic position (SEP) at birth. Ordinal
and continuous predictors are birth weight for gestational age (per tertile), BMI at age 45
(per Kg/m2) and waist circumference at age 45 (per cm). Adjustment was also made for
sex and family history of diabetes.

CC IPW without IPW with
visit visit

log OR SE log OR SE log OR SE
Short gestation 0.562 0.244 0.559 0.265 0.637 0.282
Pre-eclampsia 0.645 0.283 0.651 0.290 0.823 0.314
Smoking 0.103 0.160 0.157 0.168 0.106 0.175
Pre-preg BMI 0.332 0.163 0.328 0.172 0.364 0.180
Manual SEP 0.281 0.199 0.310 0.202 0.315 0.208
Birth weight -0.303 0.097 -0.313 0.100 -0.292 0.106
BMI 0.066 0.028 0.060 0.029 0.059 0.030
Waist size 0.061 0.012 0.061 0.013 0.062 0.013
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