
Comment on ‘Analysis of Longitudinal Trials with Protocol

Deviations — a Framework for Relevant, Accessible

Assumptions, and Inference via Multiple Imputation’

by Carpenter, Roger and Kenward.

Carpenter et al. (2013) propose a multiple imputation (MI) approach for analysing

data from clinical trials with protocol deviations. Sensitivity analysis to departures

from MAR is widely acknowledged as important, but is poorly handled in practice, so

we welcome their detailed proposals. However, here we highlight two problems with

their method: an implicit assumption of non-informative deviation and failure of the

Rubin’s Rule (RR) variance estimator.

The method of Carpenter et al. (2013)

We start by summarising the method of Carpenter et al. (2013), using their notation

and additional notation µT , µT,O, µT,M , ΣT,OO, ΣT,MO, Y ∗

M and Y ∗. The number

of repeated outcomes per patient and number of patients are J and n, respectively.

For each patient, D denotes the deviation time (i.e. time of last outcome before pro-

tocol deviation), T is the randomisation group (r for reference, a for active), and YO

are the outcomes prior to deviation. Let Y ∗ = (Y T
O , Y ∗T

M )T , where Y ∗

M denotes a

vector of hypothetical outcomes after deviation. These may or may not be the same

as the actual post-deviation outcomes YM . Carpenter et al. specify separate normal

distributions for Y ∗ given T = r and for Y ∗ given T = a, and denote the unknown

means of these distributions by µr = (µr,1, . . . , µr,J) and µa = (µa,1, . . . , µa,J), and

the variances by Σr and Σa. Let µT,O and µT,M (T = r, a) denote (µT,1, . . . , µT,D)T

and (µT,D+1, . . . , µT,J)T , respectively, and let the submatrices of ΣT corresponding to

Var(YO | T ) and Cov(Y ∗

M , YO | T ) be denoted ΣT,OO and ΣT,MO, respectively. Carpen-

ter et al. denoted Σr,OO, Σr,MO, Σa,OO and Σa,MO as, respectively, R11, R21, A11 and

A21. A non-informative prior is assumed for (µr, µa,Σr,Σa) and its posterior obtained

under the assumption that the missingness mechanism is ignorable.

Under the assumption of ‘randomised-arm MAR’, the posterior predictive distribution
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of the actual post-deviation outcomes YM is the same as that of Y ∗

M , and so can be mul-

tiply imputed using this distribution. Therefore, as described by Carpenter et al., im-

putation under ‘randomised-arm MAR’ is done by sampling a value of (µr, µa,Σr,Σa)

from its posterior and then sampling YM from a normal distribution with mean µT,M +

ΣT,MOΣ−1
T,OO(YO −µT,O) and variance given by Carpenter et al. As an addition to this

established MI procedure for randomised-arm MAR, Carpenter et al. propose four

novel MI procedures for MNAR data. These procedures differ from that described for

randomised-arm MAR in the mean and variance of the normal distribution from which

YM is sampled. For ‘jump to reference’, the mean is µr,M +Σr,MOΣ−1
T,OO(YO−µr,O), for

‘copy reference’ it is µr,M + Σr,MOΣ−1
r,OO(YO −µr,O), for ‘copy increments in reference’

it is (µT,D + µr,D+1 − µr,D, . . . , µT,J + µr,J − µr,D)T + Σr,MOΣ−1
T,OO(YO −µT,O), and for

‘last mean carried forward’ (LMCF) it is (µT,D, . . . , µT,D)T +ΣT,MOΣ−1
T,OO(YO −µT,O).

Let θ̂q denote the treatment effect estimate from the qth imputed dataset (q = 1, . . . , Q),

and V̂ar(θ̂q) be its variance estimate. The Q effect estimates are combined into an over-

all estimate θ̂(Q) using RR for the mean: θ̂(Q) = Q−1
∑Q

q=1 θq. RR for the variance gives

an estimate of the repeated sampling variance of θ̂(Q): V̂ar(θ̂(Q)) = BQ +(1+Q−1)WQ,

where BQ = Q−1
∑Q

q=1 V̂ar(θ̂q) and WQ = (Q − 1)−1
∑Q

q=1 (θ̂q − θ̂(Q))
2.

Problem 1: Informative deviations

The first problem with the procedures proposed by Carpenter et al. is that they make

an implicit ‘non-informative deviation’ assumption, P (D = t | D ≥ t, T, Y ) = P (D =

t | D ≥ t, T, Y1, . . . , YD), i.e. that the hazard of deviation does not depend on later

outcomes given earlier outcomes. For simplicity of exposition, suppose J = 2, there

are no deviations in the reference group, and outcomes at different times are indepen-

dent and the imputer knows this (however, the problem we now describe applies more

generally). Under the ‘jump to reference’ and ‘copy reference’ assumptions, the mean

of the imputation distribution of post-deviation Y2 given deviation is µr,2, which is the

unconditional expected outcome in a randomly sampled untreated patient. This is a

reasonable assumption if the factors influencing deviation are independent of those in-
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fluencing Y2. However, this will often not be the case. The following example illustrates

what happens when deviation is informative.

For each patient, let D∗ denote the (possibly counterfactual) time that the patient

would have deviated had she/he been randomised to the active group. So, D∗ = D

if T = a and is missing if T = r. Suppose that E(Y2 | D∗, T ) = α + βI(D∗ = 1).

So, treatment has no effect on outcome, but outcomes of patients who deviate are, on

average, greater by β than those who do not. Assume deviation is informative, i.e.

β 6= 0. Let π = P (D∗ = 1) > 0. The expected mean of the imputation distribution for

post-deviation outcomes is µr,2 = E(Y2 | T ) = α + βπ, which is different from the true

mean E(Y2 | D∗ = 1, T ) = α + β. Therefore, in the imputed dataset the mean of Y2

in the active group has expectation π(α + βπ) + (1− π)α = α + βπ2. This is different

from α + βπ, the expected mean in the reference group, and so the treatment effect

estimate is biased away from zero. Similar considerations apply in the case of ‘copy

increments in reference’ and LMCF.

Problem 2: Use of the Rubin’s Rule variance estimator

The second problem is that the RR estimator of the repeated sampling variance of

θ̂(Q) may not be valid unless the data are ‘randomised-arm MAR’ and MI is carried

out assuming this. This is because under the other missingness assumptions (‘jump to

reference’, etc.), the imputer assumes more than the analyst, which is known to cause

the RR variance estimator to overestimate the repeated sampling variance (Meng,

1994). The following extreme example illustrates this.

Assume non-informative deviation (so Problem 1 does not apply), J = 2, no deviation

in the reference group, all patients in the active arm deviate at time 1 (D = 1), and

outcomes at different times are independent and the imputer knows this. Suppose the

treatment effect of interest is θ = E(Y2 | T = a) − E(Y2 | T = r) and the complete-

data estimator of this effect is just the difference between the sample means in the

two arms. The posterior of µr,2 is normal with mean equal to the sample mean of

Y2 in the reference arm. Therefore, under ‘jump to reference’ or ‘copy reference’, θ̂q
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is normally distributed with mean zero. Consequently, θ̂(∞) = 0 and the repeated

sampling variance of θ̂(∞) equals zero. On the other hand, B∞ and hence V̂ar(θ̂(Q))

are both positive. The variance estimator is overestimating the true variance because

the data are imputed under a strong assumption that is no longer made when these

imputed data are analysed, specifically that there is no treatment effect in those who

deviate.

More generally in the four MNAR imputation procedures, the imputer (but not the

analyst) assumes a relation between the expected post-deviation outcomes of an indi-

vidual in the active arm given that he/she deviates and the expected outcomes of an

individual in the reference arm. This enables the imputer to use data from the reference

arm when imputing post-deviation outcomes in the active arm. In ‘randomised-arm

MAR’ imputation, on the other hand, the imputer does not assume a relation between

outcomes in the two arms, and imputes post-deviation outcomes in the active arm

using only the observed data from the active arm.

To illustrate that RR variance estimator can be positively biased in less extreme cases

than that considered above, we carried out a simulation study. We considered a trial

with J = 4, n = 200 and P (T = r) = P (T = a) = 0.5. Patients in the active

arm deviated (non-informatively) at time 2 (D = 2) with probability 0.2; otherwise

they did not deviate (D = 4). There was no deviation in the reference arm. The

treatment effect of interest was θ = E(Y4 | T = a) − E(Y4 | T = r). For each

non-deviating patient in arm T , outcome vector (Y1, Y2, Y3, Y4) was generated from a

normal distribution with mean µT and variance ΣT . We used the same mean and

variance as in Lu (2014). Specifically, µr = µa = (29, 22, 17, 14)T for a ‘no-treatment

effect’ scenario, µa = (29, 20, 14, 11)T and µr = (29, 22, 17, 14)T for a ‘treatment effect’

scenario. For both scenarios, the (j, k)th entry of Σa = Σr was 36× (1− 0.2×|k− j|).

For deviating patients, (Y1, Y2, Y3, Y4) was also generated from a normal distribution

but with mean and variance depending on the assumed imputation procedure. For

example, in the ‘treatment effect’ scenario, the mean and variance were µr and Σr for
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the ‘copy reference’ procedure, but (29, 22, 22, 22) and Σa for the LMCF procedure.

Table 1 shows the true values of θ. Note that for the LMCF imputation procedure,

θ 6= 0 even when µa = µr (the ‘no-treatment effect’ scenario).

For each of the two treatment effect scenarios and Carpenter’s five imputation proce-

dures, 10000 datasets were generated. The standard analysis-of-covariance (ANCOVA)

estimator was first applied to each complete dataset, yielding the complete-data esti-

mator θ̂comp. Post-deviation outcomes were then discarded and Q = 1000 imputed

datasets created using the correct imputation procedure (i.e. that assumed when gen-

erating the complete data). The ANCOVA estimator was applied to each of these Q

imputed datasets, and estimates and standard errors combined using Rubin’s Rules,

yielding θ̂(Q) and ŜE(θ̂(Q)). The norm package in R (Schafer, 2012) was used to draw

from the posteriors of (µr,Σr) and (µa,Σa).

Table 1 shows the results. These demonstrate that the RR estimate of the standard

error of the treatment effect overestimates the true standard error for the ‘copy refer-

ence’, ‘jump to reference’ and ‘copy increments in reference’ procedures. This mirrors

findings for the alternative placebo-based pattern mixture model approach presented

in Lu (2014). The RR estimator achieves coverage at close to the nominal rate for the

LMCF procedure. While conservative variance estimates may sometimes be viewed as

desirable, our simulation study highlights another issue with Carpenter et al.’s imputa-

tion procedures: they yield smaller empirical standard errors than the estimator based

on the complete data. This reflects the strength of the assumption being made by the

imputer.

Conclusion

While we welcome Carpenter et al.’s proposals, we are concerned that they may cause

bias when deviations are informative (Problem 1). Methods from the causal inference

literature (White, 2005) may be helpful to avoid such bias. Problem 2 may be of less

practical importance if the reduction in variance caused by making a highly informative

assumption like ‘jump to reference’ is unwanted. If this is so, the positive bias in the RR
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variance estimator may balance this reduction, thus yielding a variance estimate that

better reflects the real uncertainty. However, it is not clear how this estimate should

be interpreted in terms of repeated sampling. Alternatively, one could seek a different

variance estimator, e.g. using the general methodology of Robins and Wang (2000). Lu

(2013) used the delta method to derive a variance estimator that is consistent under an

assumption somewhat similar to ‘copy reference’. He also derived a related Bayesian

estimator.
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