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Multiple imputation for an incomplete
covariate that is a ratio
Tim P. Morris,a,b*† Ian R. White,b Patrick Royston,a
Shaun R. Seamanb and Angela M. Woodc

We are concerned with multiple imputation of the ratio of two variables, which is to be used as a covariate in
a regression analysis. If the numerator and denominator are not missing simultaneously, it seems sensible to
make use of the observed variable in the imputation model. One such strategy is to impute missing values for
the numerator and denominator, or the log-transformed numerator and denominator, and then calculate the
ratio of interest; we call this ‘passive’ imputation. Alternatively, missing ratio values might be imputed directly,
with or without the numerator and/or the denominator in the imputation model; we call this ‘active’ imputa-
tion. In two motivating datasets, one involving body mass index as a covariate and the other involving the ratio
of total to high-density lipoprotein cholesterol, we assess the sensitivity of results to the choice of imputation
model and, as an alternative, explore fully Bayesian joint models for the outcome and incomplete ratio. Fully
Bayesian approaches using WinBUGS were unusable in both datasets because of computational problems. In our
first dataset, multiple imputation results are similar regardless of the imputation model; in the second, results
are sensitive to the choice of imputation model. Sensitivity depends strongly on the coefficient of variation of the
ratio’s denominator. A simulation study demonstrates that passive imputation without transformation is risky
because it can lead to downward bias when the coefficient of variation of the ratio’s denominator is larger than
about 0.1. Active imputation or passive imputation after log-transformation is preferable. © 2013 The Authors.
Statistics in Medicine published by John Wiley & Sons, Ltd.

Keywords: missing data; multiple imputation; ratios; compatibility

1. Introduction

Missing values of covariates are a common problem in regression analyses. Missing data are classi-
fied as being missing completely at random (MCAR) if missingness does not depend on observed or
unobserved data, missing at random (MAR) if missingness does not depend on unobserved data given
observed data, or missing not at random if missingness depends on missing data even given the observed
data [1]. Amongst methods that attempt to deal with missing data, rather than discarding them, multiple
imputation (MI) can provide valid inference under MAR and has become popular in practice since its
inception over 30 years ago [2].

Briefly, MI works as follows. Missing values are replaced with imputed values, drawn from their pos-
terior predictive distribution under a model given the observed data. We term this model the imputation
model. The process is repeated M > 1 times, giving M imputed datasets with no missing values. Each
imputed dataset is analysed using the model that would have been used had the missing values been
observed. We call this model the analysis model. TheM estimates of each parameter of interest are then
combined using ‘Rubin’s rules’ [3]. When the imputation model is correctly specified, Rubin’s rules can
provide standard errors and confidence intervals that fully incorporate uncertainty due to missing data.
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MI is an attractive tool for analyses with missing data: The nuisance issue of modelling missing
data is neatly separated from the analyses of substantive interest; the imputation model can make use
of auxiliary variables that it would be undesirable to include as covariates in the analysis model (such
as post-baseline measurements in a randomised controlled trial); the same M imputed datasets can be
used for a variety of substantive analyses; and the imputation model can be tailored to reflect possible
departures from MAR, which is helpful for sensitivity analysis.

Ratios are commonly used as covariates in regression analyses; examples are body mass index (BMI
DWeight in kg� (Height in m)2) [4], waist–hip ratio [5], urinary albumin-to-creatinine ratio (Albumin
concentration in mg/g � Creatinine concentration in mg/g) [6], and what we refer to as ‘cholesterol
ratio’ (Total cholesterol in mg/dL� HDL in mg/dL) [7].

An individual’s ratio measurement may be missing for one of the three reasons:

(1) The denominator is missing.
(2) The numerator is missing.
(3) Both components are missing.

For both 1 and 2, the ratio is semi-missing rather than fully missing; that is, one of the two components is
observed. Ratio missingness due to more than one of these reasons for different observations in the same
dataset means it is not obvious how best to impute the ratio. A mixture of reasons 1 and 2 is particularly
awkward.

One reasonable question at this stage is, ‘Why use a ratio covariate?’ There are mathematical argu-
ments against their use [8]. Senn and Julious claim that ratios are always poor candidates for parametric
analysis unless the components, and therefore the ratio, follow a lognormal distribution or the ratio’s
coefficient of variation (CV) is small [9]. We make three points. First, applied researchers do use ratios,
and we are unlikely to persuade them to stop, especially because the use of certain ratios is well estab-
lished; we should be pragmatic and try to guide practitioners on how to analyse datasets involving
incomplete ratio covariates. Second, arguments against ratios assume that a ratio is not the correct func-
tional form for a covariate, but it may be. Third, ratios are not used by accident: A ratio may be of genuine
substantive interest when its separate components are not. For example, BMI is widely used because it
measures weight-for-height and as such is regarded as a proxy measure of body fat. Substantive interest
is in the influence of body fat on outcome, not weight or height. Weight alone may be considered a
measure of body fat, but BMI is measured with less error because it aims to remove the effect of height
(although it may not do so completely or accurately). It is our opinion that when researchers propose a
relationship they believe, such as the influence of a ratio on outcome, this should not be cast aside lightly.
The substantive question should not be altered for statistical convenience unless we have little choice.

We assume that the aims of analysis are unbiased estimation of a parameter describing the association
between a ratio and some outcome, confidence intervals with the ascribed coverage and fully efficient
parameter estimation. There may be other covariates in the analysis model, and primary interest may
be in one of these, but the properties of the ratio parameter estimator are important nonetheless. There
has been no previous methodological work on MI for a ratio covariate, although White et al. [10] and
Bartlett et al. [11] allude to the issue, but practitioners are imputing ratio covariates nonetheless [12]. We
aim to highlight issues with imputing an incomplete ratio covariate and to identify imputation strategies
that are practicable for applied statisticians.

Despite the positive features listed previously, MI is neither the only approach to dealing with missing
covariates, nor necessarily the best approach for any given analysis. Joint models for the outcome and
covariates may be superior because they make use of the full likelihood in a coherent way. In this paper,
we also investigate results for fully Bayesian joint models.

The remainder of this paper is as follows. In Section 2, we introduce and describe our two motivating
datasets; in Section 3, we consider candidate models for imputing incomplete ratios. Section 4 presents
two case studies, contrasting the different imputation models (for the datasets introduced in Section 2).
Section 5 presents a simulation study in a simpler setting than our case studies; and Section 6 is a
discussion.

2. Datasets: Aurum and EPIC-Norfolk

For both of our datasets, regression analyses involving a ratio as a covariate have previously been pub-
lished [4, 7]. The analysis models used in our example analyses are not the same as the original articles
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because of the following: (i) we want to keep the analysis models and imputation models relatively sim-
ple, and (ii) we do not wish to make any substantive claims about these data. Therefore, we have chosen
to use analysis models resembling but not matching those used in the earlier publications [4, 7].

For both datasets, the analysis model is the Cox model,

hi .t j xi /D h0.t/ exp

 
pX
cD1

ˇcxci

!
; (1)

where h0.t/ is the nonparametric baseline hazard function at time t , hi .t j xi / is the hazard for the i th
individual and xci is the value of the cth covariate in the i th individual. Survival (or censoring) times are
assumed to be fully observed.

2.1. The Aurum cohort

The Aurum dataset comes from a South African cohort study of 1350 HIV-infected participants starting
antiretroviral therapy. Participants were recruited from 27 centres in five provinces between February
2005 and June 2006 and followed to March 2007. Information was recorded on a range of baseline char-
acteristics, and participants were followed up for death. The aim of the work by Russell et al. [4] was to
estimate the influence of hæmoglobin on mortality using a Cox model. Of the participants, 1348 had a
recorded time of death/censoring, with 185 deaths occurring within the follow-up time. We restrict our
analysis to these 1348 individuals.

The analysis model is (1) with p D 6, where x1; : : : ; x6 are age in years, sex, hæmoglobin in g/mL,
viral load in copies per mL, CD4 count in cells per �L and BMI. Table I provides a summary of these

Table I. Aurum summary of covariates and of the analysis model and components of body mass index (BMI);
nD 1348.

Mean (SD)
Covariate Frequency missing (%) or frequency (%)

x1 Age (years) 0 (0%) 37 (9)
x2 Sex: male 0 (0%) 542 (40%)
x3 Hæmoglobin (g/mL) 143 (11%) 11.4 (2.3)
x4 *Viral load (copies per mL) 162 (12%) 4.8 (0.8)�

x5 *CD4 count (cells per �L) 94 (7%) 8.9 (4.5)�

x6 D a1=a2 BMI (kg/m2) 381 (28%) 21.9 (4.9)

a1
�Weight (kg) 376 (28%) 58 (12)

a2
�Height (m2) 275 (20%) 2.7 (0.3)�

*Transformation used for viral load is log10.x4/; transformation used for CD4 count is
p
x5. These are standard

transformations in HIV research, and we use them in the imputation models and the analysis models.
�Summarised on transformed scale.
�Only enters into the analysis model via BMI.

Table II. EPIC-Norfolk summary of covariates of the analysis model and of components of cholesterol ratio;
nD 22 754.

Mean (SD)
Covariate Frequency missing (%) or frequency (%)

x1 Age (years) 0 (0%) 59 (9)
x2 Sex: male 0 (0%) 10 145 (45%)
x3 Smoking status: ever smoked 0 (0%) 11 971 (53%)
x4 Systolic blood pressure (mm Hg) 52 (<1%) 135 (18)
x5 Diastolic blood pressure (mm Hg) 52 (<1%) 82 (11)
x6 D a1=a2 Cholesterol ratio 2155 (9%) 4.7 (1.6)

a1
�Total cholesterol (mg/dl) 1514 (7%) 6.2 (1.2)

a2
�HDL (mg/dl) 2155 (9%) 1.4 (0.4)

�Only enters into the analysis model via cholesterol ratio.

90

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 88–104



T. P. MORRIS ET AL.

covariates and of weight and height. We give transformations of the covariates used in the analysis model,
and summarise the transformed measure in the final column. Note that 381 (28%) patients are missing a
weight and/or height measurement, but only five of these have height missing when weight is observed.
Five of the covariates are continuous, and one (sex, which is complete) is categorical. Hæmoglobin,
weight, height2 and BMI appear to be approximately normal on the transformed scale, while (log) viral
load and (square root of) CD4 count do not. We focus on the estimation of ˇ3 and ˇ6, the log hazard
ratios for hæmoglobin and BMI, respectively, (hæmoglobin was the focus of the original publication
[4]).

2.2. The EPIC-Norfolk cohort

The European Prospective Investigation Into Cancer and Nutrition (EPIC)-Norfolk study is a large
cohort study designed to investigate the link between dietary factors and cancer. Dietary and non-
dietary factors were collected at baseline, and participants were followed up for cancer and non-cancer
outcomes. We use some of the non-dietary characteristics as covariates and time to death as the outcome.

The analysis model is (1) with p D 6, where x1; : : : ; x6 are age, sex, smoking status, systolic blood
pressure, diastolic blood pressure and cholesterol ratio. We summarise these six covariates and total
cholesterol and HDL in Table II; none are transformed. In total, 2155 (9%) participants are missing a
total cholesterol and/or HDL measurement. Total cholesterol is always missing when HDL is missing.
Incomplete covariates are all continuous and appear approximately normal, except for HDL, which is
positively skewed. We focus on the estimation of ˇ6, the log hazard ratio for cholesterol ratio.

3. Methods and models

3.1. Model for analysis

The analysis model is the Cox model (1) with p covariates .x1; : : : ; xp/made up of the ratio xp D a1=a2
and p � 1 other covariates .x1; : : : ; xp�1/, which we denote .z;w/ where z are incomplete and w are
complete (in both example datasets, we have z and w).

3.2. Models for missing data

We list candidate models for the covariates in Table III (note the Label column, which we henceforth
use to refer to models). For MI, the outcome must be explicitly included as a covariate in the imputation
model [13]. In Table III, we denote outcome by f .yi /. For the Cox model, f .yi / involves a censor-
ing indicator and the Nelson–Aalen estimate of the cumulative hazard function to the survival time (an
approximation to the cumulative baseline hazard function H0.t/ [14]), included as separate covariates
in the imputation model. When the analysis model is linear or logistic regression, f .yi /D yi .

3.3. Compatibility in relation to active and passive imputation

Multiple imputation can provide an approximation to fitting a joint model if the models for imputation
and analysis are compatible [15], where a joint model may be either maximum likelihood or Bayesian (if
the joint model is Bayesian, compatibility also requires that priors are non-zero over the entire parameter

Table III. Candidate imputation models for xi .

Imputation model Label Relationship to analysis model

.zi ; xpi j f .yi /;wi /�MVN M1 Compatible

.zi ; xpi ; a1i j f .yi /;wi /�MVN M2 Semi-compatible

.zi ; xpi ; a2i j f .yi /;wi /�MVN M3 Semi-compatible

.zi ; xpi ; a1i ; a2i j f .yi /;wi /�MVN M4 Semi-compatible
�.zi ; a1i ; a2i j f .yi /;wi /�MVN M5 Incompatible
�.zi ; ln.a1i /; ln.a2i / j f .yi /;wi /�MVN M6 Incompatible

�Passive imputation of xpi D
a1i
a2i

is required.
�Passive imputation of xpi D expŒln.a1i /� ln.a2i /� is required.
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space). Considering whether or not the models M1–M6 are compatible with the analysis model helps us
to formulate hypotheses and understand future results.

By ‘compatible’, we mean that a joint model exists that implies both the imputation model and the
analysis model as conditional models. This does not mean that the joint model is correct, but that the anal-
ysis model and imputation model are both implied by it, and so the MI procedure is coherent. Appendix A
describes how to tell if models are compatible and works through two examples of imputation models
where one is compatible and the other is not (A.1 and A.2, respectively).

Compatibility is related the concept of ‘congeniality’, and the term congeniality is often used to mean
compatibility [10, 16, 17]. Congeniality requires that the joint model from which the imputation and
analysis models can be derived is Bayesian. Further, the researcher’s incomplete and complete data pro-
cedures must be specified, and the inferences must be asymptotically equivalent to a Bayesian model.
We refer interested readers to Meng [18].

Non-compatibility of models is not always problematic; Meng [18] and Rubin [19] have both shown
that there can be some benefit to using imputation models that correctly draw on information not used
by the analysis model. Collins, Schafer and Kam demonstrate via simulation that auxiliary variables (i.e.
variables that are in the imputation model but not the analysis model) are unlikely to be harmful, and may
be of benefit by making the MAR assumption more plausible, while ‘restrictive’ imputation strategies
can lead to problems [20].

We therefore distinguish between two types of non-compatibility: If there is a special case of the
imputation model that is compatible with the analysis model, as when it includes auxiliary variables,
then the imputation model is termed ‘semi-compatible’ (following Liu et al. [21]); otherwise, the impu-
tation model is simply termed ‘incompatible’. In previous work, imputation models that are compatible
or semi-compatible appear to perform well even when misspecified [22, 23], but this is not necessarily
true for imputation models that are incompatible [20,23]. We hypothesise that imputation models that are
compatible or semi-compatible will be more robust to modest degrees of misspecification than models
that are incompatible.

Imputation of a ratio is performed either actively or passively. Of the imputation models listed in
Table III, only M1 is compatible with the analysis model. Of the remaining models M2–M4, which use
active imputation, are semi-compatible because they include a1 and/or a2, which do not appear in the
analysis model, as auxiliary variables in the imputation model; models M5 and M6, which use passive
imputation, are incompatible with the analysis model because xp is present in the analysis model but
not in the imputation model, while a1 and a2 are present in the imputation model but not in the analysis
model. We expect models M5 and M6 to be prone to bias and poor coverage, despite making use of all
the observed data when imputing the ratio.

3.4. Motivation for missing data models

The choice of a model listed in Table III might be motivated by the way it makes use of observed
information in a1; a2, which will depend on the pattern of missingness.

Model M1 may be a good approach when a1; a2 are missing simultaneously. If a1 is only missing
when a2 is missing, M2 may be used because model M2 makes use of observed a1 values when imput-
ing the ratio, and there is no information in a2 about missing values of a1 that might be used to improve
imputation of xp . (Conversely, if a2 is only missing when a1 is missing, M3 may be attractive.) Note
that M2 and M3 do not respect the deterministic relationship xp D a1=a2.

Model M4 makes use of information on a1; a2 by imputing both alongside xp; this may be motivated
by having a1, a2 or both missing. This is similar to the approach advocated by von Hippel [22], which
has been termed just another variable [10,23]. As with M2 and M3, the model ignores the deterministic
relationship xp D a1=a2 and assumes multivariate normality. This will appear a bizarre assumption; it is
clearly wrong because the distributions of two of these variables must define the distribution of the third,
yet software does not know this and will sample without complaint. If the assumption made by M4 is
uncomfortable, we may be attracted to M5 or M6.

Model M5 is incompatible with the analysis model (Appendix A.1) and requires xp to be imputed pas-
sively from imputed values of a1=a2. The components a1; a2 are not auxiliary but completely determine
the values of xp . The ratio of a1 and a2, which are both normal, is expected to be heavy tailed.

M6 alters the problem by transforming xp into a linear function of its logged components and pas-
sively imputing it. Model M6 guarantees that imputed values of a1; a2 are positive, as with all observed
ratios. While this may be desirable, it is important to remember that our primary goal is valid inference,
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and we are not trying to recreate the missing values [19,24]. The cosmetics of this model should therefore
be a secondary consideration.

We have omitted from Table III the imputation model .zi ; ln.xpi / j f .yi //�MVN. We do not con-
sider this because ln.xp/ D ln.a1/ � ln.a2/ where ln.a1/ and ln.a2/ are normal, and the sum of two
normal distributions is normal. Model M6 is therefore equivalent to imputing ln.xp/ but makes more
use of the observed data when components are not simultaneously missing. The only setting where mod-
elling ln.xp/ alone is appropriate is if (a1; a2) are always either both observed or both missing. In this
case, the model would then be equivalent to M6.

To summarise our discussion of the models in Table III, there are conceptual problems with each one:
Model M1 is compatible with the analysis model but does not use information on observed a1 or a2 when
the other component is missing; M2–M4 are likely to be misspecified; and M5 and M6, the two models
that make use of all the observed information on a1 and a2 and respect the relationship xp D a1=a2, are
incompatible with the analysis model.

3.5. Software and details of imputation

We used Stata 12’s mi suite for MI in our case studies and simulations in Section 5 [25, 26]. We
performed multiple imputation using mi impute mvn, and implemented Rubin’s rules using mi
estimate.

Advice on the number of imputations typically suggests that a small number (fewer than 10) is suffi-
cient [16]. This idea comes from comparing the length of confidence intervals based on M imputations
to intervals based on 1 imputations. Our view on choosing the number of imputations, described in
White et al. [10], is slightly different, being based on the reproducibility of analyses. To achieve negli-
gible Monte Carlo error from our MI analyses, we use M D 300 imputations for the Aurum case study
and M D 100 for EPIC-Norfolk. Note that we are not advocating such large values of M in general.

Our imputation models, all of which are based on a multivariate normal model, used a burn-in of
1000 iterations of the MCMC chain. Thereafter, we stored imputed datasets at every 10th iteration of the
chain.

4. Case studies

This section presents the results for MI. However, in analyses with missing data, Bayesian models are
widely regarded as a sensible alternative if there is reason to be suspicious of MI results. We outline
and present Bayesian analyses of the Aurum and Epic datasets, corresponding to the MI approaches
presented in this section, in Appendix B.

4.1. Imputing body mass index in the Aurum cohort

The MI procedures took between 2 min, 7 s (M1) and 2 min, 44 s (M6) to impute 300 times, fit the
analysis model in each imputed dataset and use Rubin’s rules to combine estimates.

Figure 1 shows estimates resulting from different imputation models. There is very little difference
in the point estimates or width of confidence intervals; all returned essentially the same result. The
number of imputations meant Monte Carlo error was negligible, at a maximum reaching 1/50th of the
estimated standard error. The relative efficiency versus infinite M was > 0:999 for all models. For both
hæmoglobin and BMI, the MI estimates gave a slight change in the point estimate and a small reduction
in the width of confidence intervals as compared to complete cases.

4.2. Imputing cholesterol ratio in the EPIC-Norfolk cohort

For MI of the EPIC-Norfolk data, we used M D 100. We used a smaller number of imputations than
in Aurum because only 9% of individuals were missing cholesterol ratio. MI took between 19 min, 2 s
(M1) and 21 min, 0 s (M5) to impute 100 times, analyse each imputed dataset and combine estimates
using Rubin’s rules. The relative efficiency versus infinite M was > 0:999 for all models except M5,
where relative efficiency was 0.991.

There was consistency between estimates from models that impute cholesterol ratio directly
(Figure 2). Monte Carlo error for point estimates was negligible (around 0.0005, less than 1/50th of
the standard error) for all models except M5 where it was 0.003. MI models are less consistent than
in the Aurum MI analyses but would in five of six cases give similar substantive conclusions. These
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ae

Figure 1. Results from analyses of Aurum data under different models for imputing body mass index (BMI). The
estimated fraction of missing information (FMI) is given next to multiple imputation analyses.

Figure 2. Results from analyses of EPIC-Norfolk data under different models for cholesterol ratio. The estimated
fraction of missing information (FMI) is given next to multiple imputation analyses.

estimates are also very similar to complete-cases analysis and, interestingly, the imputation model that
passively imputes cholesterol ratio through log-total cholesterol and log-HDL. However, the estimate
after the standard passive imputation approach (M5) is much closer to the null, with wider confidence
intervals.

Figure 3 demonstrates the problem with model M5 in the EPIC-Norfolk data, plotting imputed values
of cholesterol ratio from a single, typical, imputed dataset under models M1–M6 alongside 2155 ran-
domly selected observed values. The largest observed value of cholesterol ratio was 15.7. Note that for
model M5, some imputed values were very large or very small; plotting these extreme values distorted
the y-axis, and so we have censored the y-axis below �3 and above +20, ranking and listing the values
of imputed HDL and cholesterol ratio values outside of this range.

The problem with M5 arises because the mean and SD of HDL are 1.42 and 0.42, respectively, mean-
ing its coefficient of variation (CV) is 0.30, resulting in a danger of a2 being imputed close to zero or
even negatively. This CV is far larger than in the Aurum data, where CV(height2) D 0.11 and imputed
values are never close to zero (data not shown).

Figure 3 also highlights the difference between the other imputation models. Imputation on the
log scale (M6) is the only model to guarantee that a1; a2 and xp are positive. Further, the imputed
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Figure 3. Dotplot of imputed cholesterol ratio for single (typical) imputed datasets in EPIC-Norfolk under mod-
els M1–M6. Imputed values of xp < 3 or xp > 20 are not plotted but represented according to rank; imputed

values of .xp; a1/ are listed.

values closely resemble the observed. M1–M4 can and did impute some xp < 0; these models all
assume xp� N, and so the distribution of imputed values is symmetrical about its mean. By looking at
Figure 3, model M6 appears to be appealing, while from a statistical inference perspective (Figure 2),
there appears to be little to choose between M6 and M1–M4. From all perspectives, M5 is a poor choice.

4.2.1. Predictive mean matching. A natural question about model M5 that arises from Figure 3 is
whether removing the high-leverage points could reduce the bias. For example, a truncated normal impu-
tation model could be used to invoke the constraint xp > 0, which would remove the negative outliers
of model M5.

A better alternative, which can also remove the positive outliers, is predictive mean matching (PMM)
[10, 27, 28]. Briefly, the imputation model is fitted, and for each individual with a missing value, the k
individuals (‘donors’) with observed values with the closest predicted mean are identified. One of these
is selected at random and their value ‘donated’ as the imputed value. This ensures that imputed values
are within the range of observed values.

To improve model M5, PMM is most easily implemented in a chained equations procedure [10].
Imputation of a1 and a2 uses PMM, and xp is passively imputed. The largest possible imputed value of
xp is then the ratio of the largest observed value of a1 to the smallest observed value of a2 (and vice
versa for the smallest imputed value of xp).

We used this imputation model on the EPIC-Norfolk data, using k D 10 and storing imputed values
after 10 cycles of chained equations. This reduced the bias of model M5, giving an estimated log-hazard
ratio of 0.119 (95% CI 0.079–0.159). See Appendix C for the full results.

5. Simulation study

5.1. Design

We performed a simulation study designed to investigate models M1–M6 in a simpler setting than the
two case studies. With xp as the only covariate and a continuous outcome y, we investigated the perfor-
mance of the imputation models and how this varied with the strength of xp–y association and the CV
of the ratio’s denominator, CV.a2/. This affects the distribution of xp , and we hypothesise that when
CV.a2/ is large, model M5 will be biased. An imputed value of a2i may be very small, meaning the cor-
responding value of xpi will be large, and possibly outside the range of observed xp . The xpi will thus
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have high leverage. For such values, there are unlikely to be appropriately large or small y to preserve
the true xp–y relationship, which leads us to expect bias towards no association.

Scenarios investigated include two values of CV.a2/: 0.1, taken from height2 in the Aurum data, and
0.3, taken from HDL in the EPIC-Norfolk data; we vary these factorially with R2 values of 0.1 and 0.3.
We performed all simulations using Stata 12 [25]. Our simulation procedures were as follows:

(1) Simulate n D 500 complete values of ln.a1/; ln.a2/ to follow a bivariate normal distribution.
In our first scenario, the mean, standard deviation and correlation are taken from ln(weight) and
ln(height2) in the Aurum data: ln.a1/ has mean 4 and SD 0.21, ln.a2/ has mean 0.97 and SD 0.11,
and Corr.ln.a1/; ln.a2//D 0:22. This gives CV(a2)D 0.1.

(2) Generate complete xp D exp.ln.a1/� ln.a2//, meaning that xp follows a lognormal distribution.
For the ratios and components in our two example datasets, the lognormal distribution seems to
be a suitable choice.

(3) Simulate y� N.ˇ0Cˇ1xp; �2/. We used the same value of ˇ1 (arbitrarily 2) throughout to make
bias comparable across all simulation settings. To vary the strength of association, we altered �2

to achieve the desired R2.
(4) Simulate binary indicators of response, R1 and R2, for a1 and a2, respectively. Each R is gener-

ated independently from the model logitfP.R D 1/g D �0 C �1y. Under MCAR, �1 D 0. Under
MAR, �1 is chosen so that ROC analysis of y versus an indicator of response R produces a mean
area under the curve of 0.65. This is to achieve the same degree of MAR across scenarios. We
then alter �0 so that P.R1 D 1/ D P.R2 D 1/ D 0:75. Because �1 has the same sign for both R1
and R2 and both depend on y, the probability of a1; a2 being missing simultaneously is slightly
larger under MAR than MCAR. This means that the overall proportion of observations missing
xp is slightly smaller under MAR (42% missing xp) than MCAR (44% missing xp).

(5) Set a1i to missing if R1i D 0, a2i to missing if R2i D 0 and xpi to missing if R1i D 0 or R2i D 0.
(6) Impute xp five times using each of the models M1–M6 (Table III).
(7) Fit the correct analysis model to each imputed dataset, and combine the results using Rubin’s

rules.

We used 5000 replicates of this process under each combination of simulation settings. Interest is
in ˇ1. We calculated bias, coverage of 95% confidence intervals and efficiency of Ǒ1 (expressed by
the empirical standard error, SD. Ǒ1/ over all replications [29]) under models M1–M6, with analysis of
complete data (i.e. before any data are set to missing) and complete cases (dropping observations with
missing xp) also provided for reference.

5.2. Results

Table IV summarises the results of our simulation study. Results of the complete data and complete cases
analyses are both as expected. Complete data are always unbiased with 95% coverage and the smallest
empirical standard error of all methods. Complete cases are unbiased under MCAR but biased under
MAR. Coverage is correspondingly low, and efficiency is lower than complete data.

M1 is mainly unbiased, but there is a small upward bias under MAR and R2 D 0:3, and coverage is
slightly low when data are MAR. This is perhaps because it assumes normality for xp when it is actually
lognormal. M1 also tends to be inefficient compared to other imputation models, as would be expected,
regardless of the missingness mechanism.

With this general pattern of missingness, M3 is usually more biased than M2, although coverage tends
to be similar (except where CV(a2) D 0.3 and R2 D 0:3). Efficiency of M2 and M3 seems to depend
on CV(a2) and R2. Model M4 has similar bias to M2 and M3; at worst, this reaches about 4% with
both large CV(a2) and R2. Empirical standard errors for M4 are at least as small as M2 and M3, while
coverage tends to be good except when both CV(a2) and R2 are 0.3.

Model M5 performs well in the two scenarios when CV.a2/ D 0:1. There is a small downward bias,
but efficiency and coverage are both good compared with other methods. However, when CV(a2)D 0.3,
we observe unacceptable bias towards the null and lower efficiency than other methods, although cov-
erage is still over 90%. When considered alongside bias, this coverage implies that while the empirical
standard error is large, the estimated standard errors are even larger, reducing the effect of the large bias
on coverage and implying low power.
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Table IV. Simulation results: bias, coverage and efficiency of different imputation models.

Bias (ˇ1 D 2) Empirical SE Coverage

R2 CV.a2/ Imputation model MCAR MAR MCAR MAR MCAR MAR

0.1 0.1 Complete data 0.000 0.273 95.2
Complete cases 0.003 �0.172 0.366 0.352 95.1 92.6

x M1 �0.005 �0.004 0.368 0.386 93.8 94.9
x; a1 M2 �0.001 0.002 0.333 0.345 94.6 94.7
x; a2 M3 �0.009 �0.003 0.363 0.383 94.6 94.9

x; a1; a2 M4 �0.005 0.005 0.330 0.342 94.7 95.0
a1; a2 M5 �0.017 �0.016 0.328 0.337 94.8 95.0

ln.a1/; ln.a2/ M6 �0.016 �0.034 0.329 0.332 94.9 95.1

0.1 0.3 Complete data 0.006 0.267 95.3
Complete cases 0.001 �0.168 0.359 0.351 95.3 92.9

x M1 �0.009 0.005 0.358 0.385 94.7 94.9
x; a1 M2 �0.007 0.014 0.348 0.372 94.9 94.9
x; a2 M3 �0.001 0.031 0.334 0.362 95.4 95.0

x; a1; a2 M4 �0.001 0.038 0.325 0.346 95.0 94.7
a1; a2 M5 �0.562 �0.665 0.350 0.334 94.3 92.6

ln.a1/; ln.a2/ M6 �0.038 �0.064 0.313 0.318 95.8 95.4

0.3 0.1 Complete data 0.003 0.137 95.2
Complete cases 0.001 �0.139 0.183 0.188 95.5 88.5

x M1 �0.005 0.031 0.171 0.187 95.3 94.0
x; a1 M2 �0.003 0.026 0.159 0.171 95.8 95.0
x; a2 M3 �0.007 0.029 0.170 0.188 95.2 93.8

x; a1; a2 M4 �0.003 0.026 0.159 0.171 95.9 94.6
a1; a2 M5 �0.016 0.000 0.158 0.168 96.1 95.3

ln.a1/; ln.a2/ M6 �0.016 �0.031 0.158 0.163 96.2 95.6

0.3 0.3 Complete data �0.002 0.137 95.0
Complete cases �0.006 �0.143 0.184 0.192 94.9 88.5

x M1 �0.009 0.054 0.174 0.196 94.2 93.0
x; a1 M2 �0.012 0.057 0.172 0.193 94.8 93.3
x; a2 M3 �0.010 0.076 0.170 0.191 94.3 91.5

x; a1; a2 M4 �0.009 0.080 0.167 0.187 94.2 91.8
a1; a2 M5 �0.580 �0.814 0.287 0.300 94.3 93.3

ln.a1/; ln.a2/ M6 �0.051 �0.070 0.162 0.164 95.1 94.6

SE, standard error; CV, coefficient of variation; MCAR, missing completely at random; MAR, missing at random.

M6 is more biased than M5 when CV(a2) D 0.1 but much less so when CV(a2) D 0.3. Across all of
our settings, it is more efficient than M1–M5 and with coverage close to 95%. If the small bias seems
acceptable, then this is the best imputation model.

6. Discussion

We have presented the results of two case studies involving commonly used ratios and a simulation study
based in part on these datasets. A key message is the caution against passive imputation of a1 and a2
without prior transformation. Superficially, the approach appears to make more use of the available data;
however, it is often inefficient and can suffer from large bias. Our analysis of the EPIC-Norfolk data
demonstrated this problem in practice. However, in our Aurum case study, the use of passive imputation
appeared to make little difference to the substantive results compared to active imputation. Our simula-
tion study confirmed that problems arise when CV(a2) is large. Note that a ratio with very small CV(a2)
is unlikely to be used in applied work (unless CV(a1) is also very small) because as CV.a2/ ! 0,
xp becomes a function of a1 divided by a constant. We therefore recommend that incomplete ratios be
imputed actively or passively after log transformation as in model M6.
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In considering models for missing data, joint models for the covariates and outcome are attractive
because they use the full data likelihood in a coherent way. In our two case studies, we attempted to fit
fully Bayesian joint models and summarise posterior distributions for parameters of interest. Computa-
tional problems prevented this approach from being useful. In one dataset, some of the models did not
appear to converge to any true posterior distribution (or if they did, results were extraordinarily sensitive
to the choice of model for the ratio). In the other dataset, it was not possible to load the observed data
into WinBUGS, and so the attempt was abandoned.

Compatibility is a useful concept for considering whether various imputation models are sensible. We
hypothesised that models M1 and M2–M4 would perform well because of being compatible and semi-
compatible respectively, while models M5 and M6 would perform poorly because of being incompatible.
In our simulations, M1–M4 did tend to perform well despite being misspecified, and model M5 did often
perform poorly. In our EPIC-Norfolk example, where model M5 gave nonsense results, problems could
be identified by inspecting the imputed values of xp .

Model M6 was surprisingly as good as any other model considered throughout. Despite being
more robust than M5, we know it is not completely ‘safe’. In our simulation study, the imputation
model assumed .log.a1/; log.a2/ j y/� N, and because log.xp/ D log.a1/ � log.a2/, this implies
.log.xp/ j y/� N. The imputation model therefore has mean function log.xp/ D ˛0 C ˛1y, while
the analysis model has mean function y D ˇ0Cˇ1xp . In further simulations, we noted that M6 was still
robust when R2 D 0:5 and CV(a2) D 0.3 (results not shown). We can provide no guarantee for greater
values other than that this model will eventually fall apart. However, it is our experience that associations
stronger than R2 D 0:5 are rare in medical applications.

Some of the issues with model M5 could have been alleviated by using partly parametric imputation
techniques such as PMM [30] or local residual draws [28]. In practice, this requires a switch to the
chained equations approach rather than a multivariate imputation model. Because a parametric model is
used only to identify suitable donors, this makes it impossible to think about compatibility. We investi-
gated PMM in the problematic EPIC-Norfolk dataset and found model M5 much improved. PMM may
therefore be a useful adjunct to a suitably chosen imputation model.

In evaluating methods, we have focused on bias, coverage and efficiency. For those interested in accu-
rate prediction, efficiency may be more important and coverage less so or even unimportant [31]. It is
worth noting that precision is also lower for model M5. Therefore, if passive imputation is to be used for
a ratio in prediction settings, it should be performed on the log scale.

We have considered the imputation of ratio covariates. Some similar issues arise when the analysis
model contains any nonlinear function, for example, interactions and squares. The difference is that
in both cases, the main effects and their interaction, or the variable and its square, are included in the
analysis model. In the case of squares, a measurement and its square will also be observed or miss-
ing simultaneously. Imputation is then complicated by the fact that the analysis model contains both
the untransformed variable and a nonlinear function as covariates, rather than just the nonlinear func-
tion, as in the case of ratios. This makes issues around compatibility somewhat more complicated. See
von Hippel [22], Seaman et al. [23] and Bartlett et al. [11] for recent work on imputation of squares
and interactions.

Bartlett et al. proposed the use of rejection sampling when producing imputations and showed it
to be useful for imputing squares and interactions; this may therefore be a good approach for imput-
ing ratios. By explicitly involving the analysis model in the specification of the imputation model,
each imputation model used in the chained equations is compatible with the imputation model [11].
However, the method is more time intensive than any imputation models investigated here, and it
is yet to become available in standard software packages. It also sacrifices one of the advantages
of MI: separation of missing data issues from substantive analyses. However, this may be necessary
and has already been partly conceded when we tailor imputation models to be compatible with the
analysis model.

Appendix A. Compatibility

Section 3.3 models are compatible if a joint model exists that implies both as conditionals. How can
we tell whether there is a joint model underpinning both the imputation model and the analysis model?
Arnold et al. give a theorem that is restated here for clarity [32].
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Theorem 1
Given two conditional densities f .x j y/ and g.y j x/, a joint density exists if and only if f.x; y/ W
f .x j y/ > 0g D f.x; y/ W g.y j x/ > 0g, and there exist functions u.x/ and v.y/ such that, first,

f .x j y/

g.y j x/
D u.x/v.y/; (2)

and, second, u.x/ is integrable.

Here, u.x/ is a marginal density for x, and v.y/ is a marginal density for y. Later, we posit an analysis
model and check compatibility against two different imputation models using (2).

We distinguish between two kinds of non-compatibility:
Semi-compatibility: There is a special case of the imputation model that is compatible with the analysis
model.
Incompatibility: There is no case of the imputation model that is compatible with the analysis model.
That is, if setting certain parameters of the imputation model to 0 yields a compatible model, the impu-
tation model is drawing on more information than the analysis model and is richer rather than the same,
hence semi-compatible. If parameters of the imputation model cannot be set to 0 to identify a compatible
model, the imputation model is using different information to or less information than the analysis model.
Previous work has shown that incompatibility can be harmless or beneficial [18–20]. When the analy-
sis model is correctly specified, these are examples of using semi-compatible imputation models, while
incompatible imputation models are always harmful when the analysis model is correctly specified.

Appendices A.1 and A.2 work through two simple examples. For both, the analysis model involves
only the ratio as a covariate. Appendix A.1 uses model M5 and is shown to be incompatible; A.2 uses
model M1 and is shown to be compatible.

Instead of dividing the densities, we subtract the log-densities. For clarity, we omit the intercept terms
˛0 and ˇ0 from the imputation model and the analysis model, respectively, assuming both equal zero.
Note that because neither parameter involves a1; a2 nor y, this does not impact on compatibility.

A.1. Imputation model incompatible with the analysis model

Suppose the proposed analysis model is a linear regression of y on the ratio a1=a2. The log-density for
this is

� ln.�y
p
2�/�

�
y � ˇ a1

a2

�2
2�2y

: (3)

The proposed imputation model is a bivariate normal model,

.a1; a2 j y/ � BVN

��
˛1y

˛2y

�
;

�
�1 �

� �2

��
;

which has log-density

� ln
�
2��1�2

p
1� �2

�
�

1

2.1� �2/

"�
a1 � ˛1y

�1

�2
C

�
a2 � ˛2y

�2

�2
� 2�

�
a1 � ˛1y

�1

��
a2 � ˛2y

�2

�#
:

(4)

The imputation model (4) is of the form b.a1; a2/Cc.y/Cd1.a1y/Cd2.a2y/ and the analysis model

(3) is of the form b0.a1; a2/C c
0.y/C d3

�
a1
a2
y
�

. Subtracting one from the other, we cannot express the

result as u.a1; a2/� v.y/, indicating that they are incompatible.
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A.2. Imputation model compatible with the analysis model

The proposed analysis model is as in (A.1), and so the log-density is given by (3). However, the
imputation model involves a linear regression of a1

a2
on y. The log-density is

lnf

�
a1

a2

�
D� ln

�
�a
p
2�
�
�

�
a1
a2
� ˛y

�2
2�2a

: (5)

Subtracting (5) from (3), we obtain

ln
�
�a
p
2�
�
C

�
a1
a2

�2
2�2a

C
˛2y2

2�2a
�
2˛ a1

a2
y

2�2a
� ln

�
�y
p
2�
�
�
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2�2y
�
ˇ2
�
a1
a2

�2
2�2y

C
2ˇ a1

a2
y

2�2y
: (6)

By setting ˛=�2a D ˇ=�
2
y , we can express (6) without any terms involving both .a1; a2/ and y, indicating

that for any choice of (˛; �2a ), there are values of (ˇ; �2y ) for which the proposed imputation model is
compatible with the analysis model.

Appendix B. Bayesian models for an incomplete ratio

It is conceptually natural to model missing covariates using Bayesian methods. The problem discussed
in Section 3.3, that the imputation model and the analysis model may not correspond to any joint model,
does not exist for Bayesian models, where the model for missing data and the analysis model are joint.
The compatibility between the missing data model and the analysis model is thus assured.

The practical disadvantage of fully Bayesian models for an incomplete ratio and/or its components is
computation. Bayesian models are also in general more computationally demanding than MI. Further,
the imputation models described previously could be implemented fairly automatically using a choice of
software, while the Bayesian models require knowledge of WinBUGS [33] and/or the ability to code the
models manually in another package.

Here, we explore whether Bayesian models, by working with the full joint likelihood, will provide
more coherent results than MI. In our example datasets, we aim to obtain posterior means and credible
intervals under various models.

B.1. Models, software and priors

A Bayesian model combines model (1) with a model for the incomplete covariates given the complete
covariates. We list candidate Bayesian models for the covariates in Table B.1 (again, note the Label col-
umn, where the number corresponds to the imputation model with equivalent motivation). Section 3.5
and Appendix B.2 give details of how the Cox model is fit. In contrast to MI, no explicit conditioning on
the outcome is required for Bayesian models.

Note that, except for the lack of issues around compatibility, the critique of the imputation models
given in section 3.4 with equivalent labels applies equally to the Bayesian models given in Table B.1.
That is, models B1–B3 may ignore some of the observed data, while B2–B4 are likely to be misspecified
to some degree.

Table B.1. Candidate fully Bayesian models for xi .

Model for covariates Label

.zi ; xpi j wi /�MVN B1

.zi ; xpi ; a1i j wi /�MVN B2

.zi ; xpi ; a2i j wi /�MVN B3

.zi ; xpi ; a1i ; a2i j wi /�MVN B4

.zi ; a1i ; a2i j wi /�MVN B5

.zi ; ln.a1i /; ln.a2i / j wi /�MVN B6
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To fit Bayesian joint models in our case studies, we used WinBUGS 1.4.3 [33]. Because we are dealing
with the Cox model, we used the method outlined in the WinBUGS manuals (Leuk: survival analysis
using Cox regression in Examples Volume I) to specify the models [34].

We used vague prior distributions for all parameters (see B.2 for details).

B.2. Details on Bayesian analyses

Below, we give WinBUGS code used to demonstrate the setup of the fully Bayesian Cox model where
xp is modelled and a1; a2 are ignored (this is the model denoted B1 in Table III). Models B2–B6 differ
only in that they simply specify the models for BMI, weight and height2 differently.

The data file is made up of the covariates age sex hb logvl sqcd4 bmi, a vector of length
N indicating death fail, a vector of lengthN of survival times for all individuals obst, and a vector
of length T of distinct failure times t. Note that the data must be sorted in ascending order of obst
before being passed to WinBUGS. All covariates are centred at their mean.

model
{
# Set up data
for(i in 1:N) {

for(j in 1:T) {
# risk set = 1 if obst >= t
Y[i,j] <- step(obst[i] - t[j] + eps)
# counting process jump = 1 if obst in [ t[j], t[j+1] )
# i.e. if t[j] <= obst < t[j+1]
dN[i, j] <- Y[i, j] * step(t[j + 1] - obst[i] - eps) * fail[i]

}
}
# Analysis model
for(j in 1:T) {

for(i in 1:N) {
dN[i, j] ~ dpois(Idt[i, j]) # Likelihood
Idt[i, j] <- Y[i, j] * exp(eta[i]) * dL0[j] # Intensity

}
dL0[j] ~ dgamma(mu[j], c)
mu[j] <- dL0.star[j] * c # prior mean hazard

}
c <- 0.1
r <- 0.1
for (j in 1 : T) { dL0.star[j] <- r * (t[j + 1] - t[j]) }
for(i in 1:N) {

eta[i] <- (beta1*age[i]) + (beta2*sex[i]) + (beta3*hb[i]) + (beta4*logvl[i])
+ (beta5*sqcd4[i]) + (beta6*(bmi[i]))

}
# Model for covariates.
# The specified univariate distributions imply marginal multivariate normality
for(i in 1:N) {

# model for augmenting bmi
bmi[i] ~ dnorm(mubmi[i],0.01)
mubmi[i] <- dabmi0 + (dabmi1*age[i]) + (dabmi2*sex[i]) + (dabmi3*hb[i])

+ (dabmi4*logvl[i]) + (dabmi5*sqcd4[i])
# model for augmenting cd4 count
sqcd4[i] ~ dnorm(mucd4[i],0.01)
mucd4[i] <- dacd40 + (dacd41*age[i]) + (dacd42*sex[i]) + (dacd43*hb[i])

+ (dacd44*logvl[i])
# model for augmenting hb
logvl[i] ~ dnorm(muvl[i],0.01)
muvl[i] <- davl0 + (davl1*age[i]) + (davl2*sex[i]) + (davl3*hb[i])
# model for augmenting hb
hb[i] ~ dnorm(muhb[i],0.01)
muhb[i] <- dahb0 + (dahb1*age[i]) + (dahb2*sex[i])

}
beta1 ~ dnorm(0,0.01) # priors
beta2 ~ dnorm(0,0.01)
... [these priors are used for all parameters]
}
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The priors for regression coefficients are � N.0; 100/. The prior for dL0, the baseline intensity,
requires slightly more explanation. This is modelled as dL0 � �.crft.jC1/ � t.j /g; c/, that is, a gamma
distribution with mean rft.jC1/ � t.j /g and variance rft.jC1/ � t.j /g=c. The expression ft.jC1/ � t.j /g
is the time increment between the j th and j C 1th failure times; in the Aurum data, the mean time
increment was 8 days. Note that r is not invariant to the scale of t , although c is. We used c D 0:1 and
r D 0:1. A change of time scale would require r to be altered to obtain an equivalent prior distribution.

B.3. Results

Fitting the Bayesian models in WinBUGS was troublesome.
For the Aurum data, all MCMC chains ran slowly, and some stalled persistently. The simplest models

(for example B1) took 5–10 h to produce 5000 iterations of the MCMC sampler. Model B5 took 10 days
to produce 1000 iterations and would only update under a very specific set of initial values. WinBUGS

stalled repeatedly, and the need to set the model updating again inflated the run time. We present
results for model B5 but do not claim the MCMC sampling converged to the true posterior distribu-
tion. Results for model B6 are absent because WinBUGS was unable to sample at all; the reason for this
was unclear. WinBUGS ran a lot faster when fitting models that imputed missing values of xp actively,
that is, B1–B4.

Figure B.1 presents results for the Aurum data (contrasting with the results obtained via MI in
Figure 1). Posterior distributions obtained from different fully Bayesian analyses give diverse results.
For hæmoglobin, posterior means for all models except B5 are slightly closer to 0 than any of the MI
models, and the 95% credible intervals tend to be slightly shorter than the MI confidence intervals. This
may in part be the effect of the prior for the hazard, as seen in the comparison of Bayesian and frequentist
analysis of complete cases. Under model B5, the posterior distribution for the log hazard ratio had mean
much closer to zero with smaller posterior variance than under other models.

For BMI, posterior means from B1–B5 are very variable. B1 and B2 largely agree with the MI and
(Bayesian) complete cases estimates, although the intervals are longer than those obtained after MI. Pos-
terior means from B3 and B4 are closer to 0 and have shorter credible intervals than MI models or the
other Bayesian models. For B4, this perhaps reflects the incorrect assumption made about the joint dis-
tribution of xp; a1; a2 (this is surprising because the issue does not appear to affect model M4). Model
B5 shows an effect in the opposite direction to all other estimates. This was the model that was very dif-
ficult to run in WinBUGS. As noted previously, we do not claim B5 ever converged to the true posterior
density.

For the EPIC-Norfolk data, it was not possible to compile any of the fully Bayesian models in
WinBUGS, even for complete cases. We tried compiling the complete cases model for subsets of the
data of gradually increasing size (starting with n D 1000); model compilation failed beyond n > 4000.
The EPIC-Norfolk dataset is too large for WinBUGS, and so attempts to fit the fully Bayesian mod-
els were abandoned. This is a setting where a fully Bayesian analysis is impractical to any but the
most dedicated.

ae

Figure B.1. Results from analyses of Aurum data under different Bayesian models for body mass index (BMI).
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Figure C.1. Results from analyses of EPIC-Norfolk data under different models for cholesterol ratio using pre-
dictive mean matching. The estimated fraction of missing information (FMI) is given next to multiple imputation

analyses.

Appendix C. Results for EPIC-Norfolk after imputation using predictive
mean matching

As described in Section 4.2.1, we re-ran the imputation models for EPIC-Norfolk using PMM.
Figure C.1 gives the full results analogous to those given in Figure 2. Note that, with the exception
of model M5, there is less consistency between models than between the models that did not use PMM.
Note also that the fraction of missing information is uniformly greater for the models that use PMM.
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