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Gaining power and precision by using
model–based weights in the analysis of
late stage cancer trials with substantial
treatment switching
Jack Bowden,a,b*† Shaun Seaman,b Xin Huangc and Ian R Whiteb

In randomised controlled trials of treatments for late-stage cancer, it is common for control arm patients to
receive the experimental treatment around the point of disease progression. This treatment switching can dilute
the estimated treatment effect on overall survival and impact the assessment of a treatment’s benefit on health
economic evaluations. The rank-preserving structural failure time model of Robins and Tsiatis (Comm. Stat.,
20:2609–2631) offers a potential solution to this problem and is typically implemented using the logrank test.
However, in the presence of substantial switching, this test can have low power because the hazard ratio is not con-
stant over time. Schoenfeld (Biometrika, 68:316–319) showed that when the hazard ratio is not constant, weighted
versions of the logrank test become optimal. We present a weighted logrank test statistic for the late stage can-
cer trial context given the treatment switching pattern and working assumptions about the underlying hazard
function in the population. Simulations suggest that the weighted approach can lead to large efficiency gains in
either an intention-to-treat or a causal rank-preserving structural failure time model analysis compared with the
unweighted approach. Furthermore, violation of the working assumptions used in the derivation of the weights
only affects the efficiency of the estimates and does not induce bias or inflate the type I error rate. The weighted
logrank test statistic should therefore be considered for use as part of a careful secondary, exploratory analysis
of trial data affected by substantial treatment switching. © 2015 The Authors. Statistics in Medicine Published by
John Wiley & Sons Ltd.
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1. Introduction

In randomised controlled trials (RCTs) of late-stage cancer therapies, it is common to give the experi-
mental treatment to placebo arm patients at the point of disease progression. This could occur for several
reasons: an individual clinician may feel it the best course of action for their patient; it may be pre-
specified in the trial protocol as part a dynamic treatment strategy; or emerging evidence (internally
or externally to the specific RCT) of the active treatment’s benefit may have broken the original trial
equipoise. Regardless of the reason, treatment switching (also called contamination or cross-over) does
not generally affect the assessment of early outcome measures such as progression free survival but can
substantially dilute the estimated treatment effect on overall survival. For example, Demetri et al. [1]
reported the results of a randomised controlled trial into the use of Sunitinib for the treatment of advanced
gastrointestinal stromal tumours in patients for whom conventional therapy (Imatinib) had failed because
of resistance or intolerance. Early trial results were unequivocal; randomisation of patients to either
placebo or Sunitinib stopped early after a planned interim analysis showed a strong benefit in favour of
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the new treatment in terms of time to tumour progression (hazard ratio 0.33, p < 0.001). However, subse-
quent analysis and interpretation of the data were made harder by the understandable decision to change
to an open label protocol and make Sunitinib available to the patients in the placebo arm, which led to the
vast majority of eligible patients in the placebo arm switching to receive Sunitinib. By the end of follow-
up, the intention-to-treat (ITT) hazard ratio between treatment and control groups for overall survival
— the original primary outcome — had weakened from 0.49 (p = 0.007) at the interim analysis to 0.88
(p = 0.31).

Another example of this phenomenon is described by Motzer et al. [2], who reported the results of a
double blind Phase III randomised trial into the use of Everolimus for patients with advanced renal cell
carcinoma. In order to address ethical concerns and improve recruitment rates, the trial protocol stipulated
that, upon disease progression or unacceptable toxicity, patients were to be unblinded and given the
option to switch to an open-label Everolimus. After 8 months of follow up, the Everolimus arm patients
were experiencing significantly fewer disease progressions (progression–free survival hazard ratio 0.3, p
< 0.001) but after 10 months, any early difference in overall survival had disappeared (OS hazard ratio
0.83, p = 0.23).

In both cases, a strong and early treatment benefit in progression free survival was enough for licence
approval by industry regulators. So why, one may ask, does the subsequent artificial dilution in the esti-
mate of overall survival matter? One reason is that it makes it far harder for authorities, such as the
UK’s National Institute of Clinical Exellence (NICE), to subsequently assess whether these treatments
are cost-effective. This is because their calculations rely heavily on an accurate, unbiased measure of
overall survival, which trials of this nature do not readily provide [3].

This issue does not just affect industry sponsored trials that seek to gain approval for new treatments.
The Concorde trial [4] evaluated the relative effectiveness of two pragmatic approaches to the man-
agement of patients with HIV with a proven therapy (Zidovudine): one arm (the Imm group) received
Zidovudine immediately, whilst the other arm — the deferred (or Def) group — received it when their
condition deteriorated to AIDS Related Complex (ARC). However, whilst the study was ongoing, a
change was made to the protocol to allow those in the Def arm to receive Zidovudine if they experienced
a persistently low CD4 count, in order to be in line with current clinical practise of the time. At the end of
the trial, only a small non-significant difference could be detected between the two arms in terms of over-
all survival. Several authors subsequently queried whether a larger difference would have been observed
if the original protocol had been followed (see [5] for example).

The rank preserving structural failure time model (RPSFTM) of Robins and Tsiatis [6] can be used to
estimate the causal effect of a randomised treatment allowing for contamination. The method is based on
the initial randomisation of patients and requires specification of an ITT test (typically, the logrank test).
The procedure for testing the null hypothesis of no causal effect of treatment in the RPSFTM is exactly
the same as testing for no effect of treatment assignment in an ITT analysis. P-values resulting from
the RPSFTM and ITT analyses are consequently identical. For this reason, and also because it does not
require an assumption of no unmeasured confounders, the RPSFTM has been acknowledged by NICE
as the most statistically principled and robust analysis procedure in this setting [7]. It has been applied
to the above trials in subsequent analyses, for example, in the case of the Concorde trial by White et al.
[8]. Unfortunately, the logrank test can suffer from a loss of power — so that one consistently fails to
reject the ITT null hypothesis even when the treatment is strongly effective — if a substantial portion
of the participants switch treatments during the course of the trial. This is because the logrank test is
optimal when the hazard ratio is constant, whilst treatment switching causes the hazard ratio to change
over time (when the treatment effect is non-zero and constant). Our aim in this paper is to find methods
of analysis that adjust for treatment switches whilst respecting the randomisation, but that give greater
power to the ITT test and consequently greater precision to the causal effect estimator than the standard
implementation of the RPSFTM. This is achieved by building on the work of Schoenfeld [9] and Lagakos
et al. [10], who developed weighted versions of the logrank ITT test. The weights in our logrank ITT test
are largely driven by the proportion of people on the active treatment in each arm over time, which we
feel is simple and heuristically appealing.

In Section 2, we review the standard and weighted forms of the logrank test and use working assump-
tions to derive approximately ‘optimal’ weights for testing the ITT null hypothesis using the weighted
logrank test. In Section 3, we review the RPSFTM framework in [6] and discuss how it can be imple-
mented using our weighted logrank test approaches. In Section 4, we use Monte-Carlo simulation to
compare the performance of the standard and weighted logrank tests when used for hypothesis testing
within an ITT analysis (in terms of power and type–I error) and within an RPSFTM analysis (in terms
of bias and mean-squared error of estimates for the causal effect parameter). In Section 5, we apply our
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new methodology to a re-analysis of the Sunitinib and Concorde trials. We conclude in Section 6 with a
discussion of the issues raised and point to future research.

2. Logrank tests for intention-to-treat analysis

2.1. The standard and weighted logrank tests

Consider a clinical trial assessing whether a new ‘experimental’ treatment is superior to standard (control)
therapy. Let T1,… ,Tn denote the failure or censoring times of n participants randomised into the trial. Let
T(1) ⩽ … ⩽ T(J) (J ⩽ n) denote the J ordered observed event times. The logrank test statistic for the null
hypothesis, H0, that there is no difference between the distribution of survival times in the experimental
treatment and control arms can be written as follows:

Z =
∑J

j=1

(
Oj − Ej

)
√∑J

j=1 Vj

. (1)

Oj is the observed number of failures in the treatment arm at time T(j). Ej is the expected number of failures
at time T(j) in the treatment arm given the total number of failures at time T(j), and Vj is its variance, both
under H0.

The weighted logrank test statistic is

ZW =
∑J

j=1 Wj

(
Oj − Ej

)
√∑J

j=1 W2
j Vj

, (2)

where W1,… ,WJ are a set of weights. Schoenfeld [9] derived the optimal weights for the logrank test,
Wopt

1 ,… ,Wopt
J , that is. the weights that asymptotically maximise its power to reject H0 under the alter-

native hypothesis. He showed that Wopt
(j) is proportional to the true log hazard ratio at time T(j). Hence, if

the true log hazard ratio is constant, the standard (unweighted) logrank test is optimal. However, when
patients are permitted to switch treatment over the course of follow-up, the log hazard ratio will, in
general, not be constant, and so a weighted logrank test will be optimal.

Lagakos et al. [10] explored the relative efficiency of the weighted logrank test using the optimal
weights compared with the unweighted logrank test in a two-arm RCT in which there is non-compliance
in the treatment arm but perfect compliance in the control arm. They assumed that censoring times were
independent of both failure times and treatment switching times, as would be the case if censoring were
administrative. In the next section, we modify their approach to derive optimal weights in the general
situation where treatment switching can occur in the treatment and control arms. We continue to make
the working assumption that censoring is independent of failure and treatment switching.

2.2. An ‘optimal’ weighted logrank intention-to-treat test

Let Xi(t) be a binary random variable with Xi(t) = 1 if person i is on the experimental treatment at time
t; Xi(t) = 0 if they are off the experimental treatment (and therefore on the control treatment), and let
xi(t) be its observed value. We assume throughout that it is only possible, at each time point, to take the
experimental treatment/control treatment fully or not at all (although this could be relaxed easily). We
write x̄i(t) = {xi(s) ∶ 0 ⩽ s ⩽ t} to represent person i’s full treatment history up to time t. Further, let
Ri = r be their randomisation indicator so that, at t = 0, subject i receives either the experimental treatment
(if Ri = 1) or control (if Ri = 0), and xi(0)= Ri. For t ∈ (0,Ti], a person’s treatment may, however, depart
from the original assignment so that xi(t) is not necessarily equal to Ri. The reason for this departure may
be associated with the underlying health of the patient.

Suppressing the subscript i for convenience, let

hr(t) = h(t|R = r) = limΔ→0
P(T ⩽ t + Δ|T ⩾ t,R = r)

Δ

denote the conditional hazard of failure at time t given randomisation to arm r. Let hr
on(t) = hr(t|x(t) = 1)

and hr
off(t) = hr(t|x(t) = 0) denote the conditional hazards of failure at time t given randomisation to
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arm r and given that at time t treatment is, respectively, being received and not being received. Note that
these hazards depend not only on the distribution of failure times in the absence of treatment and on
the true treatment effect but also on the treatment switching process. In order to derive optimal weights,
we make the following ‘working’ assumptions. It is important to first stress that WA1 and WA2 are not
necessary for the weighted logrank test asymptotically to maintain its nominal type-I error rate. Only the
non-informative censoring assumption is required, and this is also required by the standard (unweighted)
logrank test.

• Working assumption 1 (WA1): h0
off(t) = h1

off(t) and h0
on(t) = h1

on(t).

Given WA1, we can ignore the randomisation superscript and denote the hazard functions simply as
hon(t) and hoff(t).

• Working assumption 2 (WA2): log{hon(t)∕hoff(t)} = 𝜃0 ∀t.

In a slight modification of the words used by Lagakos et al., these assumptions would hold if, at any
given time, patients switch treatment randomly and independently of their underlying health at that time.
We stress that this is an implausible assumption which is not required for the validity of the analysis. Let
𝛾r(t) = Pr(Xi(t) = 1|T ⩾ t,Ri = r) denote the conditional probability of being on treatment at time t
given randomisation to arm r and given that failure has not occurred prior to time t. Then, using WA1

hr(t) = 𝛾r(t)hon(t) + {1 − 𝛾r(t)} hoff(t)

and so using WA2, the log hazard ratio at time t comparing the two randomisation arms is

log

(
h1(t)
h0(t)

)
= log

(
1 + 𝛾1(t)e𝜃0 − 𝛾1(t)
1 + 𝛾0(t)e𝜃0 − 𝛾0(t)

)
.

Therefore, under our working assumptions, the optimal weight for the jth failure is

Wopt
j = log

{
1 +

[
𝛾1

(
t( j)

)] (
e𝜃0 − 1

)}
− log

{
1 +

[
𝛾0

(
t( j)

)]
(e𝜃0 − 1)

}
(3)

If, moreover, 𝜃0 is close to, but not equal to, zero, we can use the fact that log(1 + x) ≈ x for small x to
derive from equation (3) that

Wopt
j ≈

{
𝛾1

(
t( j)

)
− 𝛾0

(
t( j)

)}
(e𝜃0 − 1)

The (e𝜃0 − 1) term cancels in Equation (2) and so we can write

Wopt
j ≈ 𝛾1

(
t( j)

)
− 𝛾0

(
t( j)

)
. (4)

We will refer to the weights defined in Equation (4) as ‘simple ITT weights’. If WA1 and WA2 are
violated, they could lose some of their efficiency to detect a treatment effect when one truly exists. Of
course, there may be very good reasons to doubt the validity of WA1 and WA2 in the late-stage cancer
context, when treatment switching is often initiated by the progression of a patient’s disease. We address
this issue in detail in Section 4 and in the Discussion.

2.3. Is it acceptable to weight by treatment usage in an intention-to-treat analysis?

In this paper, we follow Lagakos et al. [10] in referring to our approach as a weighted ITT test. We do
so because it adheres to the ITT principles of basing the analysis on a comparison between the original
randomised groupings and including all patients in the analysis. However, some may disapprove of our
use of this terminology. Indeed, a reviewer has expressed serious concern that, whilst ITT tests are per-
fectly entitled to weight patients differently (for example, the Fleming-Harrington family of tests [11,12]
allows the weight given to the jth patient’s failure to be a pre-specified function of the survival propor-
tion at time t(j) ) treatment usage rates should not be used for this purpose. We understand the reviewer’s
concerns and stress that this weight is not a function of patient j’s individual treatment usage, as in a
per-protocol or as treated analysis say but is based on the treatment usage of the entire study population
at time t(j). Of course, it would be unacceptable if the type I error rate of the weighted logrank test was
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inflated because of the estimation of 𝛾0(t) and 𝛾1(t). Lagakos et al. noted that in the simpler scenario, they
considered, where there was non-compliance only in one arm, the nominal type-I error rate was achieved
(despite estimation of their weights). Using simulation studies, we shall investigate whether this is also
true in our setting. It would also be a concern if the weighted test encouraged erroneous interpretations
of the data under the alternative hypothesis. We shall return to this important issue within the context of
a hypothetical scenario in the Discussion section.

3. Logrank tests for causal inference

3.1. The rank-preserving structural failure time model

If a substantial proportion of patients depart from their originally allocated treatment, then an ITT
analysis, which would provide an estimate of the causal effect of treatment assignment, could differ sub-
stantially from the causal effect of the treatment itself. The RPSFTM provides a statistical framework for
estimating this causal effect, by linking each patient’s event time (T) to their (possibly counterfactual)
event time had they had not received any treatment (T0) via the formula:

T0 = T0(𝛽) = ∫
T

0
exp {𝛽x(t)} dt (5)

The single parameter 𝛽, indexing the RPSFTM, can be interpreted in the following manner. The rate at
which a person’s lifetime is used up is e𝛽 times greater when on treatment than when off treatment. For
example, if 𝛽 = log(0.5) ≈-0.7 then treatment slows this rate by a half. If 𝛽 = 0, then T0 = T , meaning
that treatment has no causal effect on survival time. If we write T as T = Ton + Toff, where Ton and Toff
denote times spent on and off treatment, respectively, then (5) can be written as T0(𝛽) = e𝛽Ton + Toff.
We shall refer to the T0(𝛽)’s and any statistic that is a function of them as being on the ‘𝛽-transformed’
timescale and denote the true value of the causal parameter 𝛽 as 𝛽0.

In order to estimate 𝛽0, we use the fact that, under the RPSFTM, T0(𝛽0) is independent of R. For
each value of 𝛽 in a range of possible values, the null hypothesis H0,𝛽 that T0(𝛽) ⟂⟂ R is tested using
an appropriate test statistic. We first consider the commonly used logrank test statistic (and variations
thereof). If Z(𝛽) denotes the logrank test statistic calculated using Equation (1) with the 𝛽-transformed
failure times, then E{Z(𝛽)} = 0 when T0(𝛽) ⟂⟂ R. So 𝛽0 can be estimated as the value 𝛽 of 𝛽 for which
Z(𝛽) crosses zero (that is, where sign(Z(𝛽 − 𝜖)) ≠ sign(Z(𝛽 + 𝜖)) for some small value of 𝜖). This method
is often referred to as ‘g–estimation’. A 100(1-𝛼)% confidence interval for 𝛽0 can be obtained by finding
the range of values of 𝛽 for which |Z(𝛽)| ⩽ z1−𝛼∕2. This is the set of values for which H0,𝛽 can not be
rejected at significance level 𝛼. Note this is typically not symmetrical around 𝛽.

3.2. Weighted logrank tests for the rank-preserving structural failure time model

In this section, we consider the use of the weighted log-rank test statistic in a RPSFTM analysis to estimate
the causal effect of treatment in the presence of treatment switching. Intuitively, the idea is to apply the
RPSFTM not only to the event time but also to the treatment change times, and hence to apply the ideas
of Section 2.2 on the T0(𝛽) scale. In particular, we derive, for any given 𝛽, optimal weights for the test of
the null hypothesis that T0(𝛽) ⟂⟂ R under the following assumptions:

• Basic causal assumption (BCA): RPSFTM (5) holds.
• Causal working assumption 1 (CWA1): Patients switch treatment at random independently of their

treatment-free failure times T0(𝛽0).
• Causal working assumption 2 (CWA2): T0(𝛽0) ∼ exp(𝜆) for some rate parameter 𝜆.

Assumption CWA1 differs from WA1 and WA2 because using the RPSFTM requires us to condition on
the complete treatment history, not just on current treatment. Assumption CWA2 is used to make the
RPSFTM yield a simple model for the hazard. BCA is needed for consistency of the g–estimator of 𝛽
even when the unweighted log rank test statistic is used. CWA1 and CWA2 are only needed for optimality
of the weights. Thus, if CWA1 and CWA2 are violated but BCA holds then, we still obtain a consistent
estimate for 𝛽0.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1423–1440
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Just as in Section 2.2, the optimal weights we derive are functions of the ratio of the hazard of failure
in the treatment arm relative to the hazard in the control arm. As before, they depend on the proportion
of patients in each arm that are on treatment at a given time. However, unlike in Section 2.2, the hazards
of interest, here, are the hazards of the 𝛽-transformed time T0(𝛽) in the two arms, rather than those of the
untransformed time T . This is because we are testing T0(𝛽) ⟂⟂ R when fitting the RPSFTM, as opposed
to testing the ITT null hypothesis that T ⟂⟂ R. We now derive the hazard for T0(𝛽).

Let an individual’s treatment switching times be denoted S1 < S2 < … < SK < T , where K denotes
the number of switches before failure, and let S0 = 0. Let Xk denote his treatment (0 if off treatment and
1 if on treatment) during time interval [Sk−1, Sk). In order to make things more concrete, we will illustrate
the general setup by referring to the special case where 𝛽0 = log 3

4
and to a single hypothetical patient,

Peter. For Peter,

K = 3, (S1, S2, S3) = (1, 2, 3),T = 4,X1 = X3 = 0,X2 = X4 = 1

(for convenience, we assume that time is measured in years). Peter starts the trial off treatment (at year S0 =
0) and proceeds to have three treatment switches (at the start of years 1,2 and 3, respectively) before failing
at the start of year 4. According to the RPSFTM, Peter’s treatment-free lifetime is T0(𝛽0) = exp(𝛽0)Ton
+ Toff. Therefore, his treatment free lifetime T0(𝛽0) is expended at a rate of 1 year per year of observed
(or untransformed) study time whilst he is off treatment, but at a rate of exp(𝛽0) = 3/4 years per year of
observed study time whilst he is on treatment. In general, a unit of untransformed time corresponds to
either exp(𝛽0) units or one unit of 𝛽0-transformed time.

We derive the hazard of T0(𝛽), in general, that is, for any switching pattern and any 𝛽0 and 𝛽, and then
for the hypothetical individual, Peter, using 𝛽0 = log 3

4
(the true value) and 𝛽=log 1

2
(our guess at the true

value). In order to do this, we first derive the hazard function hr{t ∣ x̄(t)} of T in the same (general, then
specific) manner.

3.3. Step 1: Derivation of the hazard of T

Our assumptions state that the 𝛽0-transformed failure time T0(𝛽0) is independent of randomisation arm
(BCA) and treatment switching times (CWA1) and has a constant hazard 𝜆 (CWA2). It follows that the
hazard of T at time t given randomisation arm and treatment history up to time t depends only on treatment
at time t and equals 𝜆 exp(𝛽0) whilst on treatment and 𝜆 whilst off treatment, that is,

hr{t ∣ x̄(t)} = hr{t ∣ x̄(t)} exp{𝛽0x(t)}
which, given CWA1 = h(t) exp{𝛽0x(t)}

and CWA2 = 𝜆 exp{𝛽0x(t)}.
(6)

This is illustrated in Figure 1(a) for Peter. His T is the outcome of a failure process in which the hazard
is 𝜆 during the first year, 𝜆 exp(𝛽0) =

3𝜆
4

during years 1–2, 𝜆 during years 2–3 and 𝜆 exp(𝛽0)=
3𝜆
4

from
years 3–4.

Figure 1. An illustration, for a hypothetical patient, Peter, of the relative switching times and corresponding
hazard rates on: (a) the observed timescale and (b) the 𝛽-transformed timescale.
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3.4. Step 2: Derivation of the hazard of T0(𝛽)

We can now derive the hazard of the 𝛽-transformed failure time T0(𝛽) for any switching pattern and for
any given 𝛽. When T0(𝛽) is calculated from T using the RPSFTM (Equation (5)), each year of observed
(untransformed) study time on treatment becomes exp(𝛽) years of 𝛽-transformed time. So the length of
each period on treatment is multiplied by exp(𝛽) and, crucially, the hazard of T0(𝛽) during this period is
divided by exp(𝛽). The length of, and hazard during, periods off treatment remain unchanged. In general,
we transform the kth switching time on the observed time scale, Sk, to the switching time on the 𝛽-
transformed timescale, Sk(𝛽), via the formula

Sk(𝛽) =
k∑

j=1

(
Sj − Sj−1

)
exp

{
𝛽Xj

}
, (7)

where S0(𝛽) = 0. Using Equation (6), and dividing through by exp(𝛽), the hazard of T0(𝛽) is given by

𝜆 exp
{
(𝛽0 − 𝛽)Xk

}
, (8)

during interval [Sk−1(𝛽), Sk(𝛽)). We now calculate the 𝛽-transformed hazard for our hypothetical individ-
ual, Peter, using the specific value 𝛽 = log 1

2
. This is illustrated in Figure 1(b). From Equation (7), Sk(𝛽),

k=1,2,3 and T0(𝛽) equal 1, 1.5, 2.5 and 3, respectively. For Peter, T0(𝛽) is the outcome of a failure process
in which the hazard is 𝜆 during the first year, 𝜆 exp(𝛽0)∕ exp(𝛽) = 3𝜆

2
during years 1–1.5, 𝜆 during years

1.5–2.5 and 3𝜆
2

during years 2.5–3. Note that, if 𝛽 were actually equal to 𝛽0, then the hazard of T0(𝛽)
would equal a constant value of 𝜆, in line with CWA2.

3.5. Step 3: Derivation of the optimal weights

We now derive the optimal weights for the RPSTM using the hazard of the 𝛽-transformed failure time,
T0(𝛽). The argument is similar to that in Section 2.2. Let x(t; 𝛽) = Xk for t ∈ [Sk−1(𝛽), Sk(𝛽)) represent
the treatment indicator on the 𝛽–transformed timescale, and let x̄(t; 𝛽) = {x(s; 𝛽) ∶ 0 ⩽ s ⩽ t}. So
the hazard of T0(𝛽) at time t given randomisation arm R = r and x(t; 𝛽), that is, limΔt→0P{t ⩽ T0(𝛽) <
t + Δt ∣ x̄(t; 𝛽),R = r,T0(𝛽) ⩾ t}∕Δt, is equal to 𝜆 exp{(𝛽0 − 𝛽)x(t; 𝛽)} from Equation (8). It follows
that the hazard of T0(𝛽) at time t given R = r equals 𝜆 exp{(𝛽0 − 𝛽)}𝛾r(t; 𝛽) + 𝜆{1 − 𝛾r(t; 𝛽)}, where
𝛾r(t; 𝛽) = P(x(t; 𝛽) = 1 ∣ T0(𝛽) ⩾ t,R = r).

Let t(j),𝛽 denote the jth of the ordered 𝛽-transformed failure times T0(𝛽) (j = 1,… , J). Straightforward
application of the results of Section 2.2 shows that the optimal weights for the weighted log rank test of
the null hypothesis that T0(𝛽) ⟂⟂ R are given by

Wopt
j (𝛽) = log

{
1 + 𝛾1

(
t( j),𝛽 ; 𝛽

) (
e𝛽0−𝛽 − 1

)}
− log

{
1 + 𝛾0

(
t( j),𝛽 ; 𝛽

)
(e𝛽0−𝛽 − 1)

}
,

(9)

(j = 1,… , J). Moreover, if 𝛽 is close, but not equal to, 𝛽0, then

Wopt
j (𝛽) ≈ 𝛾1

(
t( j),𝛽 ; 𝛽

)
− 𝛾0

(
t( j),𝛽 , 𝛽

)
(10)

Typically, 𝛾0(t; 𝛽) and 𝛾1(t; 𝛽) will be unknown, but they can be estimated from the observed data:
𝛾r(t; 𝛽) is estimated as the number of patients with R = r, T0(𝛽) ⩾ t and x(t; 𝛽) = 1 divided by the
number of patients with R = r and T0(𝛽) ⩾ t. We will refer to the weights defined in Equation (10) as
‘simple causal weights’.

3.6. Censored observations

For ease of explanation, we have so far assumed in this section that every subject’s event time is observed,
but real trial data will be inevitably be affected to some degree by censoring. Let Ci denote patient i’s
(potential) censoring time. If Ci < Ti, then Ti is censored. For those with Ci > Ti, Ci should represent
the end of planned follow up. In the context of an ITT analysis, provided censoring is non-informative
on the observed event timescale, that is Ci ⟂⟂ Ti, the type-I error rate of the logrank test is asymptotically
equal to its nominal value.
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In a RPSFTM analysis, in order that the type-I error rate is maintained for the null hypothesis H0,𝛽0
(and

so the nominal coverage of confidence intervals for 𝛽 is maintained), we need to ensure that the censoring
remains independent of failure times on the 𝛽-transformed scale. This can be achieved in the following
manner, as in [6]. Let Δi(0) = I(Ti < Ci) be a failure indicator on the original timescale denoting whether
Ti is observed and assume that treatment switching is possible in both arms of the trial. Let Ci(𝛽) =
min{Ci,Ci exp(𝛽)} be patient i’s censoring time on the 𝛽–transformed scale. Their corresponding failure
indicator on this time-scale, Δi(𝛽), is given by

Δi(𝛽) =
{

1 if T0,i(𝛽) < Ci(𝛽)
0 otherwise.

(11)

This scheme makes it possible for originally uncensored individuals to become censored on the 𝛽-
transformed scale but does not allow originally censored individuals to become uncensored. Thus, we
define J(𝛽) (J(𝛽) ⩽ J) to be the number of unique event times on the 𝛽-transformed timescale. To test
H0,𝛽 , we re-calculate logrank test statistic (1) using the J(𝛽) ordered failure times on the 𝛽-transformed
timescale, T(1),𝛽 ,… ,T(J(𝛽)),𝛽 .

4. Simulation study

In this section, we use a simulation study to compare the performances of the standard and weighted
log-rank test statistics: firstly, for testing the null hypothesis of no treatment effect in an ITT analysis
(using the simple ITT weights from Equation (4) in Section 2.2) ; and secondly, for estimating the causal
parameter 𝛽 using a RPSFTM (using the simple causal weights from Equation (10) in Section 3.2). We
do not consider the optimal weights defined in Equations (3) (for the ITT analysis) and (9) (for the causal
RPSFTM analysis) any further. In a preliminary investigation, their performance was found to be highly
similar to the simple weights, even when implemented in the most favourable circumstances (that is,
by correctly plugging in the true values for either 𝜃0 or 𝛽0). Section 4.1 describes our framework for
simulating data using a RPSFTM. In Section 4.2, we specify four simulation scenarios by choosing which
causal working assumptions to meet and which to violate. Results are presented in Sections 4.3 and 4.4.

4.1. Framework for data generating process

Patients randomised to the experimental arm (R = 1) start on the active treatment. If their disease pro-
gresses (‘progression 1’), they are switched to standard (control) therapy for the remainder of the trial.
Patients randomised to the control arm (R = 0) start on standard therapy. If they experience a disease
progression (also ‘progression 1’), they are then switched to the active drug. However, if they suffer a
further progression (‘progression 2’), they are switched back to the control treatment for the remainder
of the trial. Thus, regardless of the arm to which a patient is randomised to, there is a good chance that,
before death, he/she will spend some time on and off the active treatment.

Time-to-event data following this treatment switching pattern were generated. As a first step, three
independent random variables were simulated for each person i from the following exponential model:

Dij ∼ exp
(
𝜆−1

ij

)
j = 1, 2, 3, 𝜆ij = 𝜆iexp

(
𝜇j + 𝜂i

)
, (12)

where 𝜆−1
ij is the rate parameter (hence E[Dij] = 𝜆ij). The ‘treatment–free’ times to disease progression ‘1’

, disease progression ‘2’ and death are then given, respectively, by Di1, (Di1 +Di2) and Di3. It is imagined
that these times are on the month scale. The 𝜇j represent fixed parameters, whereas 𝜆i and 𝜂i represent
(potentially) random frailty terms for patient i. In all simulations 𝜇1 = 𝜇2 = 𝜇3 = 2.5. Before discussing
the assumed distributions of 𝜆i and 𝜂i — and its implications for the distribution of Dij — we describe
the rest of the data generating process.

Whilst progression 2 can not occur before progression 1, death can occur before, in between or after
the two progressions, as illustrated in Figure 2. Person i’s Di1, (Di1 +Di2) and Di3 are temporally ordered
and relabeled as either Si,1(𝛽0), Si,2(𝛽0) or Si,3(𝛽0) according to the following principles: Death is the final
event for person i, so events occurring after Di3 are subsequently ignored. Person i, therefore, has ki
pertinent potential events (Si,1(𝛽0),… , Si,ki

(𝛽0)), where ki ∈ {1, 2, 3}. For example, if Di3 is in position
(c) then ki = 3, Si,1(𝛽0) = Di1, Si,2(𝛽0) = Di1 + Di2 and Si,3(𝛽0) = Di3. Or, if Di3 is instead in position (a),
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Figure 2. Illustration of the possible temporal orderings of person i’s treatment free events (switching and
failure times). Di3 can occur before (position (a)), in between (position (b)) or after (position (c)) both

disease progressions.

then ki = 1 and Si,1(𝛽0) = Di3. Note that, for convenience, we are now using a common notation, S, to
denote switching times and failure times, unlike in Section 3.2.

For a given value of the true causal treatment effect, 𝛽0, observed event times are then calculated using

Si,j =
j∑

l=1

(Si,l(𝛽0) − Si,l−1(𝛽0)) exp{−𝛽0Xi,l}, for j = 1,… , ki. (13)

where Xi,j are the treatment indicator variables defined in Section 3 and Si,0 = Si,0(𝛽0) = 0 for all i. Note
that Equation (13) is the inverse of Equation (7). The general treatment switching pattern observed over
time in the two arms is

R = 1 ∶ On → Off

R = 0 ∶ Off → On → Off,

and so the implied full vector for (Xi,1,Xi,2,Xi,3) is (1,0,0) for the R = 1 group and (0,1,0) for the R = 0
group, although only the first ki entries of this vector are relevant to person i.

4.2. Data generation and our causal working assumptions

When we wish to satisfy the working assumptions used to derive the form of the simple causal weights,
that is, CWA1 and CWA2, we set 𝜆i = 0.75 and 𝜂i = 0 for all i. In that case, Dij are i.i.d exponential with rate
parameter 𝜆j = 𝜆 exp(𝜇j). When we wish to violate these working assumptions, we set 𝜆i ∼ Uniform(0.6
and 0.9) and 𝜂i ∼ N(0,1). The Dij’s are not then i.i.d exponential, because of the patient–specific frailty
terms. This means that: (i) when the Di,j’s are transformed to Si,j(𝛽0)’s, Si,ki

(𝛽0) (which equals person i’s
T0,i(𝛽0)) is no longer i.i.d exponential, a violation of CWA2; (ii) when the Si,j(𝛽0)’s are transformed to
the Si,j’s via formula (13), the observed treatment switching times are correlated with the Si,ki

(𝛽0)’s (or
T0,i(𝛽0)’s), a violation of CWA1. In other words, the timing of a patient’s treatment switches is predictive
of their treatment—free failure time (i.e. their underlying prognosis). This in turn means that the hazard
of a patient at observed time t will not only depend on x(t) but also on their full treatment history x̄(t),
thus invalidating Equation (6).

In addition to generating the trial data as described earlier (from Equations (12) and (13)), we also
considered two data–generating mechanisms that violated the BCA. Firstly, we assume that the treatment
has a delayed effect of 3 months, that is, a person’s lifetime is used up at the ‘off treatment’ rate (1 day per
day) for the first 3 months they take the treatment and thenceforth at rate exp(𝛽0) until they stop treatment.
They must, therefore, stay alive and on treatment for at least 3 months to realise any potential benefit
the treatment may hold. Secondly, we assume that the treatment’s effectiveness is lessened or degraded
after the first disease progression; specifically, the treatment effect is 𝛽0 before disease progression 1 and
𝛽0∕

√
2 afterwards.

To summarise, the four data generating mechanisms were as follows:

• Scenario 1: CWA1 & CWA2 true (𝜆i=0.75, 𝜂i=0), BCA true;

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1423–1440
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Figure 3. Treatment switching pattern for scenarios 1 (top-left), 2 (top-right), 3 (bottom-left), 4 (bottom-right),
under H1, 𝛽 = log(0.5). Results based on 20 000 subjects.

• Scenario 2: CWA1 & CWA2 false (𝜆i ∼ Uniform(0.6,0.9), 𝜂i ∼ N(0,1)), BCA true;
• Scenario 3: CWA1 & CWA2 false (𝜆i ∼ Uniform(0.6,0.9), 𝜂i ∼ N(0,1)), BCA false (3 month delay

to treatment effect), and
• Scenario 4: CWA1 & CWA2 false (𝜆i ∼ Uniform(0.6,0.9), 𝜂i ∼ N(0,1)), BCA false (1/

√
2 degrading

of treatment effect after progression 1).

For each scenario, data were simulated both under 𝛽0 = 0 (so that the ITT null hypothesis H0 was true)
and under 𝛽0 = log(0.5) (so that H0 was false — this is referred to as H1). Two forms of right censoring
were also introduced. For each subject, we generated a censoring time C from an exponential distribution
with mean 250 months. Additionally, everyone with a failure time above 40 months (the assumed length
of the trial follow up) was censored. This led on average to a censoring proportion of 10–15% across the
distinct simulation scenarios. Figure 3 shows the basic pattern of treatment switching in the two groups
across scenarios 1–4 under H1, and Figure 4 shows the Kaplan Meier survival curves for the two treatment
groups across scenarios 1–4 under H1. These curves are shown for large trials of 20 000 subjects, in order
to reveal their true (large sample) shape.

4.3. Results: intention-to-treat analyses

Table I (column 3) shows the type I error rate of the standard and simple weighted logrank test when
used within an ITT analysis to test H0 at the two-sided 5% significance level. All results in Table I are
based on 5000 simulated trials of n = 250 patients. We see that, across all scenarios, the type I error rate
remains close to the nominal level for both the standard and simple weighted ITT test. Figure 5 (top)
shows the power to reject H0 under H1 using the standard and simple weighted ITT test, for scenarios 1–4
and for varying sample size (n = 100 to 650). Solid lines indicate power for the standard test, dashed
lines indicate power for the weighted test, and scenarios are differentiated by colour. We see that the
simple ITT weights furnish a substantially more powerful test in Scenarios 1, 2 and 4. To understand why
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Figure 4. Kaplan Meier survival functions for scenarios 1 (top-left), 2 (top-right), 3 (bottom-left) and 4 (bottom-
right), under H1, 𝛽 = log(0.5). Results based on 20 000 subjects.

this occurs, it is helpful to look at the relevant treatment switching patterns and Kaplan Meier curves in
Figures 3 and 4, respectively. In each of these scenarios, large values of the weight function 𝛾1(t) − 𝛾0(t)
coincide with a strong rate of separation in the Kaplan Meier curves during the first half of the trial
(t = (0, 20)). In Scenario 3, the standard logrank ITT test is more powerful than the simple weighted ITT
test, although the power of both tests is fairly low. From Figure 4 (bottom-left), we see that this is due to
the delayed treatment effect preventing early separation of the survival curves, which is precisely when
𝛾1(t) − 𝛾0(t) is large. In order to better understand this result, we conduct a further simulation for a set
of subcases of Scenario 3. Figure 5 (bottom-left) shows the power of the standard and simple weighted
ITT tests under H1 when the delay for treatment to take effect is varied between 0 and 3 months. We
see that the weighted ITT test is substantially more powerful for small delayed effects and remains more
powerful than the standard test for up to a 1 1

2
month delay.

Figure 5 (bottom-right) reports the results of a more in-depth investigation of scenario 4. It shows the
power of the standard and simple weighted ITT tests under H1 when the degrading factor is equal to
1/(M×

√
2), for M in the interval from 1 to 4 (where M = 1 is Scenario 4). We see that the power of both

tests reduces towards zero as M increases, but the weighted test always retains an advantage over the
unweighted test.

4.4. Results: causal rank-preserving structural failure time model analysis

Table I (columns 4 and 5) shows the bias and mean squared error (MSE) of estimates obtained for 𝛽
within a RPSFTM analysis, using the standard (un-weighted) logrank test and the logrank test with simple
causal weights, for Scenarios 1–4. Unsurprisingly, both methods return unbiased estimates for the causal
parameter in Scenario 1, but the MSE of the estimate obtained via the weighted analysis is only 44% of
that obtained via an unweighted analysis. In Scenario 2, both tests returned estimates with a small amount
of bias, with the weighted test being more severe. This bias was seen to diminish for larger trial sizes,
however (results not shown). Again, MSE for the weighted analysis was considerably reduced compared
with the standard unweighted analysis (approximately 61% of its magnitude).
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Figure 5. Top: Power to reject H0 under H1, 𝛽 = log(0.5) for scenarios 1–4. Standard logrank test shown via solid
lines; simple weighted logrank test shown via dashed lines. Bottom-left: Power of the weighted and unweighted
logrank test to reject H0 under H1 for scenario 3 and for a varying delay (trial size n = 250). Bottom-right: Power
of the weighted and unweighted logrank test to reject H0 under H1 for scenario 4 and for a varying degradation

factor (trial size n = 250).

Table I. Type I error of the standard and simple weighted ITT tests
under H0 and bias/MSE of the standard and simple weighted RPSFTM
analysis under H1 for scenarios 1–4.

Scenario Logrank ITT analysis Causal RPSFTM analysis
Method H0: 𝛽0 = 0 H1: 𝛽0 = log(0.5)

Type I error Bias MSE

1. Standard 0.052 −0.003 0.204
Simple Weighted 0.051 −0.009 0.089

2. Standard 0.054 −0.029 0.277
Simple Weighted 0.048 −0.037 0.170

3. Standard 0.052 0.270 0.411
Simple Weighted 0.051 0.417 0.381

4. Standard 0.052 −0.117 0.266
Simple Weighted 0.049 −0.094 0.176

ITT, intention-to-treatl; RPSFTM, rank-preserving structural failure time
model; MSE, mean squared error.

1434

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1423–1440



J. BOWDEN ET AL.

Results for Scenarios 3 and 4 are more mixed, and harder to interpret, because the RPSFTM model is
misspecified in both cases. For example, in Scenario 3 the treatment effect is (in truth) zero for 3 months
and then log(0.5) = −0.693 afterwards. Therefore, the ‘average’ treatment effect is somewhere between
0 and −0.693. The weighted logrank test estimates a treatment effect of around −0.28 (0.417 + log(0.5))
whereas the unweighted test’s estimate is −0.42 (0.270 + log(0.5)). In Scenario 4, the bias is not so
easily explained. The true effect is −0.693 before progression 1 and −0.693/

√
2 = −0.49 afterwards,

and one might therefore expect the mean estimates to lie somewhere between these values. However,
the mean estimates were approximately −0.81 and −0.79 for the unweighted and weighted approaches,
respectively. By comparing the Kaplan Meier curves in Figure 4 (top-right, no degradation) with Figure 4
(bottom-right, degradation present), one can begin to see why the unweighted ITT logrank test statistic
(and therefore the ITT hazard ratio) would be larger in Scenario 4 than in Scenario 2. In Scenario 4, the
(R = 1) treatment group come off treatment at the point of disease progression 1 and do not take the
treatment when its effect becomes degraded. The (R = 0) control group, by contrast, start treatment only
after disease progression 1 has occurred, so only ever experience the degraded effect. The Kaplan Meier
curve of the control group is not pulled towards that of the treatment group as quickly as it would have
been had no degrading occurred (Scenario 2). Moving from Scenario 2 to Scenario 4 therefore reduces
the benefit of post-progression treatment for the placebo arm, thereby increasing the treatment effect
estimated via an ITT or RPSFTM analysis.

In conclusion, hypothesis testing via an ITT analysis remains valid when the assumptions CWA1,
CWA2 and BCA are violated, but the RPSFTM parameter will only be meaningful in general when the
BCA is true. When the BCA is violated, the standard and weighted RPSFTM will identify different causal
parameters depending on the treatment switching pattern and the type of violation.

5. Real data examples

In this section, we apply our weighted approach to re-analyses of the Sunitinib trial [1, 13] and the
Concorde trial [4, 8].

5.1. The Concorde trial

Figure 6 (left) shows the Kaplan–Meier survival curves (for the earliest time to either AIDS, ARC or
death) of the 1745 patients with HIV who were randomised to the Imm (R = 1) or Def (R = 0) arms
of the Concorde trial. The logrank test statistic, for a comparison of the two survival curves, was −1.35,
with an associated hazard ratio estimate of 0.89 and a p-value of 0.18. It was subsequently questioned
whether a departure from the original protocol, which enabled those in the Def arm to receive Zidovudine
before a diagnosis of AIDS or ARC, had diluted the difference between the two treatment strategies. For
this reason, White et al. [8] applied the RPSFTM (with the standard logrank test) to ask what would have
happened if the original trial protocol had been followed with 100% adherence. To this end, they defined
the treatment indicator variable for patient i at time t, Xi(t), as:

Xi(t) =
{

1 if Ri = 1 or (Ri=0 and AZTi ⩽ t)

0 Otherwise.

where AZTi was the time at which patient i initiated Zidovudine treatment. The causal parameter 𝛽 is then
defined using Xi(t) via Equation (5). We aim to repeat their analysis using our simple weighted approach.
Figure 6 (right) shows 𝛾r(t), (l = 0, 1) for the Concorde trial.

The function 𝛾1(t) is fixed at 1 throughout; not because all patients in the Imm arm were on Zidovudine
for their total participation in the trial (many would have stopped treatment earlier on their doctor’s advice)
but because all satisfied the original protocol of beginning Zidovudine treatment immediately, however
briefly. Our simple weight from Equation (4), for use within an ITT analysis, is therefore 1 − 𝛾0(t). A
further consequence of 𝛾1(t) being fixed at 1 is that, in a RPSFTM analysis, no patient in the treatment
arm who was originally uncensored can be ‘re-censored’, regardless of the proposed value of 𝛽. This
can be guaranteed by setting person i’s censoring indicator on the 𝛽–transformed scale, Ci(𝛽), equal to
Ci exp(𝛽) (see [8] for further explanation). Before proceeding with an analysis of the Concorde trial, we
first introduce our second real data example.
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Figure 6. Concorde trial left: survival curves for the Imm and Def arms. Right: Proportion of people in the Imm
and Def Concorde arms on treatment as a function of survival time.
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Figure 7. Sunitinib trial left: survival curves for the immediate and deferred arms. Bottom right: proportion of
people in the immediate and deferred arms on treatment as a function of survival time.

5.2. The Sunitinib trial

Figure 7 (left) shows the Kaplan–Meier survival curves (time to death) for the 312 patients with gastroin-
testinal stromal tumours who were randomised to the Sunitinib arm (R = 1) and placebo arm (R = 0)
as part of a multi-centre phase III randomised controlled trial. The trial was unblinded approximately
50 weeks after study initiation because of large observed differences in tumour progression rates between
the two groups (in favour of Sunitinib).

At this point, patients in the placebo group were allowed to switch treatments and receive the new drug,
which they did en masse. We label the two arms as ‘immediate’ or ‘deferred’ (Sunitinib) for convenience.
By the end of the trial, the highly significant difference in tumour progression rates was not mirrored in the
overall survival measure between the two treatment groups. The final hazard ratio estimate reduced from
0.49 (p-value 0.007) at the interim to 0.88 (p-value 0.31). In order to investigate whether the disappearance
of any treatment effect was due to the treatment switching, Demetri et al. [14] conducted a causal analysis
using the RPSFTM with the standard logrank test, which was later discussed in [13]. Here, we follow
their example by defining the treatment indicator variable for patient i at time t, Xi(t), as 1 if patient i was
on Sunitinib at time t and 0 otherwise. This defines the parameter 𝛽 as the causal effect that would have
been observed if all patients on the immediate arm had received Sunitinib for the entire duration, and all
patients on the deferred arm had received placebo

Figure 7 (right) shows the simple weight function for the Sunitinib trial. 𝛾1(t) decreased over the follow-
up period because a sizable proportion of patients in the immediate arm discontinued treatment at the
point of tumour progression if their physician thought they would no longer benefit. 𝛾0(t) is seen to
increase rapidly from 0 to near 1 after 50 weeks of follow up. The switching in the Sunitinib trial was
so extreme that, from 25 weeks of follow-up onwards, the simple ITT weights 𝛾1(t) − 𝛾0(t) are negative.
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Some patients who were randomised to the control arm, and who switched over to Sunitinib, would have
additionally come off treatment before death. Although our method could account for this pattern (indeed,
the design of the simulation study did just that), this extra information was not available for these data.
Our analysis therefore assumed that the treatment indicator variable for patients in the control group was
fixed to 1 from the time they started to take Sunitinib to the end of follow-up. It should therefore be
treated as illustrative and conditional on this fact.

Under the assumptions used in their derivation, we would expect a negative weight at time t to coincide
with a negative value for the difference between observed and expected numbers of events at time t,
because the control group becomes the de facto treatment group. This would mean the numerator of the
weighted logrank statistic in Equation (2) would still be positive, and the test would remain powerful.
However, some may not be comfortable with this interpretation or the idea of negative weights at all. For
this reason, we perform additional weighted ITT and causal analyses by truncating the simple weights
in Equations (4) and (10) at 0 if they are negative. The truncated weights were also thought to provide
a closer approximation to the true weights that would have been estimated and had full information on
the treatment status of control group patients in the latter stages of the trial been available (as this would
have probably have acted to restrict the weights from becoming negative in the first place).

5.3. Intention-to-treat and rank-preserving structural failure time model analyses

An ITT analysis of the Concorde data using the simple weighted logrank test yielded a test statistic ZW

of −1.64 with a corresponding p-value of 0.10. Figure 8 (left) and Table II shows the results of a causal
RPSFTM analysis using both the unweighted logrank test and the weighted test with the simple weights
from Equation (10).

A 95% confidence interval for 𝛽 under each test can be read off from Figure 8 as the range of 𝛽 values
for which test statistics lie between ± 1.96. The point estimate for 𝛽 (where the test statistic equals 0) is
slightly larger using the weighted test and its 95% confidence interval is around 2% narrower.

An ITT analysis of the Sunitinib data using the simple weighted logrank test yields a test statistic
of −1.49 and a p-value of 0.137. An ITT analysis using the zero-truncated simple weights yields a test
statistic of −2.48 with a p-value of 0.013. Figure 8 (right) and Table II shows the results of a causal
RPSFTM analysis using the unweighted logrank test, the simple weights from Equation (10) and the
zero-truncated simple weights.

There is considerable uncertainty as to the point estimate for 𝛽 based on the standard and simple
weighted tests — in both cases the test statistic is not a monotonically decreasing function of 𝛽, crossing
zero several times. The simple weighted statistic yields a 95% confidence interval for 𝛽, which is approx-
imately 43% narrower than that obtained using the standard logrank test. However, the zero-truncated
simple weights furnish the most precise estimate for 𝛽 (𝛽=−1.25, 95% C.I −2.21,−0.32).
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Figure 8. Estimation of the rank-preserving structural failure time model causal parameter 𝛽 using the standard
and weighted logrank tests for the the Concorde trial (left) and the Sunitinib trial (right). ‘T-weighted’ refers to

the zero-truncated weighted analysis.
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Table II. ITT and RPSFTM causal analyses of the Sunitinib and Concorde trials using the standard and
weighted logrank test. Zw∗ and 𝛽∗ refer to the test statistic and estimate, respectively, based on zero truncated
weights (Sunitinib trial only).

Trial Switching pattern Analysis Standard Simple weighted
example R=0 R = 1 type logrank test logrank test

ITT Z = −1.35 (0.177) Zw = −1.63 (0.103)
Concorde Off → On On

RPSFTM 𝛽 = −0.178 (−0.378, 0.0411) 𝛽 =-0.188 (−0.386,0.0234)

ITT Z = −1.03 (0.306) Zw = −1.49 (0.137)
Zw∗ = −2.48 (0.013)

Sunitinib Off → On On → Off
RPSFTM 𝛽 = −3.01 (−3.95, 0.88) 𝛽 = −0.89(−3.06,0.56)

𝛽∗ = −1.25(−2.21,−0.32)

ITT, intention-to-treatl; RPSFTM, rank-preserving structural failure time model.

6. Discussion

Given the severity of the disease, it is of paramount importance that clinical trials in late–stage cancer
meet the needs of the patients who take part, as well as future patients. For this reason, the emphasis is
usually, and rightly, on the pragmatic evaluation of different treatment strategies, rather than of simple
all–or–nothing comparisons. Amendments to the original protocol are also therefore likely, if felt to be
in the patients’ interest. In this paper, we have shown that a simple weighted logrank test can be far more
powerful than the standard logrank test for testing the ITT null hypothesis of no difference in the survival
distributions between randomised groups when (a) substantial treatment switching occurs and (b) large
rates of separation between the two group’s survival functions over time coincides with large differences
in the proportion of patients on treatment in each arm. This remained true even when the assumptions
used to derive the weights were violated, and, when this was the case, the weighted test’s type I error rate
was maintained at its nominal level.

The evidence gathered from late-stage cancer trials often needs to be subsequently interpreted by exter-
nal bodies who are tasked with making decisions about a single treatment’s suitability for future patient
populations. This may require an assessment of its effectiveness compared with another therapy under
different conditions than those originally followed in the trial. The RPSFTM has been used extensively to
provide quantitative answers to such ‘what if’ questions. In addition to showing its use for ITT analyses,
we have also shown that the weighted logrank test can furnish a more powerful method for comparing
counterfactual treatment assignments within the RPSFTM framework, assuming that the assumptions of
the RPSFTM hold.

It is important to stress that rejection of the null hypothesis by the weighted test should not be auto-
matically equated with a conclusion of treatment superiority. For example, a reviewer highlighted the
scenario (not explicitly explored in this paper) where being treated with an experimental drug at time t
has the effect of reducing the individual’s hazard at time t when t < A, but increasing it when t > A, for
some time A. That is, the treatment causes benefit early on, but harm later. Suppose that this change in
the direction of treatment effect causes the survival curves of the two treatment arms eventually to cross
over. In this scenario, the early benefit and later harm of the treatment might cancel one another out in the
test statistic of the standard unweighted log rank test, so that the null hypothesis of no treatment effect
were not rejected. Any test statistic that gave more weight to earlier event times, on the other hand, might
be more likely to reject the null hypothesis in favour of the experimental drug. In particular, this would
be true of the weighted log rank test in the presence of treatment switching. In a very real sense, it is cor-
rect to reject the null, because the survival curves are truly different, and so the failure of the standard log
rank test to reject the null constitutes a type-II error [15], but it is important not to interpret this falsity of
the null as being the same as treatment benefit.

If one believed that the treatment effect may not be constant over time, even in the absence of any
treatment switching, then an extended RPSFTM could easily be used to probe this possibility via an
additional sensitivity analysis. For example, to explore the case where the experimental treatment offered
a reduced (or even negative) benefit over standard therapy after time A, then a two-parameter RPSFTM
of the form:
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T0(𝛽0, 𝜓0) = exp{𝛽0}TPre–A
on + exp{𝜓0}TPost–A

on + Toff, (14)

could be fitted instead. Here, TPre–A
on and TPost–A

on refer to time on treatment before and after time A, respec-
tively, and the inclusion of a second parameter 𝜓0 allows for a different treatment effect either side of
A. Time A could be common to all patients, or one could use patient—specific information such as time
to disease progression. If Equation (14) is correctly specified, then 𝛽0 and 𝜓0 could be estimated con-
sistently by g–estimation using this two–parameter RPSFTM. Similar models were investigated in the
Concorde trial to explore the hypothesis that Zidovudine is more beneficial to patients with full-blown
AIDS than those who were only HIV-positive [8]. However, this was shown to be challenging because
of the increased dimensionality of the parameter space. A simpler approach would be to define 𝜓0 (or
perhaps even 𝜓0∕𝛽0) as a sensitivity parameter in Equation (14), and then find the values of 𝜓0 for which
evidence of an apparent beneficial treatment effect would be brought into doubt.

Estimation of the RPSFTM causal parameter under the weighted logrank test is more of a computa-
tional challenge than when using the standard unweighted statistic. This is because each new proposal of
𝛽 necessitates re-censoring of the data, which in turn requires a re-calculation of the weights. The para-
metric accelerated failure time modelling approach of Branson and Whitehead [16] uses a less stringent
re-censoring mechanism, and the additive hazard modelling approach of Martinussen [17] avoids the
need for ‘artificial’ re-censoring altogether. It would be interesting to see if these approaches could be
extended to incorporate time-varying treatment weights as outlined in this paper, to subsequently enable
more precise causal estimates to be obtained with less computational effort.

7. Software

R code is available from the corresponding author to perform the analyses set out in this paper.
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