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Optimal nonlinear model predictive control
based on Bernstein polynomial approach

Bhagyesh V. Patil® and K. V. Ling’" and J. M. Maciejowski*

Abstract—1In this paper, we compare the performance of
Bernstein global optimization algorithm based nonlinear model
predictive control (NMPC) with a power system stabilizer and
linear model predictive control (MPC) for the excitation control
of a single machine infinite bus power system. The control
simulation studies with Bernstein algorithm based NMPC show
improvement in the system damping and settling time when
compared with respect to a power system stabilizer and linear
MPC scheme. Further, the efficacy of the Bernstein algorithm is
also compared with global optimization solver BMIBNB from
YALMIP toolbox in terms of NMPC scheme and results are
found to be satisfactory.

I. INTRODUCTION

Over the past decades, model predictive control (MPC)
has emerged as one of the prominent advanced control
methodology for multivariable control. At the heart of MPC
lies a system model, which predicts the future evolution of
the system states. It generates control actions by iteratively
optimizing a performance criterion over a finite-time moving
window with reference to system constraints, and based
on predictions of the system model [1], [2]. In practice,
MPC implementations utilizing linear models (a.k.a ‘linear
MPC’) are preferred. This facilitates use of linear/convex
programming techniques to exactly solve optimization prob-
lems at each sampling instant. However, some applications
(like power systems) have significant nonlinear behaviour,
and for such applications, a linear MPC scheme may not
yield desirable closed-loop performance [3], [4]. Hence, to
mitigate problems arising from the system nonlinearities,
many researchers have pursued MPC approach based on
nonlinear system models. This approach under large variation
of dynamic behaviour of the system, may provide more
satisfactory control than linear MPC. Model predictive con-
trol using nonlinear system models, usually called ‘nonlinear
MPC’ (or NMPC), hence has attracted many researchers over
the past decade [5], [6], [7], [8], [9], [10].

We note that an NMPC formulation usually requires the
solution of a nonlinear, usually nonconvex, optimization
problem at each sampling instant. Therefore, NMPC requires
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global optimization procedures (cf. [11], [12]). The challenge
involved in NMPC is two fold:

(i) Can we complete the nonlinear iteration procedure until a
pre-specified convergence criterion is met so as to guarantee
the optimal solution of the optimization problem?

(ii) can we achieve (i) in a pre-specified sampling time limit?
Concerning these facts, our previous works have introduced
Bernstein global optimization procedures for NMPC appli-
cations (cf. [13], [14]). Optimization procedures based on
this Bernstein form, also called Bernstein global optimization
algorithms, have shown good promise to solve hard noncon-
vex optimization problems. This procedure is based on the
Bernstein form of polynomials [15], and uses several nice
‘geometrical’ properties associated with this Bernstein form.

The current scope of the work is based on the sequential
improvement of our previous works in [13], [14]. Specif-
ically, in this work we implement a hull pruning feature
for the Bernstein global optimization algorithm to solve a
nonconvex optimization problem at each NMPC iteration.
The hull pruning aids in discarding regions from solution
search spaces that surely do not contain the global solution.
As this feature provides the means to narrow the search
region for the optimization problem, we call it a narrowing
(‘hull pruning’) operator. The applicability of the Bernstein
algorithm with this hull pruning feature is demonstrated
by simulating a nonlinear model predictive control scheme
for a classical single machine infinite bus (SMIB) power
system [16]. SMIB has a strong nonlinear characteristics and
exhibits accurate representation of the synchronous generator
behaviour. The findings of our nonlinear MPC scheme based
on the Bernstein algorithm with hull pruning operator are
compared with respect to well-established power system
stabilizer (PSS) [16] and linear MPC. We also investigate our
findings with nonlinear MPC based on the YALMIP global
optimization solver BMIBNB [17].

In the rest of the paper, we first introduce a nonlinear
MPC formulation (Section 2). Next, we briefly describe the
Bernstein form and the hull pruning operator, followed by the
presentation of the Bernstein global optimization algorithm
(Section 3). We then report the simulation studies on a
nonlinear SMIB power system (Section 4). Finally, some
concluding remarks are given in Section 5.

II. NMPC CONTROLLER FORMULATION

We consider a class of continuous-time systems described
by the following nonlinear model

X = f(xa M), x(t()) = X0 (1)
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where x € R"” and u € R"™ denote the vectors of states and
control inputs, respectively. In practice, the continuous-time
model (1) used for predictions is discretized with a sampling
time At, such as Euler’s method

X1 = X + At f (X, ug) )

where k denotes sampling instant.

The nonlinear optimization problem in the NMPC formu-
lation at each sampling instant k is stated by (3)-(6). The
control objective is to maintain equilibrium point (origin),
by minimizing the cost (3) subjected to discretized nonlinear
predictive model (2), and fulfilling constraints of the form

®.

min NZI f(xk,uk) (3)

Ly i
subject to x| = xi + At f (g, ) )
c(xeur) <0 @)
for k=0,1,...,N—1 (6)

where N(> 1) denotes the prediction horizon and c(x,uy)
are the nonlinear constraints arising due to safety and oper-
ational requirements of the control system. It may be noted
that, ¢(xy,u;) subsume the constraints on the state and input
of the following form:

P < g < (7)

Ut < g < U, ®)

We assume at the equilibrium point (x},u}), the cost (3)
should be zero, i.e. .2 (x},u;) =0.

The NMPC algorithm at each sampling instant & involves
the following steps:

(a) Measure the state x; of the system (we assume in the
above NMPC formulation all states are available for
measurement).

(b) Solve the nonlinear optimization problem (3)-(6) with
initial state x;. Denote the obtained optimal control
sequence as ug, Uy, ..., Uy_j-.

(c) Implement the first step of the optimal control sequence,
ug to the system (1) to obtain a new updated state until
the next sampling instant.

(d) Repeat from (a).

The overall scheme of the Bernstein algorithm based
NMPC is depicted in Fig. 1. The Bernstein algorithm can
be applied when the system model, cost function and the
constraints are polynomials. In many other applications the
problem can be approximated (as closely as desired) by
polynomials (such as our example in Section IV).

III. BERNSTEIN GLOBAL OPTIMIZATION APPROACH

In the NMPC formulation (Section II), we solve a nonlin-
ear optimization problem at each sampling instant to derive
a control law for the nonlinear system (1). [5] and [7]
report some optimization approaches to achieve this goal.
This section briefly introduces one such (global) optimization
approach based on the Bernstein form of polynomials. For

Constraint handling

c(Xk, uk) <=0

Optimization solver uo X
= B(xk up) 4—®  (BBBalgorithm ——™ Plant  —
: : in Section I11)
{= Useof Lemma 1 i I
Nonlinear optimization problem Measurement Unit
(Equations 3-6)
Prediction - Xk
(Equation 2)
Fig. 1. Schematic of Bernstein algorithm based NMPC.

brevity, we only present notions about the univariate Bern-
stein form (see [18] for the multivariate case).
We can write a generic polynomial of degree [ as

!
p(x) = Zaix’, a €R )
i=0
where x is the variable, and {ag,a,...,a;} are the coeffi-

cients of the power basis B, given by the following set of
monomials

Bp:{l,x,xz,...,xl}. (10)

We assume that p(x) is defined over a real bounded and
closed interval x = [0, 1]. The unit interval is not a restriction,
since any nonempty compact interval can be mapped affinely
onto it.

Now the polynomial p can be expressed into the Bernstein
polynomial form of the same degree [15]:

!
p(x) =Y biB}(x) (11)
i=0

where B!(x) are the Bernstein basis polynomials and b; are
the Bernstein coefficients:

Bl(x) = ( f )xf(l—x)“.

3 )
()

Equation (11) is referred as the Bernstein form of (9) and
satisfies the following range enclosure property [15]:

12)

~ o~

aj, i=0,...,1. (13)

p(x) C B(x) := [min b;, max b;]. (14)

where p(x) denote the range of p on a given interval x.

Remark 1: Equation (14) says that the minimum and max-
imum coefficients of b; provide lower and upper bounds for
the range of p. This forms the Bernstein range enclosure,
defined by B(x). Further, this Bernstein range enclosure



can successively be sharpened by the continuous domain
subdivision procedure (see, for instance [19]).

The following properties follow immediately from the
Bernstein range enclosure (14).

Lemma 1: Let B(x) be the Bernstein range enclosure
for a polynomial p(x) on a given box x. Then, the following
identities hold

1) B(x) <0= p(x) <0 for all x € x.

2) B(x) > 0= p(x) >0 for all x € x.

3) 0¢ B(x) = p(x)#0 for all x € x.

4) B(x) C [_8zerm£zem] = p(x) € [_gzermezem] for all x € x,

where €, > 0.

Vertex condition [15] Consider the Bernstein form in equa-
tion (14) for a polynomial p of degree I, and let the range
P(x) = [a,b]. Then

a= min (b;) if and only if Om‘in (bj)) = min_ (b;)

0<i<l <i<l ic{0,l}
b= b;) if and only if b;) = bi
(ggg( ) if and only i (glglgl( ) @3’7}( i)

Remark 2: The above vertex condition says that the lower
bound (respectively, upper bound) is sharp if and only if
min b; (respectively, max b;) is attained at a vertex Bernstein
coefficient (that is, bg, b;). Further, the vertex condition is
said to be met within a given tolerance &, if

- mi < — .
by, Orgl;glb,fsf, k=0,1 (15)

A. Hull pruning operator

As mentioned earlier, NMPC solves a nonlinear program-
ming (NLP) problem of the form (3)-(6). This NLP has
a nonlinear set of constraints and a search space (box)
representing the variable domains. The hull pruning oper-
ation removes inconsistent values from a box that surely do
not contribute in locating global solution. It achieves this
goal using the constraint inversion procedure and interval
arithmetic operations’.

Consider a multivariate equality constraint A(x) = 0. To
apply hull pruning, we keep one term on the left hand
side (say variable x, from which has to be pruned) and
remaining all other terms are taken on the right hand side,
that is, we write the constraint in the form apx! = hy(x)
where, x = (x1,...,%r,...,x;) and I = (i1,i2,...,ir,...,0]).
Now, replacing all x' by their respective intervals and 4 (x)
by its interval evaluation, we can write interval x’, (for the
variable x,, which has to be pruned) as

1/ir
h/
X, = L . k=1,2,...,1
ar [1x}

Then the new pruned interval for the variable x, can be
obtained as below

(16)

a7

-
Xrconsistent = Xy [ Xy

Interval arithmetic operations are set theoretic extensions of the corre-
sponding real (floating-point) operations [20].

Example: Consider a constraint x; = x{, x; € [1,2] and
xp € [0,2.5]. First perform constraint inversion and interval
arithmetic operations for x;
X = (x2)?
=1[0,2.5)2
= [0,1.5812]
X1, consistent = X Nxy
= [0,1.5812]N[1,2]
= [1,1.5812]

Similarly, we can achieve pruning for x> as X consistenr =
[1,2.5]. Fig. 2 illustrates the complete hull pruning for
constraint x, = x7 for x; € [1,2] and x; € [0,2.5].

In our hull pruning operator, we perform constraint inver-
sion and interval arithmetic operations using the Bernstein
range enclosure B(x) in (14).

A
X2

250

-
P

1
T
1 1.58 2 X1

Fig. 2. Computation of consistent set of values (pruning) from x; € [1,2]
and x; € [0,2.5] with respect to the constraint x, = x2.

B. Main Bernstein branch-and-prune algorithm
[f*ax*] = BBB(f,gi,hj,X, Sfa SZL’F())

Inputs: The cost function (3) as f, equality constraints (4)
as hj, and inequality constraints (5) as g;, the initial search
box for u; as X, the tolerance parameter & on the global
minimum, and the tolerance parameter €., to which the
equality constraints are to be satisfied.

Outputs: The global minimum f* and global minimizer x*.

BEGIN Algorithm
Initialization step (R)

« Compute the range enclosures for f, 8i» and hj, respec-
tively as by, b, and bh_/. over X. ~86t I to the minimum
Bernstein coefﬁciellt of by and f = f.

o Construct £ < {(f,by,bg;,bn;,X)}, £ {}.

Sorting and Pruning step (SP)

o If £ is empty, go to step T. Else sort item(s)" in £ in
ascending order of f.

TEach item in the list £ is of the form: (f, bf,bg;,by;,X).



o Pick the first item from £ removing its entry.

o Apply hull pruning operator based on Bernstein range
enclosure property to the set of constraints (4)-(5) and
obtain the contracted box as x’. Compute the range
enclosures for f, g;, and h;, respectively as by, bg,;, and
by, over x'.

Feasibility and Bounding step (FB)

e Check the constraint feasibility (see Lemma 1). If
the constraint is not strictly feasible, then go to the
branching step.

 Check the vertex condition for item (see Remark 2). If
‘true’, then update f = by and add that item to £*°/. Go
to step SP.

Branching step (B)
« Partition the (feasible) search space x into two subre-
gions (such that, x = x; UX»).
« Compute the Bernstein range enclosures for f, g;, and
hj over X1 and x;.
o Discard x;, k = 1,2 for which min(bs) > f. Enter
(ﬁ,bfﬁk,bgi‘k,bhj’k,x) into the list £ (fk = min(bf,k))

Termination step (T)

o If maximum number of the subdivisions are not reached
or £ is not empty, then repeat SP-FB-B. Else go to the
next step.

« Find that item in L% for which the first entry is equal
to f. Denote that item by J¢.

o Jy: the first entry is a global minimum f*, last entry is
the global minimizer x*.

o Return the global solution (f*, x*).

END Algorithm

IV. NMPC APPLICATION: POWER SYSTEM

In this section, we present our findings with Bernstein
algorithm (BBB) based NMPC (henceforth, referred as BN-
MPC) for nonlinear excitation control of a single machine
infinite bus (SMIB) power system (shown in Fig. 3). We
use the following SMIB system dynamical model in a d — ¢
reference frame [16].

6 =0Qp(0—0,) (18)
1 ( Xireq  (Xar—X))
o= (-4 4y, cos(8) +era ) (20)
T\ Xy, Xir
) 1 K K
=—— Aa-v)+2 21
éfq TAefd+ TA( +) + T, " (21)
where
el v,sin(8 X — X!
P=- rX, ©) ;l( X,d’)vrzcos(ﬁ)sin(é).
dr qrdr

v, = \/(e; — X41)2 + (X),)2.
Xy = Xa+Xr, Xgr = Xg+ X, Xy = X+ Xr.

where 6 is the rotor angle of the generator, @ is the rotor
speed, H is the inertia constant of the generator, P, is the

mechanical input power to the generator which is assumed to
be constant, K; is the damping constant of the generator, P,
is the electrical power delivered by the generator, ey is the
field voltage of the generator, V; is the terminal voltage of the
generator, and u is the control input from the controller which
modulates ef,. All parameters are expressed in per unit (pu)
and their equilibrium points values used in the simulation
are listed in Table I. For all simulations, we have shifted the
actual equilibrium point to the origin using the appropriate
transformation.

TABLE I
L1ST OF SMIB PARAMETERS AND DATA [16].

[ Parameter | Parameter | Value ]
Base angular frequency Qp 27 x 50 rad/sec
Network bus voltage S 0.90081 pu
d-axis transient time constant T} 8 sec
d-axis reactance X4 1.81 pu
d-axis transient reactance X 0.3 pu
g-axis reactance Xy 1.76 pu
Transmission line reactance X, 0.475 pu
Mechanical power P, 0.9 pu
Generator exciter gain Ky 200
Generator exciter time constant Ta 0.001 sec
Generator inertia constant H 3.5 sec
Stable equilibrium point [0 @ e epq]|[1.22511.023 2.42]

Synchronous Step-up
Generator Transformer
AN Power
0.5 System
Network
j0.15 :
— ! % §0.93
P

Fault

Fig. 3. Classical single machine infinite bus power system network [16].

For the nonlinear control simulation studies we consider
the following two scenarios:

Scenario I: A short-circuit fault occurring at one of the
two parallel transmission lines shown in Fig. 3 (mechanical
power P, is assumed to be constant at 0.9 pu).

Scenario II: 5 % and 10 % step changes of the input
mechanical power to the generator.

For both scenarios, we simulate an BNMPC scheme which
regulates the SMIB system about its equilibrium point. We
consider the nonlinear model in (18)-(21) as the system, and
the NMPC control law is derived by solving an NLP of
the form (3)-(6) using the Bernstein algorithm BBB. The
solution for the updated states is computed based on the
set of given initial conditions and first optimal control move
derived by a BNMPC control law. We adopted the cost .Z
in (3) as X3 x7 Qxy + ul Ruy with the following parameter
values for the simulation:

« sampling time of 0.03 seconds

« prediction horizon, N = 3

e QO=diag(l 11 1)7 and R=1 as weighting matrices



« initial condition, xo = [0 0 0 0]” and up =0

« constraints on the control input, —0.1 < u < 0.1

« tolerances, & = &,y, = 0.001 in the algorithm BBB

¢ maximum number of subdivisions to be 100 in the

algorithm BBB

To compare the performance of an NMPC scheme with the
Bernstein algorithm (BNMPC), we choose a well-established
control scheme from the power systems literature, namely
a power system stabilizer (PSS). The tuned parameters of
PSS were adopted from [16, p. 865]. Further, we also
choose to compare with respect to linear MPC scheme
and NMPC scheme based on YALMIP global optimization
solver BMIBNB [17]. The linear MPC is designed based
on the linearized model of (18)-(21) around the equilibrium
point, § = 1.225, ® =1, e; =1.023, and esy = 2.42. The
resulting optimization problems were solved using MATLAB
‘quadprog’ solver [21]. Note that for all control schemes, the
control law (u) derived was injected directly to the nonlinear
system (18)-(21). All control simulations were performed in
the MATLAB environment [21] on a desktop PC running an
Intel®Core i7-5500U CPU processor at 2.40 GHz with a 8
GB RAM. We now briefly discuss the simulation results of
the two scenarios.

Scenario I: In order to validate the effectiveness of an
BNMPC scheme under a disturbance, a short-circuit fault
lasting 100 milliseconds is considered between the two
parallel transmission lines. The fault occurs at =3 seconds
and is cleared at + = 3.1 seconds. This event perturbs the
states (8, o, e;, erq) from their equilibrium. The system
may become unstable during the post-fault period due to
insufficient damping. Hence, the controller has two roles: 1)
to stabilize the system in the post-fault period; and ii) to
bring the states back to their equilibrium point.

Fig. 4 shows the rotor angle (&) response of the syn-
chronous generator. The dotted line indicates the system
response with the classical PSS; solid red line indicates case
with our BNMPC; whereas solid blue line shows the system
behaviour with the linear MPC scheme. It can be observed
that the BNMPC scheme results in better damping compared
to the PSS with quickly bringing the rotor angle back to the
equilibrium point (= 28 % reduction in the settling time) and
slightly better settling time when compared with the linear
MPC.

Similarly, we note that the synchronous generator speed
deviation (Aw) is also disturbed by the short-circuit event.
Fig. 5 shows the speed deviation response of the generator,
where the dotted line indicates the system response with the
classical PSS; solid red line indicates case with our BNMPC;
whereas solid blue line shows the system behaviour with the
linear MPC scheme. In this case too BNMPC ensures good
transient stability compared with the PSS and slightly better
settling time when compared with the linear MPC.

Similar findings can be seen in transient responses in the
generator terminal voltage from Fig. 6. Fig. 7 shows the
control signal delivered to the generator. We note that PSS
had a large oscillating damping before settling. On the other
hand, the BNMPC and linear MPC control moves had small

oscillations at the cost of offering better damping during the
post-fault state. This is evident from the system responses
shown in Figs. 4-6.

Scenario II: We now simulate the power system with ini-
tial nominal mechanical power (£, = 0.9). Then we assume a
sudden disturbance on the input side of the generator (such
as, drop in the steam pressure used to rotate the turbines)
which result in a change in the mechanical power (P,) of
the generator. We consider a 5% step change in P, from its
nominal value (i.e. 0.9 to 0.8548) at 2 seconds and again 20%
step change in P, (i.e. 0.8548 to 1.0258) at 5 seconds. For
the first step change in P,, and constant load, the difference
between the electrical power generated and the desired load
is met by reducing the rotor speed (@) and as a result the
rotor angle (6) settles down to a lower equilibrium value.
The opposite is observed when P, is increased by 20% from
its nominal value.

The resulting rotor angle (J) is shown in Fig. 8. The
dotted line indicates the system response with the classical
PSS; solid red line indicates case with our BNMPC; whereas
solid blue line shows the system behavior with the linear
MPC scheme. It can be observed that the BNMPC scheme
is superior than the PSS in terms of the damping and settling
time. The performance of linear MPC and BNMPC are
almost equal for the first step change in P, at 2 seconds. On
the other hand, for the second step change in P, at 5 seconds
our BNMPC performs better than linear MPC (=7%
reduction in the overshoot).

Fig. 9 shows the generator terminal voltage response
to the changes in the mechanical power P,. It can be
observed that in this large transient period the PSS scheme
responds poorly. On the other hand, the BNMPC scheme
performs satisfactorily, keeping the terminal voltage close to
its nominal value of 1. In this case too the performance of
our BNMPC is better than linear MPC, particularly for the
second step change in P, at 5 seconds.

To assess computational time demand of our BNMPC
scheme, we compare it with YALMIP global optimization
solver BMIBNB embedded in an NMPC and the linear MPC
schemes. Specifically, we compare the computational times
under the aforementioned Scenario I. Fig. 10 shows the time
taken to compute the control move at each sampling instant
(i.e. to solve an NLP of the form (3)-(6)) by a BMIBNB
solver, algorithm BBB, and MATLAB linprog solver. We
observe that BMIBNB and quadprog solvers resulted in a
average time of 0.12 and 0.003 seconds, respectively for
the control move computation. Further, we observed that for
BNMPC without the use of hull pruning operator resulted
in a average time of 0.035 seconds for the control move
computation. On the other hand, in presence of the hull
pruning operator, the control move computation time was
well within the sampling period of 0.03 seconds—on average
0.015 seconds. Similar, findings are observed for Scenario II.

Finally, to study the scalability of our BNMPC scheme
against the linear MPC scheme, we vary the prediction
horizon N from 3 to 7. An increase in the prediction
horizon results in an increase in number of decision variables



for the optimization problem (3)-(6). Fig. 11 shows the
resulting average computational times for the solution of an .
optimization problem. In all cases, BNMPC was found to 104
be slower than its counter part, linear MPC, as expected. =l
However, in both cases the average computational time rise
was observed to be almost linear with the prediction horizon
varying from 3 to 7.
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In this work a nonlinear model predictive control (NMPC)
scheme was presented. The specific highlight of our NMPC Fig. 6.  Generator terminal voltage under a 100 ms short-circuit fault
scheme was an improved branch-and-prune type Bernstein  (Scenario I).
global optimization procedure to solve the optimization prob-
lems at each sampling instant. This NMPC scheme holds
good potential for power systems and other applications,
because it uses hull pruning procedure to handle constraints
efficiently in the optimization problems at each sampling o
instant. Further, such NMPC scheme also benefits from
the Bernstein algorithm due to its ability to locate correct
globally optimal solutions with any desired accuracy, and
quickly enough for solving online optimization problems.
The scalability of our NMPC scheme for a varying prediction
horizon and the computational comparison with respect to
the linear MPC scheme were also found to be satisfactory.
In summary, this paper provides further evidence that the
Bernstein algorithm is an effective tool for NMPC. Fig. 7. Control signals under a 100 ms short-circuit fault (Scenario I).
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Fig. 4. Generator rotor angle response under a 100 ms short circuit fault
(Scenario I).
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Fig. 8. Generator rotor angle response with changes in mechanical power
input (Scenario II).
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Fig. 5. Generator rotor speed response under a 100 ms short circuit fault
(Scenario I).
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Fig. 9. Generator terminal voltage response with changes in mechanical
power input (Scenario II).
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10. Comparison of the computation time needed for a solution of an

optimization problem (in MPC scheme) at each sampling instant: YALMIP
global optimization solver BMIBNB, Bernstein algorithm (with and without
pruning operator), and linear MPC (Scenario I). Sampling time is 30 ms.
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NMPC (BNMPC) (Scenario I).

[1]
[2]
[3]

[4]

[5]

REFERENCES

J. M. Maciejowski, Predicitve control with constraints. UK, Harlow:
Prentice Hall, 2002.

E. F. Camacho and C. Bordons, Model predictive control, 21d o,
London: Springer-Verlag, 2004.

Y. Wan and J. Zhao, “Extended backstepping method for single-
machine infinite-bus power systems with SMES,” IEEE Transactions
on Control Systems Technology, vol. 21, no. 3, pp. 915-923, 2013.
S. S. Kaddah, K. M. Abo-Al-Ez, and T. F. Megahed, “Application
of nonlinear model predictive control based on swarm optimization in
power systems optimal operation with wind resources,” Electric Power
Systems Research, vol. 143, pp. 415430, 2017.

F. Martinsen, L. T. Biegler, and B. A. Fossa, “A new optimization
algorithm with application to nonlinear MPC,” Journal of Process
Control, vol. 14, no. 8, pp. 853-865, 2004.

R. Findeisen, F. Allgower, and L. Biegler. Assessment and future
directions of nonlinear model predictive control, Lecture Notes in
Control and Information Sciences: Springer-Verlag, 2007.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

M. Diehl, H. J. Ferreau, and N. Haverbeke, Efficient numerical meth-
ods for nonlinear MPC and moving horizon estimation. In: L. Magni,
D. M. Raimondo, and F. Allgower (Eds.), Nonlinear Model Predictive
Control. Springer: Lecture Notes in Control and Information Sciences,
pp. 391-417, 2009.

J. D. Hedengren, R. A. Shishavana, K. M. Powell, and T. F. Edgar,
“Nonlinear modeling, estimation and predictive control in APMonitor,”
Computers and Chemical Engineering, vol. 70, no. 5, pp. 133-148,
2014.

S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From
linear to nonlinear MPC: bridging the gap via the real-time iteration,”
International Journal of Control, pp. 1-19, 2016.

Inga J. Wolf and W. Marquardt, “Fast NMPC schemes for regulatory
and economic NMPC— A review,” Journal of Process Control, vol. 44,
pp. 162-183, 2016.

L. Biegler, Efficient solution of dynamic optimization and NMPC
problems. In: F. Allgower and A. Zheng (Eds.), Nonlinear Model
Predictive Control. Springer Basel AG, pp. 219-243, 2000.

X. Wang, V. Mahalec, and F. Qian, “Globally optimal nonlinear model
predictive control based on multi-parametric disaggregation,” Journal
of Process Control, vol. 57, pp. 1-13, 2017.

B. V. Patil, J. Maciejowski, and K. V. Ling, “Nonlinear model
predictive control based on Bernstein global optimization with appli-
cation to a nonlinear CSTR,” IEEE Proceedings of European Control
Conference (ECC), pp. 471-476, 2016.

B. V. Patil, J. Maciejowski, and K. V. Ling, “Nonlinear model
predictive control based on improved Bernstein global optimization
algorithm with application to power systems,” 20" IFAC World
Congress, July 9-14, Toulouse, 2017.

H. Ratschek and J. Rokne, New computer methods for global opti-
mization. Chichester, England: Ellis Horwood Publishers, 1988.

P. Kundur, Power system stability and control, 1" edition. New York:
McGraw-Hill Education, 1994.

J. Lofberg, “YALMIP: a toolbox for modeling and optimization
in MATLAB,” IEEE International Symposium on computer Aided
Control Systems Design, pp. 282-289, 2004.

B. V. Patil, P. S. V. Nataraj, and S. Bhartiya, “Global optimization
of mixed-integer nonlinear (polynomial) programming problems: the
Bernstein polynomial approach,” Computing, vol. 94, no. 2-4, pp. 325—
343, 2012.

J. Garloff, “The Bernstein algorithm,” Interval Computations, vol. 2,
pp. 154-168, 1993.

E. R. Hansen and G. W. Walster, Global optimization using interval
analysis, 2 odition. New York: Marcel Dekker, 2005.

The Mathworks Inc., MATLAB version 8.3 (R2014a), Natick, MA,
2014.



