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Abstract—This paper introduces a deep level teardown 

process of a personal medical device – the OmniPod® 

wireless tubeless insulin pump. This starts with mechanical 

teardown exposing the engineering solutions used inside the 

device. Then the electronic part of the device is analysed 

followed by components identification. Finally, the firmware 

extraction is performed allowing further analysis of the 

firmware inside the device as well as real-time debugging. 

This paper also evaluates the security of the main controller 

IC of the device. It reveals some weaknesses in the device 

design process which lead to the possibility of the successful 

teardown. Should the hardware security of the controller 

inside the device was well thought through, the teardown 

process would be far more complicated. This paper 

demonstrates what the typical teardown process of a 

personal medical device involves. This knowledge could help 

in improving the hardware security of sensitive devices. 

Keywords—teardown; hardware security; reverse 

engineering; wireless tubeless insulin pump; code extraction; 

image processing 

I. INTRODUCTION 

Security of medical devices is a very important issue 
because any failures could have a drastic effect on the 
patients’ health [1]. Many modern wearable medical 
devices have complex semiconductor chips inside – either 
microcontroller or SoC (System-on-Chip). Those 
semiconductor chips are supposed to maintain both 
integrity and confidentiality of the information stored 
inside. This should prevent firmware analysis and 
modification in order to hijack control over the device. As 
many medical devices keep logging patient’s data, their 
security is paramount. Eavesdropping on communication 
channel and taking over the device control must also be 
prevented to maintain confidentiality of data and avoid any 
physical harm to patients. 

In the past there were several publications and reports 
on the security flaws in personal medical devices. This 
involves vulnerabilities of implantable cardiac 
defibrillators [2] and insulin pumps [3]. The most 
important aspect of any insulin pump is its security. This is 
because the insulin delivery process must be carefully 
adjusted to the patient’s blood glucose level (also called 
blood sugar level). Should the glucose level become too 
low this causes an unpleasant symptoms called 
hypoglycaemia. If the glucose level becomes too high the 
patient experience hyperglycaemia. Both conditions are 
quite dangerous and could result in a coma or even death of 
a patient. Respectively, delaying the injection of insulin 
after taking a food is likely to result in hyperglycaemia, 
while injecting too much of insulin is likely to cause 

hypoglycaemia. Because modern insulin pumps are 
controlled wirelessly, hijacking of the communication 
would give a potential attacker possibility to interfere with 
the delivery of insulin. This could cause a serious harm to 
the patient’s health. 

This paper analyses a particular wireless tubeless 
insulin pump – the OmniPod® device manufactured by 
Insulet [4]. This is the only personal tubeless insulin pump 
approved by FDA (US Food and Drug Administration) [5]. 

This paper is organised as follows. Section 2 gives brief 
introduction to insulin pumps. The mechanical teardown 
process is presented in Section 3, followed by the 
description of the electrical circuit teardown in Section 4. 
Components identification and analysis are described in 
Section 5. Firmware extraction process is outlined in 
Section 6. The approach to further code analysis is 
described in Section 7. This is followed by discussions and 
future work outlined in Section 8 and the conclusion in 
Section 9. 

II. BACKGROUND 

People with Type 1 diabetes are relying on constant 
delivery of insulin into the blood of their body [6]. In the 
old days this was achieved with multiple syringe injections 
or jabs of insulin throughout a day. With the development 
of insulin pumps this process was automated with portable 
devices attached to the body. The pump can continuously 
deliver amounts of rapid or short acting insulin via a 
catheter placed under the skin [7]. This reduces the need 
for multiple insulin jabs per day and gives the user 
increased ability to control blood glucose levels. An insulin 
pump consists of the main pump unit with an insulin 
reservoir attached to a long, thin piece of tubing with a 
needle or cannula at one end. These tubes pose a 
significant drawback for the wide use of insulin pumps – 
they have tubes hanging around patient’s body. Not only 
these tubes can be trapped by clothes or furniture, but the 
pumps are not waterproof. A significant improvement 
came with the development of tubeless insulin pumps [8]. 
However, they still have some drawbacks. In particular, 
they do not have direct integration with a Continuous 
Glucose Monitor (CGM). 

An informal community of developers has taken it 
upon themselves to develop open source insulin delivery 
systems that would improve the lives of patients with Type 
1 diabetes. Examples of these systems include Loop [9] 
and OpenAPS [10]. The work is also supported by the 
Nightscout Foundation [11]. There was a lot of media 
coverage on the artificial pancreas project in the past [12]. 
Such projects pose a lot of challenges because the 
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manufacturers of insulin pumps do not provide much 
information about their devices. Hence, the work of such 
communities and groups involves a lot of hacking and 
reverse engineering. Insulin pump electronics usually 
contain a single chip that performs authentication and 
control. So far they were only able to understand and use 
the conventional pump made by Medtronic and only for 
certain older versions of the firmware. For a long time they 
tried to understand the communication protocol of 
OmniPod devices, but without much success [13]. 
However, they do have a dedicated page where all their 
findings are shared [14]. 

The OmniPod system consists of the Pod that holds the 
insulin dose and the PDM (Personal Diabetes Manager) 
that communicates wirelessly with the Pod to deliver 
continuous insulin based on patient’s personal settings 
(Figure 1). 

 

Fig. 1. Insulet OmniPod system: PDM and Pod. 

Figure 2 shows what the Pod looks like after taking it 
out of the sterilised packaging. 

 

Fig. 2. Unused Pod. 

The Pod must be initialised first before the use. This 
involves filling it with insulin, attaching to the body and 
activating the insertion of a cannula under the skin. 

III. MECHANICAL TEARDOWN 

The purpose of the mechanical teardown is to 
understand how the device works and what engineering 
solutions were used for building it. Very often medical 
devices have multiple patents on the solutions used in their 
design and manufacturing. This could help in better 
understanding their functionality and purposes of some 
parts. 

A. Opening up the Pod 

The Pod’s top cover is so strongly glued to the base that 
it was necessary to use an engraving tool with a small 
circular saw attached to it. The steel saw bit was about 
20mm in diameter and 0.3mm thin. It easily cuts through 
the plastic and it is the black plastic in between the opaque 
top and transparent base that is needed to be cut through. 
After the cutting is finished along the perimeter, the top 
and bottom parts can be easily detached from each other 
(Figure 3). 

 

Fig. 3. Pod with its cover and base detached. 

The top cover holds a piezo buzzer that produces some 
beeps during the Pod operation to attract patient’s attention. 
The pictures of the internal assembly from both sides are 
presented in Figures 4 and 5. 

Inside the assembly there is a reservoir for insulin 
supply of up to 3 days of life of an activated Pod. In the 
middle there is a spring-loaded cannula insertion 
mechanism. The white motor gears can be seen next to the 
reservoir. They are driven by a motor mechanism at the 
back side of the assembly. 

The PCB (Printed Circuit Board) with all the electronic 
components is attached to the back side of the assembly. It 
is held in place by six plastic bumps which can be easily 
removed with a sharp knife. There are three 1.5V batteries 
which supply the Pod’s electronics. They are held in place 
by metal springs for better electrical contact. Other small 
springs are used to connect the PCB with other parts of the 
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assembly. Two springs in the middle establish a contact 
with piezo buzzer. At the end of the white plastic gears 
there is an encoder connected to the PCB with two springs. 
Other two springs next to the reservoir are used to monitor 
the position of the membrane. 

 

Fig. 4. Top view on the pump assembly inside the Pod. 

 

Fig. 5. Bottom view on the pump assembly inside the Pod. 

 

B. How the stuff works 

Before any use the new Pod must be activated. This is 
achieved with placing it next to the PDM and following the 
activation instructions on the screen. When ready the PDM 
asks for the Pod to be filled with insulin. During the 
reservoir filling process the membrane inside it pushes the 
steel rod forward. Once the rod shorts the two springs 
outside the reservoir the Pod makes two beeps and also 
tells PDM that it is ready for use. However, as this happens 
at about 1/3 of the capacity, it can be filled further as much 
as needed for up to three days of insulin supply. 

The next step is pairing of the Pod to the PDM (Figure 
6). During this step the PDM establishes a way for secure 
communication with the Pod. It also activates the motor 

inside the Pod and this can be observed with the move of 
the motor gears. At one side of the gears there is a locking 
spring which is activated with the turn of the gear. Before 
the activation happen the brass rod was not held by the 
spring, hence, the membrane was free to move allowing the 
reservoir to be filled with insulin. Once released, the spring 
acts as a clutch connecting the gears to the threaded brass 
rod inside the reservoir. From this moment the gears will 
turn the rod and push the membrane forward. That way the 
insulin will be pushed out of the reservoir into the metal 
tube and then through the plastic cannula inside the 
patient’s body. 

 

Fig. 6. Pairing the Pod to PDM. 

After the priming is finished the PDM is ready to 
activate the Pod and insert the cannula. A few more turns 
of the gears release the plastic lever that holds the strong 
spring loaded insertion mechanism. The spring pushes the 
metal needle together with the plastic cannula fast forward 
with a force and then quickly retracts the needle leaving the 
cannula inside the skin. The result of this operation on the 
opened Pod is shown in Figure 7. 

 

Fig. 7. Opened Pod after cannula insertion. 
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The motor mechanism of the Pod can be seen when the 
PCB is detached from the assembly (Figure 8). The gears 
are driven by an anchor mechanism pushed with a muscle 
wires. These wires become shorter when an electric current 
is sent through them and they are heated [15]. The anchor 
is connected to the ground potential, while either of the two 
terminals are connected to the power supply to send the 
current through the corresponding wire. On the far end of 
the anchor there is a pin which connects to one of the 
springs once the anchor reaches the desired position. That 
way the controller knows when to switch off the current to 
prevent overheating and excessive battery draw. 

 

Fig. 8. Bottom side of the Pod after PCB is removed. 

The video of the whole process of opening the Pod and 
demonstration of its operation is available online [16]. 

In order to better understand the functionality of the 
device we need to know both its electrical schematic and 
the software it runs.  

C. Opening up the PDM 

The PDM that controls the Pod was also opened to 
investigate its internal components (Figure 9). 

 

Fig. 9. Opened up PDM. 

There is a large ARM-based microprocessor inside it 
(Freescale MC9328MX21SVM) that runs the control 
software. The communication is performed by the same 
type of microcontroller found in the Pod – Freescale SoC 
S9S8ER48 or its newer version SC9S08ER48. Freescale 
merged with NXP in 2015, therefore, any official 
information on the components can only be found from 
NXP website. 

Some analysis work has already been carried out by 
OpenAPS community on the main controller inside PDM. 
However, it turned out that all the handling of 
communication packets was performed by the 
S9S8ER48/SC9S08ER48 SoC controller. Since all Pods 
are discarded after use, there were no issues in obtaining as 
many samples of those SoC chips as needed. Therefore, all 
the efforts were moved towards reverse engineering of the 
Pod. 

Table 1 outlines different versions of the controller chip 
found in various Pods and PDMs . 

TABLE I.  VERSIONS OF 9S08ER48 CHIP FOUND IN DEVICES 

Device Chip Name 
Silicon 

Revision 

Firmware 

Revision 

Chip 

Date 
Pod S9S8ER48 1N80A 14549J 09/2012 
Pod SC9S08ER48CHP 2N80A 16148A 11/2013 
Pod SC9S08ER48CHP 2N80A 16148C 09/2014 
Pod SC9S08ER48CHP 2N80A 16533B 02/2015 

PDM S9S8ER48 1N80A Unknown 03/2013 
PDM SC9S08ER48CHP 1N80A Unknown 11/2013 

Yes PDM SC9S08ER48CHP 2N80A 16544A 08/2016 
 

For this research only the latest firmware revision in the 
Pod was analysed marked on the chip as 16533B. 

IV. CIRCUIT LEVEL TEARDOWN 

All the electronic components of the Pod are placed on 
the PCB attached to the assembly. The picture of the 
detached PCB is presented in Figure 10. The IC in 40-pin 
QFN package is the only integrated circuit on the board. 
The IC has the Freescale logo and the rest of the marking 
is: SC9S08ER, 48CHP, 2N80A, CTLJ603A. 
Unfortunately, it was not possible to find any information 
about this chip on the NXP website (Freescale was recently 
acquired by NXP). However, the marking on the chip is 
somewhat similar to what Freescale used for HCS08 
family of 8-bit microcontrollers. Hence, this area needs to 
be investigated in more details. 

Other components include crystal oscillator with two 
capacitors, bypassing capacitors, resistors and RF filter 
with a few inductors and capacitors. The antenna is 
integrated into the PCB and runs along the edge of the 
board. The connections to batteries, buzzer and mechanical 
parts of the Pod are made with springs touching 
corresponding pads on the PCB. 

Also, there is a small detachable corner on the right 
side through which the wiring to the buzzer is made. This 
is to allow the users to shut off the buzzer if the device 
goes into error state with a permanent beeping. 
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Fig. 10. Components side of the Pod’s PCB. 

The connections between the PCB and the mechanical 
part are shown in Figure 11 with all the spring wires named 
according to their functionality. 

 

Fig. 11. Connections between the PCB and mechanical part. 

 

A. Schematic extraction 

In order to reconstruct the circuit diagram of the device 
we need to trace all the wires on the PCB that connects all 
the components together. One possible way of achieving 
that is to perform an X-Ray imaging. The result of such 
imaging is presented in Figure 12. This method allows 
focusing at internal layers of the PCB. That way a full 3D 
image of the PCB and components could be created. 

In case with the Pod there are only 2 layers on its PCB. 
Therefore, much simpler and less expensive approach can 
be used. For that all the electronic components were de-
soldered using hot air gun at 270°C to heat all parts and 
then remove them with the help of tweezers. After that the 
remaining solder was removed with a desoldering braid. 
Finally the PCB was cleaned with a solvent and dried up. 
The result of this preparation is presented in Figure 13 with 
the both sides of the PCB clearly visible and all wires 
easily trackable. 

 

Fig. 12. X-Ray image of the Pod’s PCB. 

 

Fig. 13. View on the PCB without components from both sides. 

The circuit diagram was manually created from those 
PCB images, while the actual values of the components 
such as resistors, capacitors and inductors were measured 
with an LCR meter. The frequency of the crystal oscillator 
was marked on it as 26.0MHz. The pinout of the IC was 
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unknown at this stage, hence, some extra work is needed 
before the complete schematic of the Pod can be created. 

B. Signal analysis 

The voltages on all SoC pins during the device 
operation and static parameters of the I/O pins were 
measured on the core IC of the device. The result is 
reflected in Table 2. 

TABLE II.  PINS FUNCTIONS OF THE SOC 

Pin 

No. 

PCB 

function 

PCB 

level 

ΔV 

GND 

ΔV 

VDD 
Type Comments 

1 Pad, TP 0/2.04V 0.722 0.729 I/O Encoder 

2 Pad, TP 0/2.04V 0.723 0.729 I/O Anchor T1 

3 Pad, TP 0/2.04V 0.721 0.729 I/O Anchor T2 

4 Pad, TP, C 0/2.04V 0.726 0.726 I/O Rod spring 

5 TP 0V 0.720 0.731 I/O Not used 

6 TP 0V 0.732 0.731 I/O Not used 

7 TP 0V 0.731 0.731 I/O Not used 

8 TP 0V 0.731 0.731 I/O Not used 

9 TP 0V 0.731 0.731 I/O Not used 

10 TP 0V 0.513 N/A I/O Not used 

11 TP 0V 0.732 0.730 I/O Not used 

12 TP 0V 0.726 0.724 I/O Not used 

13 Pad, TP, R 0V 0.732 0.728 I/O Piezo T1 

14 Pad, TP, R 0V 0.732 0.729 I/O Piezo T2 

15 TP, C 2.87V 0.352 VDD Power Core Power 

16 C, TP, Battery 2.87V 0.449 0.132 Power Battery 3V 

17 GND 0V GND 0.353 GND GND 

18 Pad 0V 0.686 N/A FET Motor T1 

19 Pin 18 0V 0.686 N/A FET Motor T1 

20 TP, Battery 4.34V 0.391 N/A Power Battery 4.5V 

21 Pin 20 4.34V 0.391 N/A Power Battery 4.5V 

22 Pad, TP 0V 0.686 N/A FET Motor T2 

23 Pin 22 0V 0.686 N/A FET Motor T2 

24 TP NC N/A N/A NC Not used 

25 TP, L, C 2.87V 0.456 N/A RF Antenna 

26 GND 0V 0.690 1.044 RF Antenna Ref 

27 TP 0.31V 0.456 N/A RF Not used 

28 C, TP, Battery 2.87V 0.348 N/A Power Battery 3V 

29 GND 0V GND 0.353 GND GND 

30 TP, C, C 0.03V 0.537 N/A Power Bypass Cap 

31 Pin 30 0.03V 0.525 N/A Power Bypass Cap 

32 GND 0V GND 0.359 GND GND 

33 Crystal, C  0.669 1.098 Clock 26MHz 

34 Crystal, C  0.655 N/A Clock 26MHz 

35 TP, C 0V 0.535 1.206 Power Bypass Cap 

36 GND 0V GND 0.360 GND GND 

37 TP 0V 0.718 0.728 I/O Not used 

38 TP, C 2.86V 0.734 0.728 I/O Not used 

39 TP 0V 0.734 0.729 I/O Not used 

40 TP 2.86V 0.734 0.729 I/O Not used 

TP – test point; 
PCB function – connections to the Pin; 
PCB level – voltage during operation; 
ΔV GND – voltage drop between the Pin and GND line; 
ΔV VDD – voltage drop between the Pin and Core power supply; 
Type – function of the Pin. 

 

The above measurements allowed narrowing down the 
number of pins suitable for connecting to the Debug 
interface which is usually present on HCS08 chips. 

During normal operation both Reset and Debug pins 
must be at logic level ‘1’ (>1.5V). There are only two pins 
(38 and 40) which satisfy this requirement. These pins 
were tested with the HCS08 Flash programmer to find the 
exact locations for the Debug interface. They turned out to 
be pin 38 for the Reset and pin 40 for the BKGD. 

C. Wireless communication analysis 

In order to understand how PDM and Pod talk to each 
other some analysis of their communication is needed. For 

that a spectrum analyser was used to eavesdrop on the 
communication during their normal operation. The result of 
the initial analysis is presented in Figure 14. It can be 
observed that the communication frequency ranges from 
433.8MHz to 434.0MHz. 

 

Fig. 14. Spectrum of the wireless communication between PDM and Pod. 

The OpenOmni community performed the great job of 
analysing the wireless communication between PDM and 
Pod [14]. For the purpose of this teardown there is no need 
in expanding this area. The communication is based on 
FSK-2 modulation with 433.9MHz carrier frequency and 
Manchester encoding. Data bit rate is 40625 baud. Each 
packet has CRC checksum which was successfully 
reproduced by the OpenOmni team. However, part of the 
communication protocol involves some random bytes 
which they were unable to emulate. Hence, there was the 
need for more detailed analysis of the Pod’s SoC. 

V. COMPONENT IDENTIFICATION AND ANALYSIS 

The full name of the core SoC chip is 
SC9S08ER48CHP. 

A. Internet search 

Search over the Internet revealed some useful 
information about other revisions of the chip and some 
specific parameters. Although there were no direct links to 
any information on these chips from the NXP website, 
Google search was able to reveal some hidden pages with 
specific information about the chip fabrication [17]. It was 
found that the chip has 48kB of Flash and was fabricated 
with 0.25μm CMOS process. 

B. Universal programmers 

Some universal device programmers support this chip. 
For example, the Elnec BeeProg2 has MC9S08ER48 and 
SC9S08ER48 in the supported device list [18]. Since the 
programmer supports QFN package, it can be used to 
identify the pin numbers for the Reset and Debug with the 
help of an oscilloscope. However, the ability to program 
these devices is restricted to only specific serial numbers of 
the programmer hardware. If anyone wants to use the Elnec 
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BeeProg2 programmer to Read and Write this chip he has 
to pay Elnec a few hundred Euros. 

The same universal programmer can also be used in 
ISP mode to program the chip directly on a board. Once the 
locations of Reset and Debug pins were found it was trivial 
to connect the programmer and test the chip. 

C. Decapsulation and deprocessing 

Although the SoC package looks as a QFN it is actually 
an LGA package with a thin PCB at the base. By careful 
polishing from the back side the internal wiring of the pins 
to the bonding pads was revealed. The polishing process 
exposed four layers on this chip: solder, vias, die and 
bonding wires (Figure 15). When combined together they 
reveal the connections between the SoC’s silicon die and 
the LGA-40 package pins. 

 

Fig. 15. Results of the SoC’s LGA package polishing. 

Another way of understanding the internal structure of 
the chip is to look at its internal surfaces. Fuming nitric 
acid is usually used for removing the plastic above the chip 
surface [19]. The result of this operation is presented in 
Figure 16. 

The front side image was used to identify any markings 
on the surface which could lead to finding more 
information about the chip. Those markings were: 
Freescale ©2010, 9S08ER48, N80A, POROSTOP ES2_0 
ES2_1, PENIA ES2_0 ES2_1. 

In order to observe the internal structure of the chip it 
needs to be de-processed. This can be done from both its 
front and back sides. However, the backside de-processing 
usually gives more information as it allows observation of 
several layers at a time, while the front side approach 
would require selective removal of several metal layers. 
The result of the backside de-processing is presented in 
Figure 17. 

Backside image gave more information about the 
fabrication process and memory sizes which were 
confirmed as 0.25µm, five metal layers, 48kB of Flash 
memory and 4kB of RAM. Half of the chip surface is 
occupied by the RF communication module. 

 

Fig. 16. Front side image of the SoC chip. 

 

Fig. 17. Backside image of the SoC chip. 

 

D. Development tools 

Development tools could contain some crucial 
information about similar chips in HCS08 family. This 
information could help in understanding the structure and 
functions of an undocumented custom chip from the same 
family. 

Freescale provides free development tools for HCS08 
family of microcontrollers called CodeWarrior. The latest 
version as well as some old versions are available on the 
NXP website [20]. All available versions were downloaded 
and installed in order to analyse the design support files in 
the tools directories. Table 3 shows which versions of the 
CodeWarrior software contain crucial information about 
the CPU special registers and configuration. 

As it can be noticed, only older versions contain all the 
files, while C and ASM support for 9S08ER48 chip was 
removed from the version 10.3 and above. Nevertheless, 
even those newer version contain useful information about 
special functions and the chip pinout. 
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TABLE III.  FILES PRESENT IN  CODEWARRIOR DIRECTORIES 

Ver Date **er48.h **er48.asm CPU Configuration 

5.7.0 05/2006 No No No No 

6.3.1 03/2010 Yes Yes Yes Yes 

10.1 10/2010 Yes Yes Yes Yes 

Not used 10.2 10/2010 Yes Yes Yes Yes 

10.3 08/2012 No No Yes Yes 

10.4 04/2013 No No Yes Yes 

 10.5 09/2013 No No Yes Yes 

10.6 02/2014 No No Yes Yes 

10.7 02/2014 No No Yes Yes 

 

 

E. Circuit diagram 

Now all the necessary information is obtained to 
complete the schematic of the Pod. For that a free version 
of Eagle PCB design software was used [21]. The result is 
presented in Figure 18. 

 

Fig. 18. Circuit diagram of the Pod. 

 

VI. FIRMWARE EXTRACTION 

After some information about the chip was found, in 
particular the Debug interface pins, we can proceed to the 
firmware extraction. This could involve many different 
approaches from simple non-invasive methods, to more 
sophisticated semi-invasive methods and finally ultimate 
invasive methods [19]. 

A. Debugging interface and security protection 

The easiest way to access the firmware is to use any 
existing programming or debugging interface for the on-
chip embedded Flash. But usually such access is protected 
in most production devices. The result of the attempt to 
access the Pod’s SoC using Freescale DEMO9S08QG8 
development board [22] is presented in Figure 19. The 
software popped up a message: “Device is secure. Erase? 
Yes/No”. If the erase operation is performed then the 
whole Flash will contain only 0xFF value. The security 
protection in this chip was not possible to defeat with 
known non-invasive or semi-invasive methods. 

 

Fig. 19. Accessing the SoC via the Debug interface. 

 

B. Invasive attacks 

The SoC chip was fabricated with 0.25µm CMOS 
process with five metal layers. Wiring the internal data bus 
to test points on the chip surface would be quite a 
challenging task. It will not only require Focused Ion Beam 
(FIB) machine to wire the bus to test points on the chip 
surface, but also microprobing station to establish 
connection to them. Although FIB machines are available 
at many universities for renting at a price starting from $50, 
their use requires a lot of training and expertise. 

C. Direct Flash extraction 

There are some known methods of direct data 
extraction from EEPROM and Flash using Scanning Probe 
Microscopy [23]. Two mostly used methods are Scanning 
Capacitance Microscopy (SCM) and Scanning Kelvin 
Probe Microscopy (SKPM). However, such methods 
require expensive equipment which is not easy to find for 
renting. In addition, SCM requires quite sophisticated 
sample preparation which is extremely difficult to achieve 
on a single sample for the whole memory array. 

Recently introduced direct Flash and EEPROM 
extraction methods using SEM (Scanning Electron 
Microscopy) could be used for firmware extraction [24, 
25]. However, in order to improve the image quality some 
additional techniques were used with the help from an 
industrial collaborator [26]. The example of the resulted 
image is presented in Figure 20 with brighter areas 
corresponding to the charged cells which represent 0s. 

In order to understand the physical layout of the Flash 
memory array, some chips were programmed with a test 
pattern and then imaged to find the corresponding areas on 
the surface. 

In order to image the whole Flash array 96 individual 
frames were taken and then merged together. Some image 
processing was applied then to improve the overall 
contrast. The resulting image was then processed in 
Matlab. This started with manual pointing at the array 
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corners on the image and manually checking that the grid is 
correctly positioned over all cells (Figure 21). 

 

Fig. 20. SEM image of the Flash cells in the SoC. 

 

Fig. 21. Checking the grid positioning on the memory array cells. 

 

Fig. 22. Histogram of the cells values. 

 

Once the Matlab code has processed the image it shows 
the histogram of the intensity values acquired over all 
memory cells (Figure 22). Ideally, there must be a gap 
between the peaks representing cells with 0s and 1s. 

Finally the Matlab code calculates the best threshold 
value between 0s and 1s and produces HEX file for further 
firmware analysis and disassembling. If the result is not 
satisfactory then some adjustments to the image processing 
or grid positioning can be made. In worst case a new 
sample chip will have to be prepared and imaged. 

To get the best result, several samples of the SoC from 
new Pods were prepared and imaged. This allowed to 
produce the final error free HEX file of the firmware for 
further work. The image processing was also improved 
with template processing of separate images instead of 
merging them. This improved the detection rate for 0s and 
1s and reduced the error rate to under 0.005%. 

D. Verification of the firmware extraction 

In order to make sure that the flash contents was 
extracted correctly, the HEX file was programmed into the 
used and subsequently deactivated Pod. It worked perfectly 
and behaved like a brand new Pod. Obviously, the 
mechanical part cannot be reused because of the cannula 
insertion mechanism and the lock on the tank membrane 
rod. However, this proved the full success of the firmware 
extraction. The video of the whole firmware verification 
process is available online [27]. 

VII. CODE ANALYSIS 

Code analysis process usually starts with disassembling 
the code. There are several approaches to address this. The 
firmware analysis is outside the scope of this paper. 
Therefore, only recommendations for suitable tools for 
code analysis are given here. 

A. Development tools 

Some chips have dedicated debug interfaces, for 
example, JTAG which allow hardware debugging of the 
real code inside a physical device. Although the HCS08 
core does not have the JTAG interface, it does have a 
Background Debug mode. The latter can be used to look at 
the current state of the internal memory and CPU registers. 
It can also enforce hardware breakpoints either on a 
specific value of the program counter or on a certain 
memory or register condition. 

B. CPU emulators 

Emulators can be used to run the code in real time on a 
PC or special hardware. These tools are more powerful 
than debuggers because they are not restricted to limited 
functions of the device’s hardware. 

C. Professional disassemblers 

One of the best universal professional disassemblers is 
IDA Pro from HexRays [28]. It supports dozens of 
different CPU cores and it has an intuitive user interface. It 
also creates disassembled code which is easy to follow. 
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The produced HEX file was loaded to verify the code 
integrity (Figure 23). 

 

Fig. 23. IDA pro view on the file. 

At the first look the code was meaningful which 
confirmed the successful extraction, but the CPU special 
registers were not named. In order to improve the 
readability of the code and help with its understanding, the 
special configuration file hcs08.cfg was created for IDA 
Pro disassembler. All the necessary information for this file 
was obtained from mc9s08er48.h and mc9s08er48.inc files 
present in one of the directories created by Freescale 
CodeWarrior development tools. Then the proper 
assembler code for further analysis was generated from the 
extracted HEX using IDA Pro disassembler. 

D. Data analysis during the Pod operation 

The extracted firmware allowed data analysis inside the 
Flash memory, because the security protection was not 
activated during the firmware programming. Hence, it was 
possible to download the Flash image into a file after 
running the Pod and then compare it with the original HEX 
file. 

Several areas in the Flash memory were written after 
the pairing. Table 4 shows the changes to affected 
addresses. The contents of the Flash memory was also 
compared with some unique numbers printed on the Pod’s 
case – these are Lot number and TID. They form some 
kind of a serial number which is unique for each Pod. 
Quick comparison with the hexadecimal values of the Lot 
and TID revealed that these values are stored at addresses 
4027h–4028h and 4029h–402Ch respectively. 

TABLE IV.  CHANGES IN THE FLASH MEMORY DURING PAIRING 

Version 
Addresses 

4000/1 4002/3 4008/9 4020/1 4022/3 4024 4078 

New Pod FF FF FF FF FF FE FF FF FF FF FF FF 

Pairing #1 1F 03 9C ED FF 00 09 07 11 0B 2C 26 

Pairing #2 1F 03 9C EE FF 00 09 07 11 0C 34 28 

Pairing #3 1F 03 9C EF FF 00 09 07 11 0D 06 29 

 

Address space from 4200h to 4FFFh is used for logging 
all the events. During the pairing process this area is erased 
and then written with the proprietary information at 

addresses 4200h–42FBh. During further communication 
and insulin delivery process the area is written further with 
new data. 

VIII. DISCUSSIONS AND FUTURE WORK 

The semiconductor device at the core of the Omnipod 
wireless tubeless insulin pump is a custom made SoC 
device manufactured by Freescale. There is no directly 
available information on this device or any form of a 
datasheet. Also, the standard Freescale/NXP development 
tools do not support this chip. Nevertheless, some 
information was obtained from the Internet, development 
tools and from the analysis of the device. This paved the 
way to firmware extraction for further code analysis. 

One of the possible countermeasures against firmware 
extraction could be in the use of a memory encryption. 
However, embedded memory is not particularly suitable 
for strong encryption. This is because, unlike external 
memory, it is fetched at random addresses. That poses a big 
challenge for 8-bit and 16-bit CPU cores [29]. The solution 
could be in implementing at least 128-bit virtual memory 
array from which individual bytes are fetched. However, 
any additional buffers between the memory array and the 
CPU will increase the latency and reduce the performance. 

Future work will involve further analysis of the 
disassembled code to understand the communication 
protocol. This work will be carried out by several 
communities (OpenAPS, Loop, OpenOmni, Nightscout 
Foundation) to improve the life of patients with Type 1 
diabetes. Any further findings, achievements and solutions 
will be presented by them. 

IX. CONCLUSION 

The research presented in this paper shows the overall 
teardown process carried out on a personal medical device 
– the Omnipod® wireless tubeless insulin pump. It 
exposed many challenges addressed during the process and 
how they were overcome. As a result the complete 
firmware was extracted without any errors. This paves the 
way to further analysis of the firmware for compatibility 
purposes to allow the independent use of the Pods in a 
closed loop. That way many Type 1 diabetes patients 
would benefit because at the moment there are no such 
systems on the market which combine wireless insulin 
pump and continuous glucose monitor. 

All the necessary information about the SoC controller 
inside the Pod was obtained in the public domain, either 
through search on the Internet or inside the directories of 
freely available development tools. 

Some security issues were exposed during this 
teardown process. In order to make personal medical 
devices more secure manufacturers should improve the 
hardware security of the semiconductor components which 
perform all the control, data processing and storage. 

This paper exposed some serious security issues 
associated with the universal development tools. That is the 
danger of revealing some crucial information about custom 
and proprietary designs. More care should be taken by chip 
manufacturers to prevent the leakage of confidential 
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information through their development tools capable of 
supporting all families of the devices sharing the same 
CPU core. 
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