
1

Deep dip teardown of tubeless insulin pump

Sergei Skorobogatov

Computer Laboratory

University of Cambridge

Cambridge, UK

sps32@cam.ac.uk

Abstract—This paper introduces a deep level teardown

process of a personal medical device – the OmniPod®

wireless tubeless insulin pump. This starts with mechanical

teardown exposing the engineering solutions used inside the

device. Then the electronic part of the device is analysed

followed by components identification. Finally, the firmware

extraction is performed allowing further analysis of the

firmware inside the device as well as real-time debugging.

This paper also evaluates the security of the main controller

IC of the device. It reveals some weaknesses in the device

design process which lead to the possibility of the successful

teardown. Should the hardware security of the controller

inside the device was well thought through, the teardown

process would be far more complicated. This paper

demonstrates what the typical teardown process of a

personal medical device involves. This knowledge could help

in improving the hardware security of sensitive devices.

Keywords—teardown; hardware security; reverse

engineering; wireless tubeless insulin pump; code extraction;

image processing

I. INTRODUCTION

Security of medical devices is a very important issue
because any failures could have a drastic effect on the
patients’ health [1]. Many modern wearable medical
devices have complex semiconductor chips inside – either
microcontroller or SoC (System-on-Chip). Those
semiconductor chips are supposed to maintain both
integrity and confidentiality of the information stored
inside. This should prevent firmware analysis and
modification in order to hijack control over the device. As
many medical devices keep logging patient’s data, their
security is paramount. Eavesdropping on communication
channel and taking over the device control must also be
prevented to maintain confidentiality of data and avoid any
physical harm to patients.

In the past there were several publications and reports
on the security flaws in personal medical devices. This
involves vulnerabilities of implantable cardiac
defibrillators [2] and insulin pumps [3]. The most
important aspect of any insulin pump is its security. This is
because the insulin delivery process must be carefully
adjusted to the patient’s blood glucose level (also called
blood sugar level). Should the glucose level become too
low this causes an unpleasant symptoms called
hypoglycaemia. If the glucose level becomes too high the
patient experience hyperglycaemia. Both conditions are
quite dangerous and could result in a coma or even death of
a patient. Respectively, delaying the injection of insulin
after taking a food is likely to result in hyperglycaemia,
while injecting too much of insulin is likely to cause

hypoglycaemia. Because modern insulin pumps are
controlled wirelessly, hijacking of the communication
would give a potential attacker possibility to interfere with
the delivery of insulin. This could cause a serious harm to
the patient’s health.

This paper analyses a particular wireless tubeless
insulin pump – the OmniPod® device manufactured by
Insulet [4]. This is the only personal tubeless insulin pump
approved by FDA (US Food and Drug Administration) [5].

This paper is organised as follows. Section 2 gives brief
introduction to insulin pumps. The mechanical teardown
process is presented in Section 3, followed by the
description of the electrical circuit teardown in Section 4.
Components identification and analysis are described in
Section 5. Firmware extraction process is outlined in
Section 6. The approach to further code analysis is
described in Section 7. This is followed by discussions and
future work outlined in Section 8 and the conclusion in
Section 9.

II. BACKGROUND

People with Type 1 diabetes are relying on constant
delivery of insulin into the blood of their body [6]. In the
old days this was achieved with multiple syringe injections
or jabs of insulin throughout a day. With the development
of insulin pumps this process was automated with portable
devices attached to the body. The pump can continuously
deliver amounts of rapid or short acting insulin via a
catheter placed under the skin [7]. This reduces the need
for multiple insulin jabs per day and gives the user
increased ability to control blood glucose levels. An insulin
pump consists of the main pump unit with an insulin
reservoir attached to a long, thin piece of tubing with a
needle or cannula at one end. These tubes pose a
significant drawback for the wide use of insulin pumps –
they have tubes hanging around patient’s body. Not only
these tubes can be trapped by clothes or furniture, but the
pumps are not waterproof. A significant improvement
came with the development of tubeless insulin pumps [8].
However, they still have some drawbacks. In particular,
they do not have direct integration with a Continuous
Glucose Monitor (CGM).

An informal community of developers has taken it
upon themselves to develop open source insulin delivery
systems that would improve the lives of patients with Type
1 diabetes. Examples of these systems include Loop [9]
and OpenAPS [10]. The work is also supported by the
Nightscout Foundation [11]. There was a lot of media
coverage on the artificial pancreas project in the past [12].
Such projects pose a lot of challenges because the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162912461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

manufacturers of insulin pumps do not provide much
information about their devices. Hence, the work of such
communities and groups involves a lot of hacking and
reverse engineering. Insulin pump electronics usually
contain a single chip that performs authentication and
control. So far they were only able to understand and use
the conventional pump made by Medtronic and only for
certain older versions of the firmware. For a long time they
tried to understand the communication protocol of
OmniPod devices, but without much success [13].
However, they do have a dedicated page where all their
findings are shared [14].

The OmniPod system consists of the Pod that holds the
insulin dose and the PDM (Personal Diabetes Manager)
that communicates wirelessly with the Pod to deliver
continuous insulin based on patient’s personal settings
(Figure 1).

Fig. 1. Insulet OmniPod system: PDM and Pod.

Figure 2 shows what the Pod looks like after taking it
out of the sterilised packaging.

Fig. 2. Unused Pod.

The Pod must be initialised first before the use. This
involves filling it with insulin, attaching to the body and
activating the insertion of a cannula under the skin.

III. MECHANICAL TEARDOWN

The purpose of the mechanical teardown is to
understand how the device works and what engineering
solutions were used for building it. Very often medical
devices have multiple patents on the solutions used in their
design and manufacturing. This could help in better
understanding their functionality and purposes of some
parts.

A. Opening up the Pod

The Pod’s top cover is so strongly glued to the base that
it was necessary to use an engraving tool with a small
circular saw attached to it. The steel saw bit was about
20mm in diameter and 0.3mm thin. It easily cuts through
the plastic and it is the black plastic in between the opaque
top and transparent base that is needed to be cut through.
After the cutting is finished along the perimeter, the top
and bottom parts can be easily detached from each other
(Figure 3).

Fig. 3. Pod with its cover and base detached.

The top cover holds a piezo buzzer that produces some
beeps during the Pod operation to attract patient’s attention.
The pictures of the internal assembly from both sides are
presented in Figures 4 and 5.

Inside the assembly there is a reservoir for insulin
supply of up to 3 days of life of an activated Pod. In the
middle there is a spring-loaded cannula insertion
mechanism. The white motor gears can be seen next to the
reservoir. They are driven by a motor mechanism at the
back side of the assembly.

The PCB (Printed Circuit Board) with all the electronic
components is attached to the back side of the assembly. It
is held in place by six plastic bumps which can be easily
removed with a sharp knife. There are three 1.5V batteries
which supply the Pod’s electronics. They are held in place
by metal springs for better electrical contact. Other small
springs are used to connect the PCB with other parts of the

3

assembly. Two springs in the middle establish a contact
with piezo buzzer. At the end of the white plastic gears
there is an encoder connected to the PCB with two springs.
Other two springs next to the reservoir are used to monitor
the position of the membrane.

Fig. 4. Top view on the pump assembly inside the Pod.

Fig. 5. Bottom view on the pump assembly inside the Pod.

B. How the stuff works

Before any use the new Pod must be activated. This is
achieved with placing it next to the PDM and following the
activation instructions on the screen. When ready the PDM
asks for the Pod to be filled with insulin. During the
reservoir filling process the membrane inside it pushes the
steel rod forward. Once the rod shorts the two springs
outside the reservoir the Pod makes two beeps and also
tells PDM that it is ready for use. However, as this happens
at about 1/3 of the capacity, it can be filled further as much
as needed for up to three days of insulin supply.

The next step is pairing of the Pod to the PDM (Figure
6). During this step the PDM establishes a way for secure
communication with the Pod. It also activates the motor

inside the Pod and this can be observed with the move of
the motor gears. At one side of the gears there is a locking
spring which is activated with the turn of the gear. Before
the activation happen the brass rod was not held by the
spring, hence, the membrane was free to move allowing the
reservoir to be filled with insulin. Once released, the spring
acts as a clutch connecting the gears to the threaded brass
rod inside the reservoir. From this moment the gears will
turn the rod and push the membrane forward. That way the
insulin will be pushed out of the reservoir into the metal
tube and then through the plastic cannula inside the
patient’s body.

Fig. 6. Pairing the Pod to PDM.

After the priming is finished the PDM is ready to
activate the Pod and insert the cannula. A few more turns
of the gears release the plastic lever that holds the strong
spring loaded insertion mechanism. The spring pushes the
metal needle together with the plastic cannula fast forward
with a force and then quickly retracts the needle leaving the
cannula inside the skin. The result of this operation on the
opened Pod is shown in Figure 7.

Fig. 7. Opened Pod after cannula insertion.

4

The motor mechanism of the Pod can be seen when the
PCB is detached from the assembly (Figure 8). The gears
are driven by an anchor mechanism pushed with a muscle
wires. These wires become shorter when an electric current
is sent through them and they are heated [15]. The anchor
is connected to the ground potential, while either of the two
terminals are connected to the power supply to send the
current through the corresponding wire. On the far end of
the anchor there is a pin which connects to one of the
springs once the anchor reaches the desired position. That
way the controller knows when to switch off the current to
prevent overheating and excessive battery draw.

Fig. 8. Bottom side of the Pod after PCB is removed.

The video of the whole process of opening the Pod and
demonstration of its operation is available online [16].

In order to better understand the functionality of the
device we need to know both its electrical schematic and
the software it runs.

C. Opening up the PDM

The PDM that controls the Pod was also opened to
investigate its internal components (Figure 9).

Fig. 9. Opened up PDM.

There is a large ARM-based microprocessor inside it
(Freescale MC9328MX21SVM) that runs the control
software. The communication is performed by the same
type of microcontroller found in the Pod – Freescale SoC
S9S8ER48 or its newer version SC9S08ER48. Freescale
merged with NXP in 2015, therefore, any official
information on the components can only be found from
NXP website.

Some analysis work has already been carried out by
OpenAPS community on the main controller inside PDM.
However, it turned out that all the handling of
communication packets was performed by the
S9S8ER48/SC9S08ER48 SoC controller. Since all Pods
are discarded after use, there were no issues in obtaining as
many samples of those SoC chips as needed. Therefore, all
the efforts were moved towards reverse engineering of the
Pod.

Table 1 outlines different versions of the controller chip
found in various Pods and PDMs .

TABLE I. VERSIONS OF 9S08ER48 CHIP FOUND IN DEVICES

Device Chip Name
Silicon

Revision

Firmware

Revision

Chip

Date
Pod S9S8ER48 1N80A 14549J 09/2012
Pod SC9S08ER48CHP 2N80A 16148A 11/2013
Pod SC9S08ER48CHP 2N80A 16148C 09/2014
Pod SC9S08ER48CHP 2N80A 16533B 02/2015

PDM S9S8ER48 1N80A Unknown 03/2013
PDM SC9S08ER48CHP 1N80A Unknown 11/2013

Yes PDM SC9S08ER48CHP 2N80A 16544A 08/2016

For this research only the latest firmware revision in the
Pod was analysed marked on the chip as 16533B.

IV. CIRCUIT LEVEL TEARDOWN

All the electronic components of the Pod are placed on
the PCB attached to the assembly. The picture of the
detached PCB is presented in Figure 10. The IC in 40-pin
QFN package is the only integrated circuit on the board.
The IC has the Freescale logo and the rest of the marking
is: SC9S08ER, 48CHP, 2N80A, CTLJ603A.
Unfortunately, it was not possible to find any information
about this chip on the NXP website (Freescale was recently
acquired by NXP). However, the marking on the chip is
somewhat similar to what Freescale used for HCS08
family of 8-bit microcontrollers. Hence, this area needs to
be investigated in more details.

Other components include crystal oscillator with two
capacitors, bypassing capacitors, resistors and RF filter
with a few inductors and capacitors. The antenna is
integrated into the PCB and runs along the edge of the
board. The connections to batteries, buzzer and mechanical
parts of the Pod are made with springs touching
corresponding pads on the PCB.

Also, there is a small detachable corner on the right
side through which the wiring to the buzzer is made. This
is to allow the users to shut off the buzzer if the device
goes into error state with a permanent beeping.

5

Fig. 10. Components side of the Pod’s PCB.

The connections between the PCB and the mechanical
part are shown in Figure 11 with all the spring wires named
according to their functionality.

Fig. 11. Connections between the PCB and mechanical part.

A. Schematic extraction

In order to reconstruct the circuit diagram of the device
we need to trace all the wires on the PCB that connects all
the components together. One possible way of achieving
that is to perform an X-Ray imaging. The result of such
imaging is presented in Figure 12. This method allows
focusing at internal layers of the PCB. That way a full 3D
image of the PCB and components could be created.

In case with the Pod there are only 2 layers on its PCB.
Therefore, much simpler and less expensive approach can
be used. For that all the electronic components were de-
soldered using hot air gun at 270°C to heat all parts and
then remove them with the help of tweezers. After that the
remaining solder was removed with a desoldering braid.
Finally the PCB was cleaned with a solvent and dried up.
The result of this preparation is presented in Figure 13 with
the both sides of the PCB clearly visible and all wires
easily trackable.

Fig. 12. X-Ray image of the Pod’s PCB.

Fig. 13. View on the PCB without components from both sides.

The circuit diagram was manually created from those
PCB images, while the actual values of the components
such as resistors, capacitors and inductors were measured
with an LCR meter. The frequency of the crystal oscillator
was marked on it as 26.0MHz. The pinout of the IC was

6

unknown at this stage, hence, some extra work is needed
before the complete schematic of the Pod can be created.

B. Signal analysis

The voltages on all SoC pins during the device
operation and static parameters of the I/O pins were
measured on the core IC of the device. The result is
reflected in Table 2.

TABLE II. PINS FUNCTIONS OF THE SOC

Pin

No.

PCB

function

PCB

level

ΔV

GND

ΔV

VDD
Type Comments

1 Pad, TP 0/2.04V 0.722 0.729 I/O Encoder

2 Pad, TP 0/2.04V 0.723 0.729 I/O Anchor T1

3 Pad, TP 0/2.04V 0.721 0.729 I/O Anchor T2

4 Pad, TP, C 0/2.04V 0.726 0.726 I/O Rod spring

5 TP 0V 0.720 0.731 I/O Not used

6 TP 0V 0.732 0.731 I/O Not used

7 TP 0V 0.731 0.731 I/O Not used

8 TP 0V 0.731 0.731 I/O Not used

9 TP 0V 0.731 0.731 I/O Not used

10 TP 0V 0.513 N/A I/O Not used

11 TP 0V 0.732 0.730 I/O Not used

12 TP 0V 0.726 0.724 I/O Not used

13 Pad, TP, R 0V 0.732 0.728 I/O Piezo T1

14 Pad, TP, R 0V 0.732 0.729 I/O Piezo T2

15 TP, C 2.87V 0.352 VDD Power Core Power

16 C, TP, Battery 2.87V 0.449 0.132 Power Battery 3V

17 GND 0V GND 0.353 GND GND

18 Pad 0V 0.686 N/A FET Motor T1

19 Pin 18 0V 0.686 N/A FET Motor T1

20 TP, Battery 4.34V 0.391 N/A Power Battery 4.5V

21 Pin 20 4.34V 0.391 N/A Power Battery 4.5V

22 Pad, TP 0V 0.686 N/A FET Motor T2

23 Pin 22 0V 0.686 N/A FET Motor T2

24 TP NC N/A N/A NC Not used

25 TP, L, C 2.87V 0.456 N/A RF Antenna

26 GND 0V 0.690 1.044 RF Antenna Ref

27 TP 0.31V 0.456 N/A RF Not used

28 C, TP, Battery 2.87V 0.348 N/A Power Battery 3V

29 GND 0V GND 0.353 GND GND

30 TP, C, C 0.03V 0.537 N/A Power Bypass Cap

31 Pin 30 0.03V 0.525 N/A Power Bypass Cap

32 GND 0V GND 0.359 GND GND

33 Crystal, C 0.669 1.098 Clock 26MHz

34 Crystal, C 0.655 N/A Clock 26MHz

35 TP, C 0V 0.535 1.206 Power Bypass Cap

36 GND 0V GND 0.360 GND GND

37 TP 0V 0.718 0.728 I/O Not used

38 TP, C 2.86V 0.734 0.728 I/O Not used

39 TP 0V 0.734 0.729 I/O Not used

40 TP 2.86V 0.734 0.729 I/O Not used

TP – test point;
PCB function – connections to the Pin;
PCB level – voltage during operation;
ΔV GND – voltage drop between the Pin and GND line;
ΔV VDD – voltage drop between the Pin and Core power supply;
Type – function of the Pin.

The above measurements allowed narrowing down the
number of pins suitable for connecting to the Debug
interface which is usually present on HCS08 chips.

During normal operation both Reset and Debug pins
must be at logic level ‘1’ (>1.5V). There are only two pins
(38 and 40) which satisfy this requirement. These pins
were tested with the HCS08 Flash programmer to find the
exact locations for the Debug interface. They turned out to
be pin 38 for the Reset and pin 40 for the BKGD.

C. Wireless communication analysis

In order to understand how PDM and Pod talk to each
other some analysis of their communication is needed. For

that a spectrum analyser was used to eavesdrop on the
communication during their normal operation. The result of
the initial analysis is presented in Figure 14. It can be
observed that the communication frequency ranges from
433.8MHz to 434.0MHz.

Fig. 14. Spectrum of the wireless communication between PDM and Pod.

The OpenOmni community performed the great job of
analysing the wireless communication between PDM and
Pod [14]. For the purpose of this teardown there is no need
in expanding this area. The communication is based on
FSK-2 modulation with 433.9MHz carrier frequency and
Manchester encoding. Data bit rate is 40625 baud. Each
packet has CRC checksum which was successfully
reproduced by the OpenOmni team. However, part of the
communication protocol involves some random bytes
which they were unable to emulate. Hence, there was the
need for more detailed analysis of the Pod’s SoC.

V. COMPONENT IDENTIFICATION AND ANALYSIS

The full name of the core SoC chip is
SC9S08ER48CHP.

A. Internet search

Search over the Internet revealed some useful
information about other revisions of the chip and some
specific parameters. Although there were no direct links to
any information on these chips from the NXP website,
Google search was able to reveal some hidden pages with
specific information about the chip fabrication [17]. It was
found that the chip has 48kB of Flash and was fabricated
with 0.25μm CMOS process.

B. Universal programmers

Some universal device programmers support this chip.
For example, the Elnec BeeProg2 has MC9S08ER48 and
SC9S08ER48 in the supported device list [18]. Since the
programmer supports QFN package, it can be used to
identify the pin numbers for the Reset and Debug with the
help of an oscilloscope. However, the ability to program
these devices is restricted to only specific serial numbers of
the programmer hardware. If anyone wants to use the Elnec

7

BeeProg2 programmer to Read and Write this chip he has
to pay Elnec a few hundred Euros.

The same universal programmer can also be used in
ISP mode to program the chip directly on a board. Once the
locations of Reset and Debug pins were found it was trivial
to connect the programmer and test the chip.

C. Decapsulation and deprocessing

Although the SoC package looks as a QFN it is actually
an LGA package with a thin PCB at the base. By careful
polishing from the back side the internal wiring of the pins
to the bonding pads was revealed. The polishing process
exposed four layers on this chip: solder, vias, die and
bonding wires (Figure 15). When combined together they
reveal the connections between the SoC’s silicon die and
the LGA-40 package pins.

Fig. 15. Results of the SoC’s LGA package polishing.

Another way of understanding the internal structure of
the chip is to look at its internal surfaces. Fuming nitric
acid is usually used for removing the plastic above the chip
surface [19]. The result of this operation is presented in
Figure 16.

The front side image was used to identify any markings
on the surface which could lead to finding more
information about the chip. Those markings were:
Freescale ©2010, 9S08ER48, N80A, POROSTOP ES2_0
ES2_1, PENIA ES2_0 ES2_1.

In order to observe the internal structure of the chip it
needs to be de-processed. This can be done from both its
front and back sides. However, the backside de-processing
usually gives more information as it allows observation of
several layers at a time, while the front side approach
would require selective removal of several metal layers.
The result of the backside de-processing is presented in
Figure 17.

Backside image gave more information about the
fabrication process and memory sizes which were
confirmed as 0.25µm, five metal layers, 48kB of Flash
memory and 4kB of RAM. Half of the chip surface is
occupied by the RF communication module.

Fig. 16. Front side image of the SoC chip.

Fig. 17. Backside image of the SoC chip.

D. Development tools

Development tools could contain some crucial
information about similar chips in HCS08 family. This
information could help in understanding the structure and
functions of an undocumented custom chip from the same
family.

Freescale provides free development tools for HCS08
family of microcontrollers called CodeWarrior. The latest
version as well as some old versions are available on the
NXP website [20]. All available versions were downloaded
and installed in order to analyse the design support files in
the tools directories. Table 3 shows which versions of the
CodeWarrior software contain crucial information about
the CPU special registers and configuration.

As it can be noticed, only older versions contain all the
files, while C and ASM support for 9S08ER48 chip was
removed from the version 10.3 and above. Nevertheless,
even those newer version contain useful information about
special functions and the chip pinout.

8

TABLE III. FILES PRESENT IN CODEWARRIOR DIRECTORIES

Ver Date **er48.h **er48.asm CPU Configuration

5.7.0 05/2006 No No No No

6.3.1 03/2010 Yes Yes Yes Yes

10.1 10/2010 Yes Yes Yes Yes

Not used 10.2 10/2010 Yes Yes Yes Yes

10.3 08/2012 No No Yes Yes

10.4 04/2013 No No Yes Yes

 10.5 09/2013 No No Yes Yes

10.6 02/2014 No No Yes Yes

10.7 02/2014 No No Yes Yes

E. Circuit diagram

Now all the necessary information is obtained to
complete the schematic of the Pod. For that a free version
of Eagle PCB design software was used [21]. The result is
presented in Figure 18.

Fig. 18. Circuit diagram of the Pod.

VI. FIRMWARE EXTRACTION

After some information about the chip was found, in
particular the Debug interface pins, we can proceed to the
firmware extraction. This could involve many different
approaches from simple non-invasive methods, to more
sophisticated semi-invasive methods and finally ultimate
invasive methods [19].

A. Debugging interface and security protection

The easiest way to access the firmware is to use any
existing programming or debugging interface for the on-
chip embedded Flash. But usually such access is protected
in most production devices. The result of the attempt to
access the Pod’s SoC using Freescale DEMO9S08QG8
development board [22] is presented in Figure 19. The
software popped up a message: “Device is secure. Erase?
Yes/No”. If the erase operation is performed then the
whole Flash will contain only 0xFF value. The security
protection in this chip was not possible to defeat with
known non-invasive or semi-invasive methods.

Fig. 19. Accessing the SoC via the Debug interface.

B. Invasive attacks

The SoC chip was fabricated with 0.25µm CMOS
process with five metal layers. Wiring the internal data bus
to test points on the chip surface would be quite a
challenging task. It will not only require Focused Ion Beam
(FIB) machine to wire the bus to test points on the chip
surface, but also microprobing station to establish
connection to them. Although FIB machines are available
at many universities for renting at a price starting from $50,
their use requires a lot of training and expertise.

C. Direct Flash extraction

There are some known methods of direct data
extraction from EEPROM and Flash using Scanning Probe
Microscopy [23]. Two mostly used methods are Scanning
Capacitance Microscopy (SCM) and Scanning Kelvin
Probe Microscopy (SKPM). However, such methods
require expensive equipment which is not easy to find for
renting. In addition, SCM requires quite sophisticated
sample preparation which is extremely difficult to achieve
on a single sample for the whole memory array.

Recently introduced direct Flash and EEPROM
extraction methods using SEM (Scanning Electron
Microscopy) could be used for firmware extraction [24,
25]. However, in order to improve the image quality some
additional techniques were used with the help from an
industrial collaborator [26]. The example of the resulted
image is presented in Figure 20 with brighter areas
corresponding to the charged cells which represent 0s.

In order to understand the physical layout of the Flash
memory array, some chips were programmed with a test
pattern and then imaged to find the corresponding areas on
the surface.

In order to image the whole Flash array 96 individual
frames were taken and then merged together. Some image
processing was applied then to improve the overall
contrast. The resulting image was then processed in
Matlab. This started with manual pointing at the array

9

corners on the image and manually checking that the grid is
correctly positioned over all cells (Figure 21).

Fig. 20. SEM image of the Flash cells in the SoC.

Fig. 21. Checking the grid positioning on the memory array cells.

Fig. 22. Histogram of the cells values.

Once the Matlab code has processed the image it shows
the histogram of the intensity values acquired over all
memory cells (Figure 22). Ideally, there must be a gap
between the peaks representing cells with 0s and 1s.

Finally the Matlab code calculates the best threshold
value between 0s and 1s and produces HEX file for further
firmware analysis and disassembling. If the result is not
satisfactory then some adjustments to the image processing
or grid positioning can be made. In worst case a new
sample chip will have to be prepared and imaged.

To get the best result, several samples of the SoC from
new Pods were prepared and imaged. This allowed to
produce the final error free HEX file of the firmware for
further work. The image processing was also improved
with template processing of separate images instead of
merging them. This improved the detection rate for 0s and
1s and reduced the error rate to under 0.005%.

D. Verification of the firmware extraction

In order to make sure that the flash contents was
extracted correctly, the HEX file was programmed into the
used and subsequently deactivated Pod. It worked perfectly
and behaved like a brand new Pod. Obviously, the
mechanical part cannot be reused because of the cannula
insertion mechanism and the lock on the tank membrane
rod. However, this proved the full success of the firmware
extraction. The video of the whole firmware verification
process is available online [27].

VII. CODE ANALYSIS

Code analysis process usually starts with disassembling
the code. There are several approaches to address this. The
firmware analysis is outside the scope of this paper.
Therefore, only recommendations for suitable tools for
code analysis are given here.

A. Development tools

Some chips have dedicated debug interfaces, for
example, JTAG which allow hardware debugging of the
real code inside a physical device. Although the HCS08
core does not have the JTAG interface, it does have a
Background Debug mode. The latter can be used to look at
the current state of the internal memory and CPU registers.
It can also enforce hardware breakpoints either on a
specific value of the program counter or on a certain
memory or register condition.

B. CPU emulators

Emulators can be used to run the code in real time on a
PC or special hardware. These tools are more powerful
than debuggers because they are not restricted to limited
functions of the device’s hardware.

C. Professional disassemblers

One of the best universal professional disassemblers is
IDA Pro from HexRays [28]. It supports dozens of
different CPU cores and it has an intuitive user interface. It
also creates disassembled code which is easy to follow.

10

The produced HEX file was loaded to verify the code
integrity (Figure 23).

Fig. 23. IDA pro view on the file.

At the first look the code was meaningful which
confirmed the successful extraction, but the CPU special
registers were not named. In order to improve the
readability of the code and help with its understanding, the
special configuration file hcs08.cfg was created for IDA
Pro disassembler. All the necessary information for this file
was obtained from mc9s08er48.h and mc9s08er48.inc files
present in one of the directories created by Freescale
CodeWarrior development tools. Then the proper
assembler code for further analysis was generated from the
extracted HEX using IDA Pro disassembler.

D. Data analysis during the Pod operation

The extracted firmware allowed data analysis inside the
Flash memory, because the security protection was not
activated during the firmware programming. Hence, it was
possible to download the Flash image into a file after
running the Pod and then compare it with the original HEX
file.

Several areas in the Flash memory were written after
the pairing. Table 4 shows the changes to affected
addresses. The contents of the Flash memory was also
compared with some unique numbers printed on the Pod’s
case – these are Lot number and TID. They form some
kind of a serial number which is unique for each Pod.
Quick comparison with the hexadecimal values of the Lot
and TID revealed that these values are stored at addresses
4027h–4028h and 4029h–402Ch respectively.

TABLE IV. CHANGES IN THE FLASH MEMORY DURING PAIRING

Version
Addresses

4000/1 4002/3 4008/9 4020/1 4022/3 4024 4078

New Pod FF FF FF FF FF FE FF FF FF FF FF FF

Pairing #1 1F 03 9C ED FF 00 09 07 11 0B 2C 26

Pairing #2 1F 03 9C EE FF 00 09 07 11 0C 34 28

Pairing #3 1F 03 9C EF FF 00 09 07 11 0D 06 29

Address space from 4200h to 4FFFh is used for logging
all the events. During the pairing process this area is erased
and then written with the proprietary information at

addresses 4200h–42FBh. During further communication
and insulin delivery process the area is written further with
new data.

VIII. DISCUSSIONS AND FUTURE WORK

The semiconductor device at the core of the Omnipod
wireless tubeless insulin pump is a custom made SoC
device manufactured by Freescale. There is no directly
available information on this device or any form of a
datasheet. Also, the standard Freescale/NXP development
tools do not support this chip. Nevertheless, some
information was obtained from the Internet, development
tools and from the analysis of the device. This paved the
way to firmware extraction for further code analysis.

One of the possible countermeasures against firmware
extraction could be in the use of a memory encryption.
However, embedded memory is not particularly suitable
for strong encryption. This is because, unlike external
memory, it is fetched at random addresses. That poses a big
challenge for 8-bit and 16-bit CPU cores [29]. The solution
could be in implementing at least 128-bit virtual memory
array from which individual bytes are fetched. However,
any additional buffers between the memory array and the
CPU will increase the latency and reduce the performance.

Future work will involve further analysis of the
disassembled code to understand the communication
protocol. This work will be carried out by several
communities (OpenAPS, Loop, OpenOmni, Nightscout
Foundation) to improve the life of patients with Type 1
diabetes. Any further findings, achievements and solutions
will be presented by them.

IX. CONCLUSION

The research presented in this paper shows the overall
teardown process carried out on a personal medical device
– the Omnipod® wireless tubeless insulin pump. It
exposed many challenges addressed during the process and
how they were overcome. As a result the complete
firmware was extracted without any errors. This paves the
way to further analysis of the firmware for compatibility
purposes to allow the independent use of the Pods in a
closed loop. That way many Type 1 diabetes patients
would benefit because at the moment there are no such
systems on the market which combine wireless insulin
pump and continuous glucose monitor.

All the necessary information about the SoC controller
inside the Pod was obtained in the public domain, either
through search on the Internet or inside the directories of
freely available development tools.

Some security issues were exposed during this
teardown process. In order to make personal medical
devices more secure manufacturers should improve the
hardware security of the semiconductor components which
perform all the control, data processing and storage.

This paper exposed some serious security issues
associated with the universal development tools. That is the
danger of revealing some crucial information about custom
and proprietary designs. More care should be taken by chip
manufacturers to prevent the leakage of confidential

11

information through their development tools capable of
supporting all families of the devices sharing the same
CPU core.

ACKNOWLEDGMENT

I would like to thank Professor Ross Anderson for his
help in establishing the legal agreement between the
University Research Office and Nightscout Foundation. I
would like to thank the Nightscout Foundation for
providing donation to cover the cost of components and
materials necessary for the sample preparation and
analysis. I would like to thank Nanolab Technologies for
their help with X-Ray and SEM imaging. I am grateful to
CRE Ltd for free academic licensing of their proprietary
sample preparation and image enhancement technology. I
would like to thank Dr Markus Kuhn for his help in
analysing the wireless communication. I would like to
thank Joseph Moran, Dan Caron and Pete Schwamb for
their helpful and inspiring discussions throughout the
project.

REFERENCES

[1] Ross Anderson: System Security for Cyborgs. Second International
Workshop on Body Sensor Networks, April 12-13 2005, pp 36-39

[2] D. Halperin, et al: Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power defenses. In
Proceedings of the IEEE Symposium on Security and Privacy,
2008, pp 129-142

[3] C. Li, A. Raghunathan, N. K. Jha: Hijacking an insulin pump:
Security attacks and defenses for a diabetes therapy system. In
Proceedings of the 13th IEEE International Conference on e-Health
Networking, Applications, and Services, June 2011, pp 150-156

[4] Insulet OmniPod® insulin management system.

https://www.myomnipod.com/explore-Omnipod/Omnipod-system/

[5] U.S. Food and Drug Administration.

https://www.fda.gov/

[6] Diabetes mellitus. Wikipedia.

https://en.wikipedia.org/wiki/Diabetes_mellitus

[7] Insulin pumps. Diabetes.co.uk

http://www.diabetes.co.uk/insulin/Insulin-pumps.html

[8] Insulin Pump Reviews. DiabetesMine.

http://www.healthline.com/diabetesmine/insulin-pump-reviews-
overview

[9] Loop Project.

http://loopdocs.org

[10] OpenAPS.

https://openaps.org/

[11] Nightscout Foundation.

http://www.nightscoutfoundation.org/

[12] Biz Carson: They hacked her pancreas and found love along the
way. Business Insider UK, 28 August 2015.

http://uk.businessinsider.com/hacked-raspberry-pi-artificial-
pancreas-2015-8?r=US&IR=T

[13] OpenOmni.

http://www.openomni.org/blog/

[14] Omnidocs Wiki.

https://github.com/openaps/openomni/wiki

[15] Shape-memory alloy. Wikipedia.

https://en.wikipedia.org/wiki/Shape-memory_alloy

[16] Sergei Skorobogatov: Teardown of Omnipod tubeless insulin
pump.

https://youtu.be/ZYSnOnE0Ns4

[17] NXP. SC9S08ER48CHP: Part Detail.

www.nxp.com/webapp/search.partparamdetail.framework?PART_
NUMBER=SC9S08ER48CHP

[18] Elnec BeeProg2.

https://www.elnec.com/en/products/universal-
programmers/beeprog2/

[19] Sergei Skorobogatov: Semi-Invasive Attacks – A New Approach to
Hardware Security Analysis. Technical Report UCAM-CL-TR-630,
University of Cambridge, Computer Laboratory, April 2005

[20] NXP. CodeWarrior Legacy Downloads.

https://www.nxp.com/products/developer-resources/software-
development-tools/codewarrior-development-
tools/downloads/codewarrior-legacy-downloads:CW_LEGACY

[21] Autodesk. EAGLE PCB design software.

https://www.autodesk.com/products/eagle/overview

[22] NXP. DEMO9S08QG8: MC9S08QG8 Demo Board.

https://www.nxp.com/pages/mc9s08qg8-demo-
board:DEMO9S08QG8

[23] D. Hanzii, E. Kelm, N. Luapunov, R. Milovanov, G. Molodcova,
M. Yanul, D. Zubov: Determining the state of non-volatile memory
cells with floating-gate using scanning probe microscopy.
International Conference Micro- and Nano-Electronics, 2012

[24] Franck Courbon, Sergei Skorobogatov, Christopher Woods: Direct
charge measurement in Floating Gate transistors of Flash EEPROM
using Scanning Electron Microscopy. In Proceedings of the 42nd
International Symposium for Testing and Failure Analysis
(ISTFA), Fort Worth, USA, November 2016

[25] Franck Courbon, Sergei Skorobogatov, Christopher Woods:
Reverse Engineering Flash EEPROM Memories Using Scanning
Electron Microscopy. Smart Card Research and Advanced
Applications (CARDIS 2016), LNCS vol 10146, Springer, 2017

[26] Sergei Skorobogatov: Detect-Electrical-Charge (DEC) methods for
memory contents extraction.

http://www.cl.cam.ac.uk/~sps32/dec_proj.html

[27] Sergei Skorobogatov: Firmware upload on Omnipod tubeless
insulin pump.

https://youtu.be/YK6aa4ojl7M

[28] Interactive DisAssembler: IDA Pro, HexRays.

https://www.hex-rays.com/products/ida/index.shtml

[29] Sergei Skorobogatov: How microprobing can attack encrypted
memory. In Proceedings of Euromicro Conference on Digital
System Design, AHSA 2017 Special Session, Vienna, Austria.
IEEE Computer Society, 2017

