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Abstract 

Polyhedra were long considered rigid, but following Connelly [4], flexible examples with one degree-
of-freedom have been known.  Here we show a flexible polyhedron with two degrees-of-freedom, 
generated using a scheme that could be extended to multiple degrees-of-freedom. A polyhedron that has 
two degrees of freedom is generated based on a set of three tetrahedral joined along edges.  Crinkles are 
added to turn this underlying object into a polyhedron without removing the flexibility. The parameters 
defining the polyhedron are adjusted to remove clashes and extend the range of motion.  We examine 
whether the two degrees-of-freedom are linked, to determine whether the range of motion of one hinge 
limits the range of motion of the other, but for a particular example we find that this is not the case. 
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Figure 1: A flexible polyhedron with two degrees of freedom. (a) A flexible polyhedron that rotates around two 
hinges, 2-3 and 5-10. Each hinge has a range of motion of 14 degrees. (b) The underlying skeleton of the 2-dof 
flexible polyhedron in (a). This foundation is a chain of three tetrahedra linked freely by two hinges where edges 
are shared. This skeleton has a C2 axis through the midpoint of line 2-5 and the midpoint of line 3-10. The first 
tetrahedron is identical to the last, so that this polyhedron is extendable to a polyhedron with unlimited number of 
hinges. 

1. Introduction 
Triangulated polyhedra were long believed to be rigid, and a bar (edge) and joint (node) model 
automatically satisfies Maxwell’s counting rule for the rigidity of frames. In 1766, Euler conjectured 
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that triangulated polyhedra are rigid [3][4][5]. It has since been proven by Cauchy that all convex 
triangulated polyhedra are rigid [7], and by Gluck that triangulated polyhedra are generically rigid [4], 
i.e., almost all polyhedra are rigid. However, Connelly showed, in the 1970s, by the simple expedient 
of a counterexample, that non-convex polyhedra with special geometry can be flexible [4]. 

Previously, the present authors have considered two different polyhedra based on Connelly’s work, the 
Steffen flexible polyhedron [1], and a new type of triangulated flexible polyhedra based on two 
tetrahedra sharing an edge, which we will refer to here as the ‘two-tetrahedron flexible polyhedron’ [2].  
Each polyhedron has a single degree of freedom, and we optimized the range of motion of each. By 
changing edge-lengths, we doubled the range of motion of the standard Steffen flexible polyhedron [1] 
(the simplest known flexible polyhedron), and found that the two-tetrahedron flexible polyhedron can 
achieve a better range of motion. 

Here we describe how to construct a triangulated polyhedron that has two degrees of freedom, and show 
an example  that has considerable range of motion.  

2. Composition of a 2-dof polyhedron 
Previously [2], we have described the “two-tetrahedron” flexible polyhedron, based on a skeleton of 
two tetrahedra linked by a common edge, as shown in Figure 2(a). Here we use the same idea: three 
tetrahedra jointed along edges, shown in Figure 1(b). The joints of this chain, line 2-3 and line 5-10, are 
the hinges of the new 2-dof “three-tetrahedron” flexible polyhedron. However, as shown, this object is 
not a  polyhedron, as it does not have a continuous volume.  To make the volume continuous, we replace 
the two coincident edges at the hinge, and their connected faces, with “crinkles”[2], which, because they 
are based on Bricard octahedra retain the underlying kinematics of the hinge.  In previous work [1], we 
learnt from the Steffen flexible polyhedron that a pair of crinkles around one hinge can “slide” away 
from each other, hence avoiding clashes, and at the same time make the volume of the polyhedron 
continuous. Since we have already described the features and derivation of crinkles in previous work 
[2], in this paper we will only show the “sliding away” idea and then use this idea in the new 2-dof 
three-tetrahedron flexible polyhedron.  For brevity, we will describe an edge, together with its two 
connected faces, as a “dihedron”. 

We start by describing the sliding away idea for the two-tetrahedron flexible polyhedron.  In Figure 2, 
a pair of tetrahedra are first shown in (a) and (a’). The two dihedra around the hinge 2-3 are 4-2-5-3 and 
1-2-10-3. Their edge lengths are defined as b and c, where b is smaller than c. Then in (b) dihedron 4-
2-5-3 is replaced by crinkle A, whose net is shown above, and dihedron 1-2-10-3 is replaced by crinkle 
B, whose net is shown below. The hinge 2-3 disappears along with the triangles 2-3-4, 2-3-5, 1-2-3 and 
2-3-10. The dihedron 4-6-5-8 in crinkle A is identical to the original dihedron 4-2-5-3 but rotated by 
180˚. The dihedron 1-9-10-7 in crinkle B is also identical to the original dihedron 1-2-10-3 but rotated 
by 180˚. Both these two dihedra and the original dihedra are shown in (b’) in a side view. Without the 
original dihedra shown, the “sliding away” of the two new dihedra are clearly seen in (c’) and (c) (the 
viewpoint in (a)-(c) is chosen as such in order to show the gap between the two crinkles). The two 
crinkles can slide away from each other because the parameters are set as b < c. Due to the line symmetry 
of the crinkles we used, in crinkle A, l34 = l56, l48 = l25, l46 = l35, l24 = l58; the same applies to crinkle B. 

We now extend the ideas above to form a “three-tetrahedron” two-dof flexible polyhedron.  The starting 
point is shown in Figure 1(b), where three identical tetrahedra are shown, each described by four 
parameters a–d.  The tetrahedra are joined along two edges/hinge lines, 2-3 and 5-10.  There are now 
four dihedra to be replaced by crinkles (1-2-3-10, 4-2-3-5, 2-5-16-10, 3-5-15-10) to form a continuous 
volume, as has been done in Figure 1(a).  The trick is to find parameters that avoid clashes – both 
between the pair of crinkles replacing a hinge, as described above for the two-tetrahedron model, but 
also between crinkles replacing adjacent hinges. 
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Figure 2: Decomposition of a one-dof two-tetrahedron flexible polyhedron, showing a pair of crinkles sliding away 
from each other. The viewpoint in (a)-(c) is chosen to clearly show the gap between two crinkles, while the viewpoint 
in (a’)-(c’) is along hinge 2-3. (a, a’) The underlying skeleton of a new flexible polyhedron – two tetrahedra sharing 
a common edge. The faces of the two tetrahedra are not shown in order to highlight the two dihedra (shown in blue) 
and the hinge that will be replaced by two crinkles. (b, b’) The pair of dihedra (in blue) are replaced by a pair of 
crinkles (in orange). The net of each crinkle is shown in A and B. Parameter b is set to be smaller than c, so that the 
two crinkles can ‘slide away’ from one another to avoid clashes. (c, c’) Only the two dihedra in the middle of the 
crinkles are now shown, in orange.  These are identical to the replaced original dihedra, but rotated about a C2 axis 
through the midpoints of line 2-3 and line 4-5. 
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3. Optimization and results 

Our goal is to adjust parameters to first eliminate any clashes, and then to maximize the range of motion. 
The first model we optimized is shown in Figure 1 with a set of parameters a–d plus a crinkle-height h 
(not shown).  These parameters allow both a global 2-fold rotational symmetry (C2) to the model, as 
well as a local 2-fold improper rotational symmetry (Ci) for each pair of tetrahedra joined by a hinge. 
The global symmetry has a C2 axis through the midpoint of line 2-5 and the midpoint of line 3-10 in 
Figure 1(b). The local symmetry is an inversion through the centre point of each hinge (equivalent to a 
reflection in a mirror, followed by a C2 rotation about an axis perpendicular to the mirror). Each crinkle 
can be added in one of two configurations (valley one side, ridge the other), and we choose to add these 
in a manner consistent with the symmetry.  Later, to achieve larger ranges of motion, these symmetry 
criteria will be relaxed, and the direction of the crinkles might change from hinge to hinge. 

The starting point of our optimization has initial parameter values chosen as a = 1, b = 1, c = 2 , d =
3 and h = 0.5. However, there are clashes in the polyhedron with these dimensions which need to be 

eliminated. By varying all parameter values apart from a, a polyhedron without clashes was found with 
a range of motion about each hinge of 13.7˚. The resultant polyhedron is shown in Figure 3, with 
parameter values a = 1, b = 1.091, c = 1.377, d = 1.750 and h = 0.534. The net of this polyhedron is 
shown in Figure 4 with ridges and valleys drawn. 
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Figure 3: A rotational movement around one hinge in a three-tetrahedron flexible polyhedron. The left-hand two 
‘tetrahedra’ are not moved, but the right-most tetrahedron is rotated around hinge 5-10. The two crinkles around 
this second hinge flex along with the movement of this tetrahedron.  This polyhedron has the same set of 
parameters as the polyhedron in Figure 1, with values a = 1, b = 1.091, c = 1.377, d = 1.750 and h = 0.534. The 
full range of motion of each hinge is 13.7˚. The image shows two extreme positions of the rotational range for one 
hinge. 
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Figure 4: The net of the 2-dof, three-tetrahedron flexible polyhedron with parameter values a = 1, b = 1.091,       
c = 1.377, d = 1.750 and h = 0.534 and the range of motion of each hinge of 13.7˚. Due the global and local 
symmetry, all four crinkles in the net are identical, with the ridge and valley directions the same. 
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Figure 5: Various parameter schemes for the three-tetrahedra flexible polyhedron. (a) The global symmetry is 
broken by adding one more parameter c’, but all tetrahedra are still identical (apart from a reflection) so that 
the polyhedron is extendable to repetitive n-dof systems. (b) The global symmetry is retained, but local 
symmetry of each hinge is broken by using a different set of parameters for the central tetrahedron. (c) A 
completely general set of parameters which preserves neither local nor global symmetry; there are now 16 
parameters, plus the unshown height of each crinkle. 
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In order to increase the range of motion, more parameters are introduced. In this process, the global and 
local symmetry may not be retained. Possible schemes are shown in Figure 5.  Here we consider a partial 
optimization based on the parameters shown in Figure 5(c).  For complete generality, in addition to the 
parameters for the underlying tetrahedra, we would also need to separately specify the four crinkles – 
each of which could be of ‘Type I’ (based on a Bricard line-symmetric octahedron) or ‘Type II’ (based 
on a Bricard plane-symmetric octahedron) – see [1] for discussion of the different types of crinkles.  In 
fact, we maintained a single ‘Type I’ crinkle in each case, and specified each with a single height 
parameter h.  For initial simplicity, we kept a number of the other parameters equal to one another, as 
shown in Table 1.  Despite these restrictions, it was possible to achieve a considerable range of motion 
(approximately 37˚ about each hinge). 

Table 1: Parameter values that allow a large range of motion in a 2-dof polyhedron  

Parameter a1= a2 = a3 = a4 b1 = b2 = c'1 = c'2 c1 = c2 = d1 = d2 b3 d3 c3 c'3 h 
Value 6 8 8.5 8.52 7.8 8.9 7.7 1 
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Figure 6: A three-tetrahedron flexible polyhedron showing two positions of the flexing motion about the second 
hinge. This polyhedron has the set of parameters given in Table 1. The range of motion around the first hinge is 
36.5˚, around the second is 38.2˚. Vertices 7 and 8 stick into the page, and vertex 6 sticks out of page – this 
crinkle direction is the opposite of our choice in Figures 1, 2, 3 and 4, but around hinge 5-10, the crinkle 
directions are the same. This combination is found to allow large ranges of motion. 

The incorporation of crinkles replaces all of the faces of the central tetrahedron 2-3-5-10.  Thus, unlike 
the two-tetrahedron flexible polyhedron, there is now the possibility of clashes between crinkles that are 
replacing dihedra around adjacent hinges – specifically the crinkles adjacent to edges 2-5, 3-5, 2-10 and 
3-10.  However, during the optimization, these clashes are found to be much less likely than clashes 
between the pairs of crinkles replacing one hinge.  Thus the potential clashes illustrated in Figure 2, for 
each of the two hinges, are the primary consideration during the optimization. 

3. Independent motions of two hinges 
We wanted to check if rotation about one hinge would affect rotation about the other in the 2-dof three-
tetrahedron system. Here we use as an example the flexible polyhedron in Figure 6 to show the 
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relationship between the allowed rotations of the two hinges. We first fixed the position of one hinge 
and tracked the range of motion of the other, and then changed the position of the first hinge and again 
tracked the full range of motion of the second hinge. Then we followed the same procedure the other 
way around to measure the range of motion of the first hinge with the second hinge fixed at different 
positions. Accessible positions of the three-tetrahedron flexible model are shown in Figure 7.  

According to the graph, the range of motion of hinge 2-3 is always 36.5˚, no matter the position of hinge 
5-10; and the range of motion of hinge 5-10 is always 38.2˚ irrespective of the position of hinge 2-3. 
This indicates that in this example the rotation of each hinge is not restricted by the motion of the other. 
The only possible way for the position of one hinge to limit the rotation of the other is through the 
clashes on the edges 2-5, 3-5, 2-10 and 3-10, i.e. between different pairs of crinkles, but as described in 
the previous section, these clashes tend not to occur. When we look for a feasible solution or try to 
optimize a polyhedron for a better range of motion, we can easily avoid clashes on these edges.  

θ2

θ1

 
Figure 7: A graph showing feasible configurations of the three-tetrahedron flexible polyhedron shown in Figure 
6.  The rotation of one hinge θ1 against the rotation of the other θ2 are shown: θ1 is the rotation around line 23; θ2 
is the rotation around the line 5-10. There are 109 results on this graph. They show that the full range of motion 
of hinge 23 is 36.5˚, and is independent of the rotation of hinge 5-10; the full range of motion of hinge 5-10 is 
38.2˚, and is also not limited by the rotation of hinge 2-3. 
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4. Conclusion 
This paper revisited the composition of the 1-dof two-tetrahedron flexible polyhedron, and shows how 
the same ideas can be used to generate a 2-dof three-tetrahedron flexible polyhedron. Clearly the same 
ideas can be extended to a longer chain of tetrahedra, to give a flexible polyhedron with as many degrees 
of freedom as required.  Potentially the underlying chain of tetrahedra could form a loop, which could 
then be transformed to a flexible toroidal polyhedron.  If this torus could rotate in a full ‘anapole’ manner 
[10] it would give a flexible polyhedron where continuous rotation of components was possible. 
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