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ABSTRACT
It may be generally believed that the thermoacoustic eigen-

frequencies of a combustor with fully acoustic reflecting bound-
ary conditions depend on both flame dynamics and geometry of
the system. In this work, we show that there are situations where
this understanding does not strictly apply.

The purpose of this study is twofold. In the first part, we
show that the resonance frequencies of two premixed combustors
with fully acoustic reflecting boundary conditions in the region
of marginal stability depend only on the parameters of the flame
dynamics, but do not depend on the combustor’s geometry. This
is shown by means of a parametric study, where the time delay
and the interaction index of the flame response are varied and
the resulting complex eigenfrequency locus is shown. Assum-
ing longitudinal acoustics and a low Mach number, a quasi-1D
Helmholtz solver is utilized. The time delay and interaction index
of the flame response are parametrically varied to calculate the
complex eigenfrequency locus. It is found that all locus trajec-
tories cross the real axis at a resonance frequency that depends
only on the time delay and is independent of the resonant cavity
modes, i.e. the passive thermoacoustic modes, of the two com-
bustors.

In the second part, we exploit the aforementioned obser-
vation to evaluate the critical flame gain required for the sys-
tems to become unstable at four eigenfrequencies located in the
marginally stable region. A computationally-efficient method
is proposed. The key ingredient is to consider both direct and

∗Address all correspondence to this author.

adjoint eigenvectors associated with the four eigenfrequencies.
Hence, the sensitivity of the gain to changes in the eigenfrequen-
cies at the region of marginal stability is evaluated with cheap
and accurate calculations.

By presenting a methodology to compute critical gains of
the flame response and corresponding sensitivity, this work aims
to contribute to the conception of thermoacoustic stable com-
bustors. In the same manner, the understanding of the origin
of distinct resonance frequencies in unstable combustors may be
enhanced by employing the analysis of the eigenfrequency locus
here reported.

INTRODUCTION
Thermoacoustic instabilities in combustion chambers of gas

turbines and rockets are persistent and intractable problems that
industry faces. Such instabilities are due to the two-way cou-
pling between the unsteady heat release rate produced during
combustion and the acoustic waves originated by the volumet-
ric expansion in the reactive region [1, 2]. If a thermoacoustic
instability is triggered, very large amplitude of pressure fluctu-
ations arise, which may lead to critical failures of the system.
One well-known technique for the study of thermoacoustic in-
stabilities is based on a divide-and-conquer approach. On the
one hand, the flame response to incoming acoustic perturbations
is evaluated either experimentally or numerically [3–6]. On the
other hand, the system acoustics is investigated by means of par-
tial differential equations, such as the Helmholtz equation or the
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linearized Navier-Stokes equations, or through acoustic network
models [7–10]. Finally, an eigenvalue problem is defined, where
the flame response is introduced in the equations characterizing
the acoustics of the system. The solution of the eigenvalue prob-
lem provides the resonance frequency and growth rate of the
thermoacoustic modes of interest. Attention is generally given
to thermoacoustic modes evaluated to be unstable, where the
growth rate is positive, or marginally stable, where the growth
rate is close to zero.

Thermoacoustic systems with fully or partially acoustic re-
flecting boundary conditions that do no contain any flame dy-
namics (the gain of the flame response being zero) are charac-
terized by passive thermoacoustic modes1. For example, the
acoustics of a duct system described with Neumann (closed inlet)
and Dirichlet (open outlet) boundary conditions at low frequency
is characterized by a quarter-wave thermoacoustic mode. It has
been generally understood that once the dynamics of the flame is
taken into account, this mode may be enhanced or suppressed by
its interaction with the heat release rate emitted by the flame. Let
us discuss a brief example. When the flame response is described
by a n− τ model [11, 12], such a system can be considered sta-
ble in situations when the time delay τ is smaller than half of the
thermoacoustic period [13]. Thus, considering both the flame
dynamics, here described by the n− τ model, and the system’s
acoustics, here characterized by the period of the quarter-wave
thermoacoustic mode, is essential for the assessment of the ther-
moacoustic stability of the system.

Over the last few years, the understanding of thermoacous-
tics has been extended by the discovery of Intrinsic ThermoA-
coustic (ITA) instabilities [6, 14–16]. It was found that systems
with anechoic boundary conditions, and therefore deprived of
any type of passive acoustic modes directly linked to the system’s
geometry, can also exhibit thermoacoustic instabilities. The ITA
feedback loop can be briefly explained as follows. Velocity per-
turbations upstream of the flame induce fluctuations of heat re-
lease rate, which in turn generate acoustic fluctuations. Subse-
quently, the upstream acoustic travelling waves influence the ve-
locity disturbances upstream of the flame, thereby closing the
ITA loop. Based on a n− τ flame response model, a stability
criterion was obtained for anechoic systems by Hoeijmakers et
al. [14] and Emmert et al. [15]. It was found that Intrinsic Ther-
moAcoustic (ITA) modes, which are characterized by a reso-
nance frequency f = j/(2τ) (where j = 1,3,5, · · · is an odd num-
ber) are unstable if the interaction index is larger than a critical
value that is function mainly of the temperature ratio. By inves-
tigating a turbulent swirled combustor with partially reflecting
boundary conditions and a frequency-dependent flame response,
Silva et al. [17] subsequently found that the ITA feedback loop
plays an important role not only in the stability of the system but

1Note that the mean fields of temperature and density are still affected by the
flame.

also in the generation of combustion noise.

Moreover, when considering systems with fully reflecting
conditions, it was found by Mukherjee and Shrira [18] that the
ITA resonance frequencies at the neutral curve (when the growth
rate is exactly zero) is the same as the one associated with the
ITA modes in anechoic systems f = j/(2τ). Therefore, it was
concluded that the resonance frequency at the neutral curve of
the ITA modes in systems with fully reflecting acoustic boundary
conditions is independent of the system’s geometry.

Based on the study of thermoacoustic systems with fully
acoustic reflecting boundary conditions, the present work aims
to show that, aside from passive thermoacoustic modes, all reso-
nance frequencies at the neutral curve within the frequency band
considered depend exclusively on the flame dynamics and dot
not depends on the geometry of the combustor. These modes,
recognized here as ITA modes because of their exclusive depen-
dence on the flame dynamics, are the only (active) thermoacous-
tic modes present at the neutral curve. Importantly, the stability
of ITA modes is strongly related to a critical gain. In this work,
a computationally-efficient methodology is proposed to exactly
calculate the critical gain of a given ITA thermoacoustic mode.
Beyond such a critical gain, instability is predicted to occur. By
analyzing the structure of both direct and adjoint thermoacoustic
modes at the marginally stable region, we explain why some con-
figurations exhibit critical gains that are much larger (or smaller)
than other configurations. The methodology proposed is applied
to combustors with three-coaxial ducts and a compact flame. It
can be applied to any type of combustor’s geometry when a sta-
bility solver is available to build the eigenvalue problem.

The paper is organized as follows. In the next section the
quasi-1D Helmholtz equation is derived. Subsequently, two pre-
mixed combustors are investigated. A locus of the eigenfrequen-
cies, which results from performing systematic variations of two
parameters of the flame response, is computed by solving the
nonlinear eigenvalue problem corresponding to the Helmholtz
equation. Afterwards, a method is proposed to compute in an ef-
ficient way the direct and adjoint eigenvectors, in addition to the
critical gain and corresponding sensitivity at the neutral curve.
Finally, the obtained results are presented and the thermoacous-
tic stability of the two combustors investigated is analyzed.

THE QUASI-1D HELMHOLTZ EQUATION

Since we are interested in thermoacoustic systems that ex-
hibit frequencies smaller than the cut-on frequency of transver-
sal modes, we focus on quasi-1D systems, i.e systems where
only longitudinal acoustic modes are modeled. Additionally, if a
low Mach number flow is considered, the momentum and energy
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conservation equations read, respectively

ρ̄
∂u′

∂ t
+

∂ p′

∂x
= 0 (1)

S
ρ̄ c̄2

∂ p′

∂ t
+

∂

∂x

(
Su′
)
=

(γ−1)
ρ̄ c̄2 q̇′S, (2)

where u, p and q̇ denote velocity, pressure and heat release rate.
The quantities ρ , c, γ and S stand for density, speed of sound,
heat capacity ratio and cross-section area, respectively. The sym-
bols [̄ ] and [ ]′ represent mean and fluctuating quantities. Sub-
tracting the spatial derivative of Eqn. (1) to the temporal deriva-
tive of Eqn. (2) results in

1
S

∂

∂x

(
Sc̄2 ∂ p̂

∂x

)
+ω

2 p̂ =−iω(γ−1) ˆ̇q, (3)

where the harmonic transformation [ ]′ = [̂ ]eiωt has been applied.
By assuming that the flame is acoustically compact, i.e. the flame
length is negligible with respect to the acoustic wavelength, the
local heat release rate ˆ̇q can be expressed in terms of the global
heat release rate ˆ̇Q as ˆ̇q = Id

ˆ̇Q/Vf, where Vf is the volume of the
flame [9]. The vector Id is equal to one for nodes inside the flame
and zero elsewhere. We express now ˆ̇Q = ˆ̇Qc +

ˆ̇Qn, where ˆ̇Qc
represents the heat release rate coupled with upstream velocity
perturbations and ˆ̇Qn denotes the heat release rate correlated to
random turbulence fluctuations. By considering that Vf = Sf lf,
where lf is a characteristic flame length, Eqn. (3) becomes

1
S

∂

∂x

(
Sc̄2 ∂ p̂

∂x

)
+ω

2 p̂+ iω(γ−1)Id
ˆ̇Qc/(Sf lf)

=−iω(γ−1)Id
ˆ̇Qn/(Sf lf).

(4)

The heat release rate associated to ˆ̇Qc can be related to upstream
velocity perturbations at a reference position ûref by means of the
flame transfer function F (ω), defined as as

ˆ̇Qc
¯̇Q
= F (ω)

ûref

ūref
. (5)

We express now the mean heat release rate as ¯̇Q =
ρ̄refūrefSrefcpTuθ , where cp is the specific heat capacity at con-
stant pressure and θ = Td/Tu−1 is the relative temperature incre-
ment across the flame. The indices ‘u’ and ‘d’ denote ‘upstream’
and ‘downstream’ of the flame, respectively. Thus, the quantity

iω(γ−1) ˆ̇Qc can be expressed as

iω(γ−1) ˆ̇Qc = iωρ̄refc̄2
refSrefθF (ω)ûref =−c̄2

refSrefθF (ω)
∂ p̂
∂x

∣∣∣∣
ref
,

(6)
where the momentum equation (1), re-written as û = −1

iωρ̄

∂ p̂
∂x , has

been considered. Finally, the Helmholtz equation for quasi-1D
acoustic systems reads

1
S

∂

∂x

(
Sc̄2 ∂ p̂

∂x

)
︸ ︷︷ ︸

A p̂

−KF (ω)
∂ p̂
∂x

∣∣∣∣
ref︸ ︷︷ ︸

H F (ω)p̂

+ ω
2 p̂︸︷︷︸
−σ p̂

=−iω(γ−1) ˆ̇Qn/(Sf lf)

(7)
where K = Idαθ c̄2

ref/lf and α = Sref/Sf. In the present study, we
are interested in the Helmholtz equation and the corresponding
eigenvalue problem. After dropping the forcing term from the
formulation, the eigenvalue problem obtained reads:

(A −H F (ωk)) p̂k = σk p̂k ⇒ L p̂k = σk p̂k (8)

where p̂k denotes the kth acoustic mode and ωk the correspond-
ing complex eigenfrequency, which in turn is linked to the kth
eigenvalue by σk = −ω2

k . In the present work, the nonlinear
eigenvalue problem given by Eqn. (8) is solved by means of an
in-house Helmholtz solver based on a finite-difference numeri-
cal scheme. A methodology based on a fixed-point iteration with
relaxation, which is similar to that of Silva et al. [9], was imple-
mented.

THE LOCUS OF THE EIGENFREQUENCIES AROUND
THE FIRST LONGITUDINAL ACOUSTIC MODE

One of the objectives of this work is to understand the
structure of both ITA and classical thermoacoustic modes at the
marginal region of stability. Before performing such an analy-
sis, we plot the locus of the eigenfrequencies given by Eqn. (8)
around the first passive thermacoustic mode. The analysis be-
ing carried out in this section can be performed around any other
passive thermoacoustic mode.

Two premixed combustors
Two different configurations are studied. The first configu-

ration, here denoted ‘Duct’, is a duct flame previously studied in
the work of Hoeijmakers et al. [14]. The second configuration,
here denoted ’BRS’, is a premixed swirled combustor previously
studied in the works of [5, 17, 19, 20]. Figure 1 illustrates these
two configurations, and Tab. 1 shows the geometrical and ther-
modynamic parameters of interest. In this study, the inlet bound-
ary condition is defined as Neumann ∂ p̂/∂x = 0, whereas the
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outlet is defined as Dirichlet p̂ = 0.
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FIGURE 1. The two configurations under investigation. Correspond-
ing dimensions and thermodynamics parameters are given in Tab. 1.

TABLE 1. Geometrical and thermodynamic parameters of the two
configurations under investigation.

Parameter BRS Duct

l1 (m) 0.17 0.15

l2 (m) 0.18 0.15

l3 (m) 0.336 0.2

S1 (m2) π/4 0.22 1

S2 (m2) π/4 (0.042−0.0162) 1

S3 (m2) 0.092 1

T̄u (K) 293 293

T̄d (K) 1930 1600

ρ̄u (kg/m3) 1.204 1.204

ρ̄d (kg/m3) 0.183 0.22

c̄u (m/s) 343 343

c̄d (m/s) 881 774

The first passive thermoacoustic mode p̂1p, shown in Fig. 2,
and corresponding eigenfrequency ω1p are obtained by solving
Eqn. (8) with F (ω) = 0. On the one hand, the first thermoa-
coustic mode of the ‘Duct’ configuration is associated with the
quarter-wave mode of the duct with ω1p = 2π ·250 rad/s. On the
other hand, the first thermoacoustic mode of the ‘BRS’ configu-
ration is the Helmholtz mode of the plenum with ω1p = 2π · 55
rad/s.
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A
m
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FIGURE 2. First passive thermoacoustic mode p̂1p. (Blue) Duct,
(Black) BRS.

The loci of eigenfrequencies
In this study, the flame response is described by an n− τ

model so that F (ω) = ne−iωτ , where n is the interaction index
and τ denotes a characteristic time delay. We carry out a para-
metric study by varying n = [0→ 1] for the Duct configuration
and n = [0→ 4] for the BRS configuration. The time delay is
varied as τ = [0→ 2π/ω1p] for both configurations. The corre-
sponding eigenfrequencies, which are solutions of Eqn. (8), are
plotted in the complex plane. Figures 3 and 4 show the results
for the Duct configuration and ‘BRS’ combustor, respectively.

Although the two configurations are different, the loci ob-
tained have strong similarities. In both Duct and BRS cases
we observe a star-like structure and curvilinear trajectories. The
center of the star is given by the eigenfrequency of the passive
acoustic mode ω1p. Once n is increased from zero, the eigen-
frequencies depart from ω1p. These trajectories rotate counter
clock-wise for increments of τ . We can observe that some trajec-
tories reach instability (growth rate > 0) for n > ng0 , where ng0
denotes a critical value for the interaction index.

Let us now concentrate on the trajectories connected to the
star center ω1p and defined by τ = m ·2π/ω1p with 0.32 < m <
0.33 (dashed lines in Figs. 3 and 4). We observe that these tra-
jectories change direction suddenly (from left to right when in-
creasing m) after a critical value mc ≈ 0.325, which corresponds
to τc ≈ 1.3 ms for the Duct configuration and τc ≈ 5.9 ms for the
BRS combustors. This behavior can be considered as a bifurca-
tion: given n > ng0 a slight increment in τ from τ < τc to τ > τc
can transform a robust stable combustor to a highly unstable one.

From Figs. 3 and 4 it is also possible to observe quasi-
vertical trajectories whose growth rate for small values of n is
very negative and increases for increments of n. As observed also
by Mukherjee and Shrira [18], the resonance frequency tends to
real(ω) = 2π · j/(2τ) (with j = 1,3,5, · · · ) and Imag(ω) = −∞

when n approaches zero, as illustrated in Fig. (5) for the duct
configuration. The real part of this frequency corresponds to ITA
resonance frequencies [14, 15]. Correspondingly, we label these
trajectories as ITA trajectories2. A crucial observation results by
looking at the resonance frequencies for zero growth rates. As
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0 50 100 150 200 250 300 350 400 450 500
-250

-200

-150

-100

-50

0

50

n

⌧

⌧

Case D2 Case D1

0.3

0.2

0.4

0.5

0.3

0.9

0.8

0 0

2⇡/!1p

n ⌧

0

11

0.4

Frequency (Hz)

G
ro

w
th

ra
te

0.32
0.32

0.35

0.33

0.33

m

FIGURE 3. Locus of eigenfrequencies on the complex plane that corresponds to the Duct configuration. n = [0→ 1] with ∆n = 0.05 and τ = [0→
2π/ω1p]. τ = m ·2π/ω1p with m = 0→ 1 and ∆m = 0.05. Numbers in the plot are values of m for the closest trajectory. The growth rate is defined as
−Im(ω)/2π .

already pointed out by Mukherjee and Shrira [18], this value is
equal to real(ω) = 2π · j/(2τ) for the ITA trajectories. In addi-
tion, from Figs. 3 and 4 it is observed that this is also the case for
the trajectories that belong to the star-like structure and cross the
real axis (for m = 0.35, 0.4, 0.45). Indeed, it is observed in an ex-
tended plot (Fig. 5) that the resonance frequency at zero growth
rate corresponding to all trajectories that cross the real-axis over
the investigated range of 0 < real(ω)< 2π ·1000 is function ex-
clusively of the time delay τ . This finding is of interest for sta-
bility analysis of thermoacoustic systems since it establishes po-
tential resonance frequencies in unstable combustors. As shown
in the next section, this funding also allows us to efficiently com-

pute the eigentriplet p̂k, p̂†
k , ωk at the neutral curve.

THE INTERACTION INDEX AT THE MARGINAL REGION
OF STABILITY

So far we have observed in Figs. 3 and 4 that all trajectories
crossing the real axis exhibit a resonance frequency real(ω) =
2π · j/(2τ) (with j = 1,3,5, · · · ) at zero growth rate. The pur-
pose of this section is to show a computationally efficient tech-
nique that exploits this observation in order to compute the value

2Solving the nonlinear eigenvalue problem (Eqn. (8)) to find ITA trajecto-
ries is numerically more challenging. It was necessary to apply small relaxation
factors (around 0.005) to the fix-point algorithm used to reach convergence.
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of the interaction index ng0 , which corresponds to the eigenfre-
quency ωg0 = 2π · j/(2τ) + i · 0. Subsequently, the sensitivity
∂ω/∂n|

ω=ωg0
is evaluated by with a computationally-efficient

and accurate adjoint approach [21, 22].

The direct and adjoint eigenvectors
The adjoint eigenvalue problem reads

L † p̂†
k = σ

†
k p̂†

k , (9)

where the symbol [ ]† denotes ‘adjoint’. The adjoint eigenvalue
σ† is equal to the complex conjugate of σ , i.e. σ† = σ∗ and
the adjoint operator L † is the conjugate transpose of L , i.e.

L † = L H [23]. Furthermore, for the biorthogonality condi-
tion, 〈p̂†

k , p̂l〉= (p̂†
k)

H p̂l , is equal to zero for k 6= l. If in addition
the direct and adjoint eigenvectors are normalized, we know that
〈p̂†

k , p̂k〉= (p̂†
k)

H p̂k = 1. Let us now project the direct eigenvalue
problem (Eqn. (8)) for a given thermoacoustic mode p̂k on the
adjoint eigenvector p†

k . The new problem reads:

(p̂†
k)

HL p̂k = (p̂†
k)

H (A −H n e−iωkτ
)

p̂k = σk(p̂†
k)

H p̂k = σk,
(10)
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Finally, Eqn. (10) is reorganized in terms of the interaction index
n:

n =
(p̂†

k)
HA p̂k +ω2

k

(p̂†
k)

HH p̂k e−iωkτ
. (11)

The calculation of the critical flame gain
Equation (11) tells us that a given value of n is directly re-

lated to the eigentriplet p̂k, p̂†
k , ωk and time delay τ , in addition

to the acoustic and flame operators A and H . In this study we
calculate the value of n such that the eigenfrequency is marginal,
i.e. it is equal to ωg0 = 2π · j/(2τ)+ i · 0. This critical value is
denoted ng0 . Therefore, in addition to A and H , we know the
quantities ωk = ωg0 and τ . In contrast, the eigenvectors p̂k and
p̂†

k at the neutral curve still have to be evaluated. In principle, we
must know n in order to solve the direct and adjoint eigenvalue
problems given by Eqns. (8) and (9), respectively. We circum-
vent that difficulty as follows.

Let us refer now to the active thermoacoustic system given

by Eqn. (8), written now as

A p̂k−σk p̂k = H F (ω)p̂k︸ ︷︷ ︸
sa

(12)

where sa is a vector acting as a forcing term at the region of the
flame. Since we don’t know the value of the vector sa, we choose
a vector s with uniform forcing (and trivial value) at the region
of the flame. In this study we make s = Id, i.e. a vector equal to
one at the region of the flame and zero elsewhere. Consequently,
the vector s is proportional to sa. The solution of Eqn. (12) with
forcing term s is denoted ˜̂pk, and is considered proportional to
p̂k as explained in more detail in Appendix A. By carrying out a
similar analysis we obtain ˜̂p†

k , which is also assumed proportional
to p̂†

k . Finally, the estimated direct p̂k and adjoint eigenvectorsp̂†
k

are obtained by normalizing ˜̂pk and ˜̂p†
k , so that (p̂†

k)
H p̂k = 1 as

explained in Appendix A.

Sensitivity study

In addition to estimating ng0 from Eqn. (11), we evaluate
∂ω/∂n|

ωg0
, which is the sensitivity of ω with respect to small

changes of n around the critical flame gain, ng0 . By applying the
chain rule, we obtain

∂ω

∂n

∣∣∣∣
ωg0

=

(
∂ω

∂σ

∂σ

∂n

)
ωg0

where
∂ω

∂σ
=
−1
2ω

. (13)

Following [21, 22] and Silva et al. [24], we estimate ∂σ/∂n by
means of a first-order adjoint formulation ,which reads

∂σ

∂n
=

(p̂†
k)

H ∂ (L−Iσ)
∂n p̂k

(p̂†
k)

H ∂ (L−Iσ)
∂σ

p̂k

=
(p̂†

k)
HH p̂ke−iωτ

(p̂†
k)

HH p̂k
i nτ

2ω
e−iωτ +1

(14)

Results

Let us concentrate on two eigenfrequencies with zero growth
rate defined as ωg0 = 2π · 1/(2τ)+ i · 0 where τ = m · 2π/ω1p.
The corresponding cases are denoted by D1(m = 0.3) and D2
(m = 0.4) for the Duct configuration and B1 (m = 0.3) and B2
(m = 0.4) for the BRS combustor. These eigenfrequencies, dis-
played with a cross in Figs. 3 and 4, are arbitrarily chosen from
the locus plot. It should be mentioned, however, that the case
B1 lays on a locus of eigenfrequencies which are related to an
ITA instability observed in the BRS combustor [17, 20]. Follow-
ing the procedure described in the previous section, we solve the

7 Copyright c© 2018 by ASME



linear systems

A ˜̂pk−σk ˜̂pk = Id and A H ˜̂p†
k−σ

∗
k

˜̂p†
k = Id (15)

where σk = σ∗k = −ω2
g0

. Subsequently, the solutions ˜̂pk and ˜̂p†
k

are normalized by means of Eqn. (26) to obtain a first estimation
of p̂ and p̂†. Results are shown in gray in Figs. (6) and (7)
(although only distinguishable for p̂†

k in the region downstream
of the flame). Next, we solve Eqn. (11) to obtain a first estimation
of ng0 . In order to obtain a better approximation of p̂ and p̂†, we
solve

L ˜̂pk−σk ˜̂pk = Id and L H ˜̂p†
k−σ

∗
k

˜̂p†
k = Id (16)

where σk = σ∗k = −ω2
g0

and the values of ng0 obtained previ-
ously are considered. Results are shown in Figs. (6) and (7) (in
black although indistinguishable). These new evaluated eigen-
vectors p̂k and p̂†

k are used to solve again Eqn. (11) to revaluate
ng0 . Tab. 2 shows the obtained values of ng0 for the first and
second iterations. In order to validate the estimated interaction
index ng0 and the corresponding eigenvectors p̂k and p̂†

k , we solve
the nonlinear eigenvalue problem given by Eqn. (9) accounting
for the estimated value ng0 in the second iteration. Results are
displayed in Figs. (6) and (7) (dashed blue and red lines). It is
interesting to observe that the acoustic field related to p̂k is very
well estimated from the first iteration, and therefore gray, black
and blue lines are exactly superposed. In addition, we see that
the value of the eigenfrequency ωk obtained by solving Eqn. (8)
with the evaluated ng0 is also very close to the one given by ωg0 ,
as shown in Tab. 3. This verifies the proposed algorithm.

TABLE 2. Values of ng0 obtained in first and second iterations for the
four cases under investigation.

Parameter Iteration D1 D2 B1 B2

ng0 1 0.718 0.346 3.147 1.703

ng0 2 0.723 0.353 3.156 1.718

At the region of marginal stability, it is important not only to
know the critical values for the interaction index ng0 , but also
to calculate the sensitivity of the eigenfrequency for a small
change in n. Therefore, we apply Eqns. (13) and (14) to cal-
culate ∂ω/∂n|

ωg0
using the eigenvectors p̂k and p̂†

k obtained in
the second iteration of the method proposed. The sensitivity cal-
culated with the adjoint method exactly matches the slope of the
curve (Figs. 8 and 9). In other words, it is first-order accurate.
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FIGURE 6. Thermoacoustic modes p̂/max(p̂) (top) and p̂†/max(p̂†)

(bottom) of the Duct configuration. (Gray) first iteration, (Black) second
Iteration, (Dashed blue) p̂k from direct eigenvalue problem Eqn. (8).
(Dashed red) p̂†

k from adjoint eigenvalue problem Eqn. (9). Note that
gray and black curves overlap the blue and red curves due to the good
agreement, which verifies the proposed algorithm.
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Iteration, (Dashed blue) p̂k from direct eigenvalue problem Eqn. (8).
(Dashed red) p̂†

k from adjoint eigenvalue problem Eqn. (9). Note that
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agreement, which verifies the proposed algorithm.

Such an adjoint sensitivity study can be carried out for any other
system’s parameter, such as time delay τ or acoustic reflection at
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TABLE 3. Eigenfrequencies under consideration

Case ωg0 = 2π ·1/(2τ)+ i ·0 ωk (from Eqn. (9) )

D1 2π·416.667 + 0 i 2π·416.667 - 0.00089 i

D2 2π·312.5 +0 i 2π·312.485 - 0.004 i

B1 2π·91.667 + 0 i 2π·91.667 + 0 i

B2 2π·68.75 + 0 i 2π·68.75 + 0 i

the boundaries, at zero extra cost.
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Main parameters affecting the critical gain
By studying Eqn. (11), it is possible to understand which

thermodynamics and geometrical parameters can make a com-
bustor prone to thermoacoustic instabilities or, in other words,
to identify under which conditions Eqn. (11) gives low values of
ng0 . Letting aside the influence of ω and τ , we realize that a
combustor described by the terms (p̂†

k)
HA p̂k and (p̂†

k)
HH p̂k

with low and large values, respectively, is prone to exhibit ther-
moacoustic instability for low values of the interaction index n.

Let us first analyze the term (p̂†
k)

HA p̂k for the four cases
investigated, whose values are shown in Tab. 4. When compar-
ing D1 against B1 and D2 against B2, it is observed that low
values of this term does not imply necessarily low values of ng0

(last column of Tab. 4). Therefore, analyzing (p̂†
k)

HA p̂k does
not give clues about which parameters control the stability of the
combustors investigated. Therefore, we analyze the term

T = (p̂†
k)

HH p̂k = (p̂†
k)

H Id θ c̄2
refSref/(Sf lf)

∂ p̂k

∂x

∣∣∣∣
ref

(17)

to evaluate under which conditions it exhibits large values. By
looking at Eqn. (17) we realize that T is proportional to θ , c̄2

ref,
Sref/Sf and 1/lf. The corresponding values for the Duct and BRS
configurations are displayed in table 5. The parameters θ , c̄ref
and lf have similar values for both BRS and duct systems. In
contrast, we observe that the area ratio Sref/Sf associated with
the Duct configuration is approximately one order of magnitude
larger than the one corresponding to the BRS combustor. This
result implies that low values of Sref/Sf contribute to the stability
conditioning of a combustor. Another factor of high impact on
the value of T is the product (p̂†

k)
H Id ∂ p̂k/∂x|ref. This param-

eter multiplies the value of p̂†
k at the flame region by the value

of ∂ p̂k/∂x at the reference position. Its value is given in table 4
for the four cases under study. The Duct configuration through
cases D1 and D2 exhibits values of (p̂†

k)
H Id ∂ p̂k/∂x|ref which

are almost two order of magnitudes larger than the counterparts
B1 and B2 of the BRS combustor. In retrospect, it is possible to
understand why the Duct combustor exhibits values of ng0 which
are significantly smaller than the ones corresponding to the BRS
system and, therefore, is more prone to manifest thermoacoustic
instabilities.

We conclude the study by highlighting the importance of the
parameter T , which in one term summarizes the contributions of
all thermodynamic and geometrical parameters on the stability of
a quasi-1D thermoacoustic system. We realize also that this pa-
rameter plays a crucial role in the description of ∂ω/∂n|

ωg0
as

evidenced in Eqn. (14). It is also important to remark that the
present study can be extended to fully 3D combustors, where, as
performed in the present work, the influence of flame location-
distribution and combustor geometry on the stability of the sys-
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tem are encapsulated in the operator H and both direct and ad-
joint eigenvectors.

TABLE 4. Parameters of interest

Parameter (p̂†
k)

HA p̂k (p̂†
k)

H Id
∂ p̂k
∂x

∣∣∣
ref

ng0

D1 2.4119e+05 -0.0187 0.723

B1 2.2442e+05 -0.0028 3.156

D2 -1.8196e+06 -0.0110 0.353

B2 -8.9071e+04 -9.09·10−4 1.718

TABLE 5. Parameters influencing the term T

Parameter BRS Duct

θ 5.5870 4.4608

lf 0.0014 0.001

c̄2
ref 117730 117810

Sref/Sf 0.1303 1

CONCLUSIONS
The thermoacoustic modes at the region of marginal stabil-

ity of two different quasi-1D combustors with full acoustically
reflecting boundary conditions were investigated. Aside from
the passive thermoacoustic modes, whose resonance frequency is
strongly related to the geometry of the system, it was found that
the eigenfrequency associated with the thermoacoustic modes at
the neutral curve is entirely defined by the dynamics of the flame
and, therefore, independent of the geometry of the combustor.
These observations were obtained by analyzing the locus of the
eigenfrequencies in the complex plane for parametric variations
of n and τ , where also was recognized that the obtained plots
for the two systems under study are alike. This finding is of
relevance when characterizing the acoustic activity of an unsta-
ble combustor, where resonance frequencies may be related not
only to (perturbed) passive thermoacoustic modes but also to ITA
modes.

In the second part of the article, a method is proposed to
evaluate at a very low computational cost the critical gain and
corresponding sensitivity at the neutral curve. This method
makes use of the direct and adjoint acoustic eigenvectors. The

methodology here exposed may be used to quantify how prone
a given combustor is to exhibit combustion instabilities indepen-
dently of a particular flame response. For example, very high
values of critical gain (for diferent values of τ) would imply a
robustly stable combustor.

While carrying out the computations needed for the locus
plot, it was found that assessing the eigenfrequency values for
the quasi-vertical (ITA) trajectories (the ones whose growth rate
decays to infinity for decreasing values of n) by solving the non-
linear eigenvalue problem is a challenging task. It was necessary
to use very low values of the relaxation coefficient (around 0.05)
when applying the fix point iteration method in order to assure
convergence of the results. This may be one of the reasons why
Helmholtz solvers have not been yet widely used for the study
of ITA modes. With the method proposed in the second part of
the paper it is possible not only to assess the values of the eigen-
frequencies at the region of marginal stability, but also the corre-
spoding direct and adjoint eigenvectors by solving a few times a
linear system instead of a nonlinear eigenvalue problem.
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A Relation between p̂k, p̂†
k and ˜̂pk, ˜̂p†

k

The Helmholtz Equation reads

A p̂k +ω
2
k p̂k−H F (ω)p̂k = 0 (18)

where p̂k and ω2
k are the kth eigenvector and eigenfrequency of

the active thermoacoustic system. Let us now assume that the
active acoustic eigenvectors can be well represented by a lin-
ear combination of the passive acoustic eigenvectors as p̂k =

∑
N
k=1 p̂kpηkp , where N is the number of modes considered and

ηkp are weighting coefficients. Equation (18) reads now

A
N

∑
k=1

p̂kpηkp +ω
2
k

N

∑
k=1

p̂kpηkp −H F (ω)
N

∑
k=1

p̂kpηkp = 0 (19)

By recalling that the passive eigenvalue problem is defined by
A p̂kp =−ω2

kp
p̂kp , we rewrite Eqn. (19) as

−
N

∑
k=1

p̂kpω
2
kp

ηkp +ω
2
k

N

∑
k=1

p̂kpηkp −H F (ω)
N

∑
k=1

p̂kpηkp = 0

(20)
By exploiting the biorthogonality between p̂kp and p̂†

kp
, which

means (p̂†
kp
)H p̂lp = δkl , we project Eqn. (20) on to the basis of

the adjoint eigenvectors. Equation (20) becomes

ω
2
k ηkp −ω

2
kp

ηkp − (p̂†
kp
)H H F (ω)

N

∑
k=1

p̂kpηkp︸ ︷︷ ︸
sa

= 0 (21)

We consider now the last term sa of Eqn. (21) to be a forcing
term that acts exclusively in the region of the flame. Rearranging
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Eqn. (21), we obtain

ηkp =
(p̂†

kp
)Hsa

ω2
k −ω2

kp

and subsequently p̂k =
N

∑
k=1

p̂kp ηkp , (22)

The vector sa is the unknown. Therefore, we consider a vector
s that acts as a uniform (with trivial value) forcing term in the
region of the flame. In this study we set s = Id. The solution of
this problem is given by

η̃kp =
(p̂†

kp
)Hs

ω2
k −ω2

kp

and subsequently ˜̂pk =
N

∑
k=1

p̂kpη̃kp , (23)

or directly by solving the linear system

A ˜̂pk +ω
2
k

˜̂pk = s (24)

Note that the vectors sa and s are proportional. As a result, the
active acoustic eigenvector p̂k can be considered proportional to
˜̂pk.This can be understood if comparing Eqn. (22) to Eqn. (23).
By carrying out a similar analysis, we can find ˜̂p† by solving

A H ˜̂p† +ω
∗2
k

˜̂p† = s, (25)

where ˜̂p† is considered proportional to the adjoint eigenvector
p̂†. We need to find now a correct scaling. This is done by nor-
malizing ˜̂p and ˜̂p† as

p̂k =
˜̂pk√

( ˜̂p†
k)

H ˜̂pl

and p̂†
k =

˜̂p†
k√

( ˜̂p†
k)

H ˜̂pl

, (26)

so that (p̂†
k)

H p̂k = 1 is satisfied.
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