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Synopsis

Osteoarthritis (OA) is the most common cause of disability in the United Kingdom and United States. Identifying the rate of OA

progression remains an important clinical and research challenge for early disease monitoring. Texture analysis of tibial

subchondral bone using magnetic resonance imaging (MRI) has demonstrated the ability to discriminate between different stages

of OA. This work combines texture analysis with machine learning methods (Lasso, Decision Tree, and Neural Network) to predict

radiographic disease progression over 3 years, trained using data from the Osteoarthritis Initiative. We achieved high sensitivity

(86%), specificity (64%) and accuracy (74%) for predictions of OA progression.

Introduction

Osteoarthritis (OA) is a disease of the joints that results in degradation of multiple tissues including cartilage and bone [1]. OA is the

greatest cause of disability in the United Kingdom and United States [2, 3]. Diagnosis is generally clear in patients with advanced disease,

but remains challenging at early stages where stratification and measurement of progression is necessary for the development of effective

therapies to halt or reverse disease progression [4].

Subchondral bone texture, analysed from both radiographic and MR images, is altered in severe OA [5-10]. Texture analysis promises to

quantify disease state beyond arbitrary thresholds of disease presence, thereby improving discrimination of disease state[7]. Machine

learning methods, such as Lasso [11], Decision Trees [12, 13] and Neural Networks [14-16], promise to improve the predictability of texture

analysis despite these concerns.

Methods

Included subjects were participants in the Osteoarthritis Initiative (OAI) bone ancillary study (BAS) [17]. The OAI provided anonymised

patient records that contained age, gender, Body Mass Index (BMI) and Joint Space Width (JSW) measurements as measured from

automated software. The BAS study subjects were imaged with standard OAI MRI sequences [18] and 3D fast imaging with steady state

precession (FISP) MR images, acquired at 3T, with an echo time = 4.9ms, repetition time = 20ms, flip angle = 50⁰, matrix size = 512x512,

interpolated to 1024x1024, slice thickness = 1mm, number of averages = 1, and acquisition time = 10.5 minutes.

Our study featured 61 subjects who were defined as radiographic progressors based on a reduction in minimum medial JSW of at least 0.7

mm over the 3 years following their initial BAS MRI. Progressors were age/gender matched to subjects who did not meet the radiographic

progression criterion, therefore, our total dataset included 122 patient records. Training data for machine learning methods contained a ratio

of 28/33 progressors vs non-progressors and the validation data contained 33/28, respectively.

A region-of-interest (ROI) was selected on a slice central to the knee, along the bone-cartilage interface and extending approximately 1cm

into the subchondral bone (Figure 1). First and second order Haralick texture parameters [19], fractal textures [9], and gradient textures [20]

were calculated in the ROI. The texture calculations were performed in Cython (Python Software Foundation). The texture parameters were

fed into three types of machine learning algorithms: Lasso regression, the Decision Tree, and a Neural Network in the Scientific Toolkit,

Scikit-Learn, Python package that were trained to predict JSW changes.

Accuracy was defined as the ratio of true positives and negatives to the total number of subjects

Results

Three hundred and twenty textural parameters were calculated for 122 patients. Box plots for sample textural values of the training dataset

are shown in Figure 2. Maximal correlation coefficient textures in the superior/inferior direction demonstrated the highest linear correlation

with binary categorisation of JSW (r2=0.98), followed by directional gradients. First order values, such as mean, standard deviation, skew

and kurtosis, demonstrated the lowest r2 correlations (r2<0.40). Skew and sum superior-inferior entropy were the primary indicators of

disease according to the Decision Tree, despite the lack of linear correlation of skew with disease (r2=0.39).

Texture parameters that were derived from MR images and applied to a Neural Network accurately predicted disease progression in 74% of

all cases (Tables 1,2). The Lasso and Decision Tree did not have the same accuracy rates (57%, 62%, respectively) as the Neural Network

(74%).

Discussion

The true positive rate (86%) of this prediction is higher than plain radiograph and histology predictions, which have a sensitivities between
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61% and 74% [21]. Such comparisons with competitors demonstrate that texture values relate to disease progression. This work could also

be applied to radiographic tomograms, which show OA-related textures.

These techniques can be applied to other diseases where any binary disease state can be determined. This platform could be used for

detecting and predicting other diseases that have texture information in the images. This work could also be applied to radiographs which

show features of OA to establish is similar textural information can be extracted. There are a broad range of textural patterns that could be

explored to improve the performance of this work [22].

Conclusion

We have successfully measured first and second order texture values, as well as gradient and fractal textures, which were used as training

sets in Lasso, Decision Tree, and Neural Network algorithms. The Neural Network performed with the highest sensitivity (86%), specificity

(64%), and accuracy (74%), which is comparable to established methods of osteoarthritis detection.
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Figures

Figure 1: An example ROI of the tibial plateau, showing an entire image of the knee (left) and a magnified image (right). The region-

of-interest was selected along the bone/cartilage interface and extended approximately 1 cm into the subchondral bone.

Figure 2: Box plots of several textural values calculated for progressors (red) and non-progressors (blue) for half of the dataset. The box

plots represent the minimum, first quartile, median, third quartile, and maximum values for each textural value. The textural values are listed

in order of decreasing r2 linear correlation, from 0.98 to 0.64.
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Confusion matrix of measured and predicted outcomes, i.e., a table of true/false postivies/negatives of progressors and non-progressors

based on joint-space-width change (by column) and based on machine learning predictions (by row). The machine learning predictions

were created using a training set of textural values derived from knee images.

Table 2 Table of accuracy and paired χ2 p-values of machine predictions for the Lasso, Decision Tree, and Neural Network methods. The

p-values were calculated based on the predicted versus measured progression. The Neural Network performs better than the Lasso and

Decision Tree.
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