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Abstract

Significant discrepancies exist between the detrended variability of late-Holocene

marine temperatures inferred from Mg/Ca and Uk37 proxies, with the for-

mer showing substantially more centennial-scale variation than the latter.

Discrepancies exceed that attributable to differences in location and persist

across various calibrations, indicating that they are intrinsic to the proxy

measurement. We demonstrate that these discrepancies can be reconciled

using a statistical model that accounts for the effects of bioturbation, sam-

pling and measurement noise, and aliasing of seasonal variability. The smaller

number of individual samples incorporated into Mg/Ca measurements rela-

tive to Uk37 measurements leads to greater aliasing and generally accounts

for the differences in the magnitude and distribution of variability. An inverse

application of the statistical model is also developed and applied in order to

estimate the spectrum of marine temperature variability after correcting for

proxy distortions. The correction method is tested on surrogate data and
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shown to reliably estimate the spectrum of temperature variance when using

high-resolution records. Applying this inverse method to the actual Mg/Ca

and Uk37 data results in estimates of the spectrum of temperature variance

that are consistent. This approach provides a basis by which to accurately

estimate the distribution of intrinsic marine temperature variability from

marine proxy records.

Keywords: Holocene climate variability, signal and noise in proxies,

multiproxy comparison, spectral analysis, SST variability

1. Introduction1

Although Mg/Ca and Uk37 proxies are used to infer the same physical at-2

tribute of near-surface marine temperature, the recorded temperature signals3

reflect disparate life cycles and biophysical functioning of the proxy produc-4

ing organisms and disparate incorporation and preservation of the signal in5

sediments. Potential contributions include non-temperature influences on the6

incorporation of Mg/Ca into foraminiferal shells (Arbuszewski et al., 2010),7

re-suspension and redeposition of Uk37 markers (Ohkouchi et al., 2002), and8

other possible post-depositional effects on Mg/Ca (Regenberg et al., 2006)9

and Uk37 (Hoefs et al., 1998; Gong and Hollander, 1999). These consid-10

eration make it important to infer temperatures from multiple sources and11

evaluate their consistency (e.g. De Vernal et al., 2006).12

Previous studies noted that the temperature variability inferred for the13

last millenium differ according to the proxy type used (Richey et al., 2011).14

Proxy dependence has also been noted for the temporal patterns of deglacial15

warming (Steinke et al., 2008; Mix, 2006) and mid- to late-Holocene tem-16
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perature trends (Leduc et al., 2010; Lohmann et al., 2012). Differences be-17

tween Mg/Ca and Uk37 derived temperatures have been suggested to arise18

from differences in seasonal recording (Leduc et al., 2010; Schneider et al.,19

2010). How orbital variations manifest in proxy records sensitively depends20

on how the seasonal cycle is recorded (e.g., Huybers and Wunsch, 2003;21

Laepple et al., 2011), and this effect might explain diverging multi-millenial22

signals between proxies, or at least some fraction of the differences over the23

Holocene (Lohmann et al., 2012). Importantly, however, the ten-thousand-24

year timescale orbital variations are not expected to explain the differences in25

millennial and higher-frequency variability that are focused on in this study.26

Here, we explore the discrepancies between Mg/Ca and Uk37 proxies27

of sea surface temperature at centennial to millennial timescales, identify a28

physical-statistical model for their origin, and present a method to correct29

for the associated biases when estimating temperature variance. Although it30

would be possible to interpret each individual proxy—or record or even single31

sample—as a unique perspective on past temperature, the emphasis here is32

to statistically account for distinctions between proxy measurements for the33

purposes of facilitating synthesis between records and comparison with in-34

strumental observations and model simulations of temperature. In contrast35

to typical synthesis efforts that focus on reconstructing the time-history of36

temperature, we seek to estimate the magnitude of temperature variability as37

a function of timescale or, more precisely, the spectral distribution of sea sur-38

face temperature variability at centennial to millennial frequencies. Beyond39

holding intrinsic interest, quantitative estimates of temperature variability40

prior to the anthropogenic era and at frequencies lower than those afforded41
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by instrumental records are generally needed when seeking to interpret spe-42

cific changes in temperature and attribute them to a set of causes (e.g.,43

Barnett et al., 1999).44

2. Data and Methods45

We focus our analysis on the two most prominent proxies of near-surface46

marine temperature, Mg/Ca ratios from planktic foraminifera (Lea et al.,47

1999) and the Uk37 ratio of different long-chain ketones (Brassell et al., 1986).48

Both proxies are recovered from sediment cores and are affected by bioturba-49

tion. An important distinction, however, is that each Mg/Ca measurement is50

typically made using a small number of crushed planktic foraminifera, usually51

about 30, whereas Uk37 is an organic proxy that is sampled from millions of52

molecules.53

2.1. Proxy and instrumental data54

The proxy dataset assembled for this study aims to be comprehensive in55

the sense of including all sufficiently long and well-resolved sediment records56

that cover the mid- to late-Holocene. Most Mg/Ca and Uk37 records are57

from the GHOST database (Leduc et al., 2010), though also included are58

two recently published high-resolution Mg/Ca records: MV99-GC41/PC1459

(Marchitto et al., 2010) and MD99-2203 (Cleroux et al., 2012). Specifically,60

we include 6 planktonic Mg/Ca records from G.ruber and G.bulloides and61

16 Uk37 records, all of which are dated by radiocarbon and have an average62

sampling rate of 100 years or less (Figure 1). Lower resolution records are63

excluded in the analysis because it is then difficult to accurately correct for64

sampling effects, as is later demonstrated.65
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All proxy records of a given type are recalibrated in a uniform manner to66

faciliate intercomparison. Uk’37 records are calibrated using 0.033 Uk37/◦C,67

Uk37 records using 0.035 Uk37/◦C, and Mg/Ca records using 9.35% Mg/Ca68

per ◦C.. These choices are the mean of all author calibrations of the analysed69

datasets but also agree with the standard calibrations given by Mueller et al.70

(1998) (0.033 Uk’37/◦C) and Dekens et al. (2001) (9% Mg/Ca per ◦C).).71

See Table 1 and Figure 1 for more details regarding individual records. In-72

strumental observations that we later use to model the proxy recording pro-73

cess are from the HADSST3 compilation of sea surface temperatures (SST)74

(Kennedy et al., 2011b,a).75

2.2. Spectral estimation76

Spectral estimates are used to quantify timescale dependent variability.77

Although techniques exist to estimate spectra from unevenly sampled data78

(Lomb, 1976), our experimentation with synthetic signals indicates that more79

accurate results are obtained by first interpolating to a uniform sampling rate80

and then employing state-of-the-art spectral estimation techniques. Linear81

interpolation of an unevenly sampled record tends both to reduce the energy82

at the highest frequencies of a spectral estimate and to alias variability into83

lower frequencies (Rhines and Huybers, 2011).84

To minimize the influence of high-frequency damping, we determine the85

finest interpolation resolution for which the frequency spectrum is largely86

unbiased. For an evenly sampled record, the optimal interpolation resolu-87

tion would equal the sampling resolution, but for unequal time steps the88

optimal interpolation resolution is no longer obvious, and we employ a nu-89

merical method to determine an appropriate value. This process involves90
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generating random numbers that follow a power-law processes with β = 1;91

subsampling these synthetic time series according to the sampling sequence92

of a given proxy record, and then interpolating to a resolution equal to the93

finest sampling time step of the original record. The spectral estimate of the94

resampled stochastic process is divided by the theoretical spectra, and the95

highest reliable frequency is determined by when this ratio crosses a value96

of 0.7. The selected interpolation resolution is then set to resolve the identi-97

fied frequency, with the selected value rounded to the nearest 50 years and98

referred to as the optimal interpolation resolution. The optimal interpola-99

tion resolution depends on the evenness of the sampling. For example, core100

D13882 has a 53 year mean sampling resolution but contains some 140 year101

gaps, and the optimal interpolation resolution is 200 years, whereas other102

cores with a similar mean sampling rate have a 100 year optimal resolution.103

To minimize issues associated with aliasing, data are first linearly inter-104

polated to ten times the optimal resolution, lowpass filtered using a finite105

response filter with a cut-off frequency of 1.2 divided by the target time step,106

and then resampled at the optimal resolution.107

Spectra are estimated using Thomson’s multitaper method (Percival and108

Walden, 1993) with three windows. Time series are detrended prior to anal-109

ysis, as is standard for spectral estimation. The multitaper approach in-110

troduces a small bias at the lowest frequencies and we omit the two lowest111

frequencies in all figures. For visual display purposes, power spectral esti-112

mates are also smoothed using a Gaussian kernel with constant width in113

logarithmic frequency space (Kirchner, 2005), when using logarithmic axes.114

When the smoothing kernel extends outside of the frequency range resolved115
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by a record, it is truncated at both the low- and high-frequency ends of the116

kernel to maintain its symmetry and to avoid biasing estimates.117

Our focus will be on the average power spectral estimate for each proxy118

type because this gives an improved signal-to-noise ratio and facilitates inter-119

comparison between proxy types. This average power spectrum for each120

proxy type necessarily contains samples from regions with differing variabil-121

ity and that cover different frequency intervals. To avoid discontinuities122

across frequencies where the number of available estimates change, proxy123

spectra are scaled to an average value in the largest common frequency in-124

terval. Note that it is the spectral estimates that are averaged together,125

giving an estimate of the spectral energy, and that this is distinct from av-126

eraging together records in the time-domain, which would give an estimate127

of mean temperature.128

Records are not intercompared in the time domain because timing errors129

generally destroy covariance and coherence. Spectral estimates, however,130

are largely insensitive to timing errors when the underlying process follows131

a power-law (Rhines and Huybers, 2011), which appears a good approx-132

imation for the proxy records considered here. Thus, intercomparison of133

spectral estimates derived from proxy records with uncertain timing is feasi-134

ble. Power laws are estimated by a least-squares fit to logarithmic frequency135

and logarithmic power-density estimates (Huybers and Curry, 2006). To136

more uniformly weight the estimate, spectra are binned into equally spaced137

log-frequency intervals and averaged before fitting. Power-laws are only138

estimated in a frequency range common to all proxy records, 1/2000yr to139

1/400yr.140
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3. Discrepancies between Mg/Ca and Uk37141

On average, the Mg/Ca reconstructions of temperature have 2.2 times142

greater variance than Uk37 reconstructions, when making comparisons at143

150 year resolution. This discrepancy in variance is visually apparent (Figure144

1). There are several possibilities for the differences in variance. One is that145

the actual temperature variability at the Mg/Ca sites is greater than that146

at the Uk37 sites. Instrumental records from HadSST3 show the opposite,147

however, that Uk37 sites have between 1.2-1.5 times more variance than the148

Mg/Ca sites, depending on the season that is considered. Furthermore, a149

latitudinal comparison shows that Mg/Ca is the more variable within given150

regions (Figure 2), and similar results hold when sectors are defined according151

to longitude and latitude.152

Another possibility has to do with differences or uncertainties in the cal-153

ibration of proxies to temperature. Choosing the most sensitive calibration154

for Mg/Ca (0.107 (Mg/Ca)/◦C (Mashiotta et al., 1999)) and the least sen-155

sitive calibration for Uk37 (0.023 Uk37’/◦C,(Sonzogni et al., 1997)) gives an156

average variance that is similar for the two proxy types, but applying such157

calibrations globally is almost certainly inappropriate. The low sensitivity158

Uk37 calibration was developed for a region near the upper temperature limit159

of this proxy (24-29◦C), and Sonzogni et al. (1997) actually suggest a global160

temperature calibration for Uk37 (0.031 Uk37’/◦C) similar to the mean cali-161

bration used in this study. Moreover, rescaling the variability employing any162

single calibration would not resolve discrepancies in the relative distribution163

of fast and slow variability, which is discussed in more detail later.164

A final consideration is whether the proxies record different seasons and,165
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therefore, show systematically different amounts of variability. Such a mecha-166

nism would work for monthly to interannual time-scales where, for example,167

extratropical winter sea surface temperatures are generally more variable168

than summer or annual mean temperatures because of greater storm activity169

(Wallace et al., 1990). Analysis of a state-of-the-art coupled climate model,170

MPI-ESM (Jungclaus et al., 2010), shows this seasonal distinction in vari-171

ability at short timescales, but that the distinction in variability is no longer172

identifiable at the positions of the Mg/Ca and Uk37 records at frequencies173

below 1/100 years. These model results indicate that seasonal differences174

in when temperatures are recorded to be an inadequate explanation of the175

discrepancy.176

A more detailed picture of the discrepancy in variability between the two177

proxies can be obtained through spectral analysis. The spectra of each proxy178

record in the compilation is estimated using a multitaper procedure. Though179

consistent results are found evaluating single records, these comparisons are180

noisy, and we instead focus on the average spectra across each proxy type181

(Figure 2). Both the Mg/Ca and Uk37 spectral averages show increased en-182

ergy toward lower frequencies, but the magnitude and detailed shape of these183

estimates are incommensurate in that Mg/Ca records have proportionately184

more high- than low-frequency variability than Uk37. The energy found at185

millennial (1-3kyr) relative to centennial variability (200yr-500yr) is 3.6 for186

Uk37 and 2.0 for Mg/Ca, a relative difference that is unaffected by calibration187

choice.188

More generally, the spectra can be described using a powerlaw scaling,189

f−β, where f is frequency in cycle per year and β is the power-law exponent.190
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Spectral energy increases less steeply with decreasing frequency in Mg/Ca,191

which has βMg/Ca = 0.58 ,than in Uk37, which has βUk37 = 0.98.192

The discrepancies between Uk37 and Mg/Ca variance and distributions of193

spectral energy generally exceed a factor of two, and it appears necessary to194

resolve these discrepancies prior to being able to infer temperature variability195

to within this factor. An accurate estimate of the temperature spectrum is196

important because it would directly indicate the range of natural temperature197

variation expected over a given timescale, indicate the physics that controls198

temperature variations, and serve as the basis for a test of whether climate199

models adequately represent climate variability (Hasselmann, 1976; Barnett200

et al., 1996; Pelletier, 1998; Huybers and Curry, 2006).201

4. Proxy correction technique202

We posit that the difference in variability between proxy types arises from203

processes that can be grouped into three categories: (1.) errors in tempera-204

ture estimates arising from measurement noise, vital effects, and changes in205

depth habitats (Schiffelbein and Hills, 1984), (2.) irregular and/or infrequent206

sampling times that cause aliasing of seasonal and other high-frequency vari-207

ability (Kirchner, 2005; Laepple et al., 2011), and (3.) bioturbation that208

mixes samples across time horizons (Berger and Heath, 1968). A number209

of other sources of uncertainty are also present but we assume and later210

confirm that they do not have first-order implications for the recorded vari-211

ability. Building on existing models for these noise sources, we attempt to212

quantify their aggregate influence upon the spectra of each proxy using a213

single statistical model. We will also show that such a representation can214
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be inverted to better estimate the frequency spectrum of temperature from215

proxy records.216

4.1. Basics of the approach217

Any given temperature record that we consider, y, has a spectral esti-218

mate, Sŷ, that is corrupted by noise. Here we seek a best estimate of the219

true power spectrum, Sx̂, using a correction that relies upon the biophysical220

characteristics of the proxy sampling process. For this correction we apply221

the spectral filtering approach of Kirchner et al. (2005) wherein a statis-222

tical model is constructed of the sampling process—including bioturbation,223

measurement, and other intrasample noise—and a filter is designed from the224

output of the model for the purposes of optimally estimating the true power225

spectrum.226

Given a perfect model of the true spectrum, Sxm, and the sampled spec-227

trum, Sym, an optimal estimate of the true temperature spectrum, Sx̂, can228

be obtained,229

Sx̂ = Sŷ
Sxm

Sym
, (1)

where the fractional term involving the model spectra is equivalent to a230

filter. We use a piecewise model of the true temperature spectrum that calls231

on observed instrumental temperature at high frequencies and a power-law232

at low frequencies, as has been found adequate for describing the spectral233

scaling of many other proxy records (Huybers and Curry, 2006),234

Sxm =

�
cf−β, f ≤ fc
Sx̂i, fc > f

�
. (2)

The frequency range extends from the lowest frequency sampled by the ob-235

served record to once per two years. Higher frequency variability is separately236
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treated in the sampling process. Sx̂i is the spectral estimate from the ob-237

served SST and c is chosen to ensure that both pieces of the spectra meet238

at the cutoff frequency, fc. The cutoff frequency is set at 1/50yr, the lowest239

frequency constrained by the instrumental record. The power-law, β, is an240

adjustable parameter constrained to take on values between zero and two. A241

value of β equal to zero corresponds to white noise, whereas values in excess242

of one, but not greater than two, have previously been found in proxy records243

that span glacial-interglacial variability (Huybers and Curry, 2006).244

4.2. Bioturbation and sampling245

Bioturbation is represented assuming a well-mixed sediment layer whose246

thickness is taken as an adjustable parameter (Berger and Heath, 1968). This247

gives an impulse response function, g, that fully describes the mixing response248

over the thickness of the bioturbation layer, δ (Guinasso and Schink, 1975).249

A δ = 10cm bioturbational layer is typical of marine sediments (Boudreau,250

1998; Guinasso and Schink, 1975) and is our default parameter, but we also251

examine the robustness of our results using 2 and 20cm layers. Because252

sediment cores have different mean accumulation rates, a, the timescale as-253

sociated with bioturbational smoothing varies. No bioturbation is imposed254

for cores MV99-GC41/PC14 (Marchitto et al., 2010) and SO90-39KG/56KA255

(Doose-Rolinski et al., 2001) because they are laminated.256

Uk37 samples comprise very large numbers of organic molecules, and we257

approximate such sample as continuous. The sampling can be described as258

a convolution of the temperature time series with the bioturbation impulse259

response function in the time domain, but for the purposes of describing the260

influence at a particular time horizon we cast the response as a sum across261
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annual time steps,262

y(ti) =
�

j

x(ti+j)g(j) + η(ti). (3)

Although the sum is nominally over the entire depth of the core, in practice,263

we sum from 3δ/a above to 1δ/a below the time horizon of interest. This264

time interval of four times the bioturbational layer divided by the accumu-265

lation rate contains 99% of the weight in the impulse response, g. The noise266

component, η(ti), represents the measurement error as well as other intra-267

test variations, such as those caused by variations in depth habitat, and is268

assumed independent between samples and normally distributed.269

Mg/Ca samples comprise a discrete sample of foraminifera tests, usu-270

ally ranging between values of 20 to 60 for planktic samples. The sampling271

process is divided into interannual and subannual components for purposes272

of computational efficiency. The interannual component is selected as the273

annual average temperature, x(t+ �), where � represents timing offsets intro-274

duced by bioturbation and is randomly selected according to the probability275

distribution defined by g. An additional noise term is then added to represent276

subannual variability, giving x(t+ �) + ψ(m). The value of ψ(m) is selected277

as the monthly temperature anomaly from the climatological seasonal cycle,278

where the month is randomly chosen according to the modern lifecycle of279

the specific foraminiferal species at that core site simulated by a dynamic280

population model, PLAFOM (Fraile et al., 2008),281

y(ti) =
1

N

N�

j=1

[x(ti + �j) + ψ(mj)] + η(ti). (4)

Thus, as opposed to the case of Uk37 samples, the sum is across each of the282

N foraminifera comprising a sample.283
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4.3. Detailed example284

The foregoing technique is described in detail with respect to a single285

Mg/Ca record in order to provide greater insight into the implications of286

the sampling and bioturbation model. We focus on a Mg/Ca record from287

G. ruber tests in core MD03-2707 (Weldeab et al., 2007) as being broadly288

representative of our approach and discuss how this analysis compares with289

that of Uk37 records. MD03-2707 was taken from the Gulf of Guinea, is290

associated with a mean sedimentation rate of 55cm/kyr, and is sampled at291

a mean resolution of 37 years. The PLAFOM model (Fraile et al., 2008)292

indicates a seasonality in G. ruber population in the Gulf of Guinea that293

peaks between June and October. SSTs exhibit an annual cycle of 3.4◦C294

amplitude at this location (Rayner et al., 2006) and are coolest between295

June and October. Therefore, the uneven sampling of these SSTs leads to a296

bias toward cooler temperatures (Fig. 3a,b).297

Importantly, the sampling of the seasonal cycle in SST by foraminferal298

tests contains a significant stochastic component, depending on the individ-299

ual lifecycle of the approximately 30 samples that are crushed and collected300

together for each Mg/Ca measurement. This random component of how the301

seasonal cycle is sampled gives, in this case, a standard deviation between302

samples of 0.24◦C (Fig. 3c,d). Although the number of Mg/Ca tests averaged303

together would be sufficient to resolve the seasonal variability, the nonuni-304

form distribution leads to a stochastic aliasing of the seasonal variability.305

The magnitude of aliased noise is different for every core, depending on306

the seasonality of SST and foraminifera populations as well as the number307

of tests averaged together for each Mg/Ca sample, thus necessitating that308
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we model this process independently for each record. A positive correlation309

(R=0.49, p>0.1) between the variance of the Mg/Ca records and the mod-310

ern seasonal range of SST at the position of the cores (Table 1) indicates the311

importance of this process. Note that there is one outlier among the Mg/Ca312

samples from core MD99-2203 (Cleroux et al., 2012) whose omission would313

raise the cross-correlation to R=0.85. In contrast, the Uk37 variance is not314

expected to show such seasonal aliasing and is uncorrelated to the seasonal315

range. An interesting feature of this effect is that insomuch as Mg/Ca sam-316

ples are evenly distributed over the year—a feature usually considered to be317

advantageous—greater aliasing generally occurs because the finite number of318

samples are distributed over a larger range of seasonal variability.319

Bioturbation is the other process in our model that significantly influences320

recorded variability. For Mg/Ca the influence of bioturbation is a random321

process that depends on what portions of the seasonal cycle happen to be322

sampled. To illustrate the effects of bioturbation, we generate synthetic323

proxy records consistent with the characteristics of the Gulf of Guinea site324

MD03-2707 following the piecewise spectral representation given in Eq. 2.325

To generate a record whose variability is consistent with that observed in326

instrumental SSTs nearest the core site, the Fourier transform of white noise327

is multiplied by the instrumental SST spectra and then transformed back328

into a time series. Lower frequency variability that is not covered by the329

instrumental records are initially parameterized to follow a power-law of β =330

1 (Fig. 4). The correct value of β is uncertain and a search is made over a331

range of plausible values.332

Bioturbation is assumed to extend down δ = 10cm into the sediment,333
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which equates to 182 years in this core, given the average accumulation rate.334

In the case of Uk37, where the number of samples are essentially infinite,335

bioturbation leads to a smoothed and time lagged version of the SST record.336

But in the case of Mg/Ca the discrete sampling discussed in the foregoing337

paragraph adds variability that the bioturbation only partially reduces. For338

core MD03-2707 we find that aliasing contributes more variance than biotur-339

bation suppresses, such that the resulting Mg/Ca record is expected to have340

more variability than the actual SST record. This increase in temperature341

variance inferred from Mg/Ca records is found to generally hold across the342

records in our collection.343

Finally, measurement noise and other sources of intratest variability are344

represented by addition of white noise, η. The noise standard deviation345

must be estimated from the proxy record, along with the value β, and in346

the case of MD03-2707 has a standard deviation of 0.5◦C. The results of347

aliasing, bioturbatoin, and measurement noise are illustrated in Fig. 5 where348

a synthetic time series is sampled in accord with that of Uk37 and Mg/Ca349

samples. The resulting smoothing and aliasing are clearly evident. Note350

that increasing the number of individual foraminfera in a Mg/Ca sample,351

N , leads to a more stable value of 1
N

�
ψ(mj) and results that are more352

consistent with that of Uk37. For N = ∞, the Mg/Ca and Uk37 results353

are identical in our models, excepting a possible mean offset associated with354

disproportionate sampling of the climatological seasonal cycle.355
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5. Application of the correction filter356

Determining the most suitable correction filter (Eq. 1) for each record357

requires estimating the two adjustable parameters that define the background358

variability: the spectral slope β and the standard deviation associated with η.359

We perform an exhaustive search over the values of β = {0, 0.1, ...1.9, 2.0} and360

STD(η) = {0, 0.05, ...1.95, 2}, searching for the pair of values that minimize361

the mean square deviation between the logarithm of the observed spectra362

and the logarithm of the model spectra.363

Sea surface temperature time series are generated in accord with each364

combination of the adjustable parameters, after which the bioturbation and365

sampling models are applied to produce a synthetic proxy record. This pro-366

cess is repeated 1000 times to approximate the distribution of possible results,367

with the spectra of the uncorrupted and corrupted version of the synthetic368

time series being recorded in each instance. Prior to performing the spectral369

analysis, records are interpolated to a uniform spacing in direct correspon-370

dence with the actual proxy record being represented. The average spectral371

estimate associated with the uncorrupted time series, Sx̂m, is then divided372

by the average spectral estimates of the corrupted time series, Sŷm, to yield373

a filter. Following Eq. 1, multiplication of each filter times the correspond-374

ing spectral estimate associated with a given proxy record yields our best375

estimate of the spectrum of SST variability at that site.376
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5.1. Test of the filtering approach on synthetic data and estimation of confi-377

dence intervals378

Before applying the proxy correction technique described above to the379

data, we first test its performance on surrogate time series. Surrogate time380

series are generated in accord with Eq. 2. High frequency variability is real-381

ized to be consistent with that observed in instrumental SSTs nearest each382

site, whereas lower frequencies follow a power-law of β = 1. For both Uk37383

and Mg/Ca, the sample spacing from each core is applied, a 10cm biotur-384

bation depth is assumed, and a 0.25 and 0.45 standard deviation of η is385

prescribed for Uk37 and Mg/Ca respectively. Additional parameters are also386

prescribed for each Mg/Ca record comprising the population seasonality from387

PLAFOM, instrumental SST seasonality, and the reported number of foram-388

infera tests in each sample (see Fig. 6). To test the effect of the sampling389

resolution on our method we also include two lower resolution cores in this390

analysis (MD01-2378 (Xu et al., 2008) and MD95-2043 (Cacho et al., 2001))391

which are not used in the remaining part of the study.392

The correction algorithm yields more accurate results given more highly393

resolved records. In particular, β is only well constrained when the sampling394

interval averages less than 100 years, especially for Mg/Ca records where395

aliasing of the seasonally cycle is of particular concern. Synthetic records396

with a larger average sampling interval also show biases in their associated397

estimates, and we therefore restrict the data used in this study to records398

with a mean sampling resolution of less than 100 years. We also find that399

power-law estimates begin to show bias for processes having a true power-400

law less than 0.1 for Uk37 and less than 0.7 for Mg/Ca records (Fig. 7). As401
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we will show later, application of the spectral correction algorithm to the402

Holocene proxy records gives values of β near one. Therefore, the synthetic403

experiments indicate that the application of the spectral correction algorithm404

will yield accurate results when applied to the data in our collection.405

We also use this surrogate approach to estimate the uncertainties as-406

sociated with spectral estimation and the filtering process. Specifically, we407

simulate surrogate time series using the estimated β scaling relationship, then408

corrupt the records according to the properties associated with each actual409

record, apply the correction algorithm, and estimate the resulting average410

spectra. This algorithm is repeated one-thousand times, and a chi-square411

distribution is fit to the ensemble of results at each frequency using moment412

matching. The reported uncertainty estimates thus include the effects of the413

proxy correction technique along with the usual uncertainties associated with414

making a spectral estimate of a noisy and finite process.415

5.2. Application to the actual data416

Application of the correction filter to the individual Uk37 records leads to417

a 35% overall reduction in variance or, equivalently, spectral energy (Fig. 8a).418

The initial power-law associated with the average spectra of 0.98 only changes419

to 0.96 after correction, indicating that the overall shape of the spectra is420

only slightly altered. Application of the correction filter to the Mg/Ca records421

results in a 60% reduction in variance (Figure 8b). This large decrease in422

energy in the corrected estimates can be traced to the relatively small number423

of individual foraminfera combined together for each Mg/Ca estimate and424

the resulting aliasing and intrasample variability. Furthermore, the strongest425

relative reduction of variance occurs at the highest frequencies, causing β to426
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change from 0.58 to 1.05 for the average Mg/Ca spectral estimate.427

Upon applying our correction algorithm, the Uk37 and Mg/Ca power-law428

scaling coefficients become consistent with one another to within uncertainty,429

with values of βUk37 = 0.96 ± 0.07 and βMg/Ca = 1.05 ± 0.07) (Figure 8c).430

The variance of Mg/Ca is decreased by the correction algorithm so that, on431

average, these records are only 20% more variable than the Uk37 records, a432

discrepancy that is well within the uncertainty in the calibrations for Mg/Ca433

and Uk37. Note that calibration uncertainty does not influence the power-434

law estimates, making the Uk37 and Mg/Ca power-law consistency the more435

stringent indicator of the correction algorithm’s adequacy.436

Independent information from the reported measurement and replicate437

measurements of Mg/Ca can also be used to evaluate the correction method.438

The correction filter has two parameters: β which describes the scaling be-439

havior of the underlying temperature signal and η which describes the stan-440

dard deviation of the random variations introduced by measurement error441

and all other processes except those associated with sampling and bioturba-442

tion. Values of β and η are determined from a two-dimensional parameter443

search for minimum misfit between the modeled and observed spectral esti-444

mate, and the contours representing this misfit (Fig. 9a-b) indicate that the445

standard deviation of η is constrained near 0.25◦C and 0.5◦C for Uk37 and446

Mg/Ca, respectively. The mean reported replicate error for Uk37 measure-447

ments is 0.23◦C, corresponding in magnitude to the estimates made here.448

A close relationship also exists between the inferred and reported errors for449

Mg/Ca records across the four records for which replicate results are available450

(Figure 9c). The fact that the correction algorithm gives results that inde-451
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pendently agree with the reported replicate error statistics further indicates452

that it yields accurate results.453

6. Summary and conclusion454

The differing temperature variability indicated by Uk37 and Mg/Ca records455

can be reconciled through correcting for the effects of aliasing, bioturbation,456

and other noise sources. The correction brings the overall variance or, equiv-457

alently, the average spectral energy between the Uk37 and Mg/Ca record458

into greater agreement, reducing the 100% greater Mg/Ca variance to hav-459

ing only 20% more variance. The residual difference can be accounted for460

by uncertainties in the temperature calibrations applied to either or both of461

the proxy types. The correction also brings the power-law scaling associated462

with each proxy into consistency within relatively small uncertainties.463

Mg/Ca temperature estimates are strongly affected by aliasing of sea-464

sonal and interannual temperature variability due to the limited number of465

foraminiferal tests used in a given measurement, with additional variabil-466

ity contributed by measurement error, intra-sample variations (e.g. Sadekov467

et al., 2008), and issues associated with the cleaning processes (Barker,468

2003). In contrast, Uk37 temperature estimates comprise a large number469

of molecules and do not admit seasonal and interannual aliasing. Accord-470

ingly, the estimated noise term for Uk37 measurements is about half that of471

the Mg/Ca proxy. Bioturbation is of secondary importance in this collection472

of records because they all are associated with high-accumulation rates.473

Holocene sea surface temperature variability is found to follow a power-474

law scaling close to one at timescales between century and millennia. Earlier475
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marine proxy studies found larger-magnitude scaling coefficients (Pelletier,476

1998; Shackleton and Imbrie, 1990; Huybers and Curry, 2006), though this is477

not surprising because they examined variability over glacial-interglacial time478

scales. Glacial climates and the transition from glacial to inter-glacial cli-479

mates show different frequency scaling behavior than the Holocene interval480

(Ditlevsen et al., 1996). We also note that previous studies made no cor-481

rections to their spectral estimates, and that such correction could increase482

the discrepancy insomuch as aliasing contributes energy at high frequen-483

cies, but might also increase consistency because bioturbation is expected to484

have a larger influence on records associated with lower accumulation rates.485

Regardless, the effect of those corrections on the spectral scaling of glacial-486

interglacial temperature evolution would likely be smaller than found in our487

analysis of Holocene record because of much larger amplitude temperature488

variability and, presumably, a higher signal-to-noise ratio. It will be of in-489

terest in future studies to examine how climate spectra vary as a function of490

background climate, and such an analysis is now more feasible because the491

present method should, at least in principle, also permit for correcting for492

artifacts associated with changes in signal-to-noise ratios.493

Although seasonal differences in the abundance of proxy indicators are494

usually regarded as a disadvantage in climate reconstructions because it bi-495

ases the estimate away from the annual mean (Wunsch, 2009; Laepple et al.,496

2011), it can be an advantage when one aims to reconstruct the amplitude497

of climate variability. A site with an equal foraminiferal flux over the year,498

especially at a site with strong seasonality in temperature, is more prone to499

aliasing of the seasonal cycle into the recorded signal as the small amount of500
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samples are distributed over the whole range on the seasonal cycle. A further501

concern does arise, however, that the seasonal distribution of the foramin-502

fera flux is most likely a function of the background climate itself and such503

nonstationarities have not been accounted for in the present analysis.504

There are a number of other processes that might also corrupt proxy505

records. Uk37 markers might be affected by advection and redistribution506

(Ohkouchi et al., 2002) or preferential degradation of either one of the long507

chain alkenones (Hoefs et al., 1998; Gong and Hollander, 1999) or the Mg/Ca508

rich calcite in foraminifera (Regenberg et al., 2006). At least for degrada-509

tion influences, we expect that these will mainly act on the trends and not510

strongly distort the continuum spectra of variability. As noted earlier, all511

records analyzed here have been detrended prior to making spectral esti-512

mates. Given that there is no expectation for the above mentioned sources513

of error to affect Mg/Ca and Uk37 records equally, the result that both Uk37514

and Mg/Ca records show a similar spectrum of variability after correction515

suggests that the major sources of corruption in the temperature signal have516

been accounted for. Agreement between the estimated and observed repli-517

cate noise values further indicates that no major contributions to error have518

been overlooked.519

These results also highlight the utility of smoothing Mg/Ca records, as520

is often all ready done in practice (e.g. Marchitto et al., 2010). The recon-521

structed temperature spectra show strong autocorrelation whereas the noise522

component is close to being uncorrelated. Therefore, smoothing is expected523

to more completely suppress noise variance relative to that of the tempera-524

ture signal and, thereby, to increase the signal-to-noise ratio. It should be525
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possible to design a filter that would optimally increase signal-to-noise ratios526

in a given Mg/Ca time series or other proxy records. We conclude that the527

correction algorithm presented here provides a basis by which to more ac-528

curately estimate marine temperature variance and its spectral distribution529

and should provide further insight into how to optimally control for noise530

sources.531
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Figure 1: Map of proxy locations and proxy time series of Uk37 (black) and

Mg/Ca (blue). All records are linearly detrended. The original data (dots),

and the data interpolated to a common 150 year resolution (lines) are shown

to facilitate visual intercomparison. The common y-axis scale for all records

is show in the legend.
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Figure 2: Spatial and spectral comparison of Mg/Ca and Uk37 derived SST

variability (a) Variance of the proxy time series against latitude for Uk37

and Mg/Ca. All time series were interpolated to 150 yr prior to the variance

calculation to minimize influences of the sampling interval on the variance

estimate. (b) Spectral estimates of Uk37 and Mg/Ca SST records. The

mean of the spectral estimates of the globally distributed single records is

shown. 95% confidence intervals are indicated by shading
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Figure 3: Example of aliasing of the seasonal cycle for the Mg/Ca record from

core MD03-2707 (Weldeab et al., 2007). (a) The climatological seasonal cycle

of sea surface temperature (SST) at the core site from instrumental records

(black) and the annual mean SST (horizontal black line). (b) The seasonal

cycle of G. ruber population at the core site from the PLAFOM model (Fraile

et al., 2008). Weighting SST seasonality by population seasonality gives a

bias toward cooler temperature (red horizontal line in (a)). (c,d) Because

a typical Mg/Ca sample only consists of 30 foraminifera tests, the sampled

seasonal cycle has a substantial stochastic component, indicated by the his-

tograms in (d), that leads to variations in recorded temperature that are

indicated by the correspondingly colored horizontal lines in (c).
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Figure 4: Example of bioturbation and aliasing at core MD03-2707 (Weldeab

et al., 2007). (a) A synthetic SST time series appropriate for this core site

(black) is sampled in various manners and subject to bioturbation. (b) The

impulse response to bioturbation at this core site (red line) for a sample at

1 kyr (vertical grey line), assuming δ = 10cm. In the case of continuous

sampling, bioturbation leads to a smoothed and lagged version of the SST

record (red line in (a)). However, the Mg/Ca measurements consist of a

limited number of foraminiferal tests (green dots in (b)), leading to additional

variability in the sampled record (green dots in (a)) caused by aliasing of

the interannual variability. In addition, aliasing of the seasonal cycle leads

to further variability and an offset in the mean (blue dots in (a), c.f. Fig. 3).

Finally, intratest and measurement noise contribute additional noise that is

estimated to have a standard deviation of 0.5◦C for this record (orange dots

in (a)).
38



surrogate climate timeseries beta=1

kyr

S
S

T 
an

om
al

y

1 2 3 4 5 6 7

-1
.0

0.
0

1.
0 annual

50yr means

1 2 3 4 5 6 7

-1
.0

0.
0

1.
0

sampled as Uk37, core IOW 225514

kyr

S
S

T 
an

om
al

y

1 2 3 4 5 6 7

-1
.0

0.
0

1.
0

sampled as MgCa, core MD03-2707

kyr

S
S

T 
an

om
al

y

Figure 5: An example of corrupting a synthetic temperature time series ac-

cording to the noise and sampling regime found in Mg/Ca and Uk37 records.

Top left: A realization of a temperature time series simulated using β = 1.

Lower panels: sampling according to the biophysical model for Uk37 (left)

and Mg/Ca (right) gives very different proxy time series behavior. The Uk37

record has slightly suppressed variability because of the effects of bioturba-

tion, whereas the Mg/Ca record has greater variability because of aliasing of

the seasonal cycle.
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Figure 6: Demonstration of the correction process for synthetic Mg/Ca and Uk37

records. Top row: for Mg/Ca records having sampling resolutions of 36 years

(a, MD03-2707 (Weldeab et al., 2007)) and 125 years (b, MD01-2378 (Xu et al.,

2008)). Spectra estimated from random time series having β = 1 (orange), cor-

rupted using a 10cm bioturbation width and a noise contribution, η of 0.45◦C

(red). Corruption of the spectral estimate is greatest at high frequencies because

unresolved variability is preferentially aliased to these frequencies and because the

relatively smaller amount of background variability is more easily disrupted in

a fractional sense. After filtering, the original spectrum is recovered in expec-

tation (red), though the 95% confidence interval is increased (shading) owing to

uncertainties associated with the correction process. Note that confidence inter-

vals are centered on their respective estimates and are darker where they overlap.

Lower row: For Uk37 records having sampling resolutions of 72 years (c, IOW

225514 (Emeis et al., 2003)) and 130 years (d, MD95-2043 (Cacho et al., 2001)).

Time series are simulated using an error term, η of 0.25◦C. The corrupted spectra

shows less variability at high frequencies because the influence of bioturbation is

greater than that of measurement noise and because there is no aliasing. The

low-resolution result remains less reliable than the high-resolution one, though the

discrepancy is less marked than for the Mg/Ca records.
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Figure 7: Test of the correction algorithm’s ability to recover power-law

slopes. Random time series following the spectral model of Eq. 2 with β =

{0, 0.1, ...1.9, 1.5} are simulated using a 10cm bioturbation width, standard devia-

tions of η of 0.25◦C and 0.45◦C for Uk37 and Mg/Ca, respectively, and individual

core parameters for sampling intervals. β is estimated both directly (top row) and

after application of the spectral correction algorithm (lower row). For Uk37, the

sampling and bioturbation generally leads to an increase in the estimated β when

no correction is applied, whereas for Mg/Ca the higher noise level and aliasing

leads to a smaller β. The correction filter yields good estimates when the true β is

greater than 0.1 for Uk37 and 0.7 for Mg/Ca records, but for shallower power-laws

there is a positive bias. The bias results from difficulties in separating signal from

noise when both are close to white and because β is constrained to always be pos-

itive. Importantly, the method appears unbiased in the range of the reconstructed

β from the observations (horizontal red lines).
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Figure 8: Spectral estimates of the proxy derived SST, raw and after correct-

ing for sampling and noise. (a) for Uk37, (b) for Mg/Ca, (c) comparison

of the corrected Uk37 and Mg/Ca spectra. After correction, both spectral

estimates are consistent. 95% confidence intervals, indicated by shading,

account for the correction process of Uk37 and Mg/Ca where appropriate.
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Figure 9: Misfit between observed and modeled spectra for Uk37 (a)) and

Mg/Ca (b) as a function of β and the standard deviation of η. The mean

misfit of all cores is shown and indicates distinct minima for both classes

of records. Horizontal red lines indicate values of independently reported

measurement error for Uk37 from the GHOST database (Leduc et al., 2010)

and the mean observed measurement and intrasample error for Mg/Ca. The

latter was estimated from the observed replicate error subtracting the con-

tribution from seasonal aliasing indicated by the correction algorithm. (c)

Comparison of simulated and observed replicate variability of Mg/Ca records.

Error bars represent 2 standard deviations. Error bars of the simulated repli-

cate variability are inferred from Monte Carlo experiments using synthetic

records designed according to the characteristics of each record. For MD98-

2181, the reported replicate standard deviation from Stott et al. (2004) is

shown, whereas the other three replicater errors are calculated from data

provided through personal communication.
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