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Abstract

Methyl iodide (CH3I), bromoform (CHBr3) and dibromomethane (CH2Br2), which are
produced naturally in the oceans, take part in ozone chemistry both in the troposphere
and the stratosphere. The significance of oceanic upwelling regions for emissions of
these trace gases in the global context is still uncertain although they have been identi-5

fied as important source regions. To better quantify the role of upwelling areas in current
and future climate, this paper analyzes major factors that influenced halocarbon emis-
sions from the tropical North East Atlantic including the Mauritanian upwelling during
the DRIVE expedition. Diel and regional variability of oceanic and atmospheric CH3I,
CHBr3 and CH2Br2 was determined along with biological and meteorological param-10

eters at six 24 h-stations. Low oceanic concentrations of CH3I from 0.1–5.4 pmolL−1

were equally distributed throughout the investigation area. CHBr3 of 1.0–42.4 pmolL−1

and CH2Br2 of 1.0–9.4 pmolL−1 were measured with maximum concentrations close
to the Mauritanian coast. Atmospheric mixing rations of CH3I of up to 3.3, CHBr3 to 8.9
and CH2Br2 to 3.1 ppt above the upwelling and 1.8, 12.8, respectively 2.2 ppt at a Cape15

Verdean coast were detected during the campaign. While diel variability in CH3I emis-
sions could be mainly ascribed to oceanic non-biological production, no main driver
was identified for its emissions in the entire study region. In contrast, oceanic bromo-
carbons resulted from biogenic sources which were identified as regional drivers of
their sea-to-air fluxes. The diel impact of wind speed on bromocarbon emissions in-20

creased with decreasing distance to the coast. The height of the marine atmospheric
boundary layer (MABL) was determined as an additional factor influencing halocarbon
emissions. Oceanic and atmospheric halocarbons correlated well in the study region
and in combination with high oceanic CH3I, CHBr3 and CH2Br2 concentrations, local
hot spots of atmospheric halocarbons could solely be explained by marine sources.25

This conclusion is in contrast with previous studies that hypothesized the occurrence
of elevated atmospheric halocarbons over the eastern tropical Atlantic mainly originat-
ing from the West-African continent.
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1 Introduction

Volatile halogenated hydrocarbons (halocarbons) occur naturally in the oceans from
where they are emitted into the atmosphere. Bromine and iodine atoms released from
these compounds by photolysis and oxidation can take part in catalytic ozone destroy-
ing cycles in both the troposphere and stratosphere (McGivern et al., 2000; Salawitch5

et al., 2005; Montzka and Reimann, 2011) with iodine also participating in aerosol for-
mation (O’Dowd et al., 2002). While the brominated trace gases bromoform (CHBr3)
and dibromomethane (CH2Br2) represent the largest contributors to atmospheric or-
ganic bromine from the ocean to the atmosphere (Hossaini et al., 2012a), methyl iodide
(CH3I), originating mostly from marine sources, is the most abundant organoiodine in10

the atmosphere (Saiz-Lopez et al., 2012).
Elevated halocarbon concentrations, particularly of CHBr3 and CH2Br2, are gener-

ally associated with marine biological active areas like coastal regions where macro
algae are thought to be the most dominant sources (Carpenter and Liss, 2000; Latur-
nus, 2001). Phytoplankton produces these trace gases as well and especially upwelling15

regions where cold, nutrient rich water is brought up to the sea surface contains large
amounts of these compounds (Tokarczyk and Moore, 1994; Quack et al., 2004). Other
production pathways than biological production have been proposed such as photo-
chemistry that could be of high significance for the marine formation of iodinated or-
ganic trace gases, e.g. CH3I. Hence, its distribution in the ocean may depend on phys-20

ical parameters including insolation and sea surface temperature (SST) (Moore and
Groszko, 1999; Richter and Wallace, 2004; Yokouchi et al., 2008). There are still large
uncertainties regarding the sources and drivers of marine halocarbon distributions and
emissions, while even less is known about their diel variability.

The tropical regions represent the largest contributors to global emission budgets of25

CH3I, CHBr3 and CH2Br2 (Ziska et al., 2013). Once they are produced and emitted
from the tropical oceans, halocarbons and their degradation products can be carried in
significant quantities into the stratosphere (Solomon et al., 1994; Hossaini et al., 2010;
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Aschmann et al., 2011; Montzka and Reimann, 2011; Tegtmeier et al., 2013), since
deep tropical convection can lift surface air very rapidly into the tropical tropopause
layer (Tegtmeier et al., 2012). Considerable changes in future inorganic bromine in the
tropical troposphere (Pyle et al., 2007) and to the stratosphere (Hossaini et al., 2012b)
from biogenic halocarbon emissions due to strengthening of convection were projected5

by chemistry climate models leading to increasing importance of tropical halocarbon
emissions. Coastal upwelling systems might play a crucial role in a changing climate.
The tropical Mauritanian upwelling is an example for a recently intensified coastal east-
ern boundary upwelling (McGregor et al., 2007). Primary production could increase
with enhanced entrainment of nutrient rich deep water into the surface ocean leading10

to amplified production of halocarbons. Increasing wind speeds, caused by enhanced
pressure gradients (Bakun, 1990), would also directly influence the sea-to-air fluxes of
all trace gases via a faster transfer coefficient (e.g. Nightingale et al., 2000). Thus the
identification of factors impacting halocarbon sea-to-air fluxes is crucial for assessing
possible effects of climate change on future emissions from coastal upwelling systems.15

Previous studies have hypothesized that elevated atmospheric mixing ratios of CHBr3
and CH2Br2 above the Mauritanian upwelling area were mainly of continental origin,
since sea-to-air fluxes of these compounds appeared not sufficient to explain the ob-
servations (Quack et al., 2007a; Carpenter et al., 2009). In contrast, the investigation
by Fuhlbrügge et al. (2013) revealed high atmospheric mixing ratios of CH3I, CHBr320

and CH2Br2 close to the coast also in air masses transported from the northern open
ocean, with a significant anticorrelation between the atmospheric mixing ratios and the
height of the marine atmospheric boundary layer (MABL).

This paper reports on oceanic and atmospheric halocarbon distributions and sea-
to-air fluxes from the DRIVE (Diurnal and RegIonal Variability of halogen Emissions)25

campaign of RV Poseidon in the eastern tropical North Atlantic ocean and the Mau-
ritanian upwelling in June 2010. We present results from six 24 h-stations in different
distances from the Mauritanian coast and from two parallel diel stations on the Cape
Verde island Sao Vincente. We aim at describing and quantifying significant factors
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that control the concentrations and emission fluxes of CH3I, CHBr3, and CH2Br2 both
on a diel and a regional scale, including biological and photochemical production, wind
speed, SST, and atmospheric transport. Furthermore, we examine how oceanic emis-
sions contribute to the mixing ratios of atmospheric halocarbons taking the height of
the marine atmospheric boundary layer (MABL) into account. Other meteorological5

constraints, e.g. wind conditions and back trajectory analysis, on atmospheric mea-
surements during the cruise are investigated in the accompanying paper by Fuhlbrügge
et al. (2013).

2 Methods

The cruise P399/2 (Poseidon 399 leg 2) named DRIVE (Diurnal and RegIonal Vari-10

ability of halogen Emissions) of RV Poseidon took place from 31 May to 17 June in
2010 in the eastern tropical North Atlantic ocean and the Mauritanian upwelling. The
ship followed a course from Las Palmas (Canary Islands, 28.1◦ N and 15.4◦ W) back
to Las Palmas with a short stop at Mindelo (Sao Vicente, Cape Verde, 16.9◦ N and
25.0◦ W). The cruise track included six 24 h-stations located at 17.6◦ N and 24.3◦ W15

(S1), 18.0◦ N and 21.0◦ W (S2), 18.0◦ N and 18.0◦ W (S3), 18.5◦ N and 16.5◦ W (S4),
19.0◦ N and 16.6◦ W (S5), and 20.0◦ N and 17.3◦ W (S6) where the ship remained at
its position for 24 h (Fig. 1). Parallel samples for dissolved halocarbons in sea water,
atmospheric halocarbons and phytoplankton pigments were taken at all 24 h-stations,
and additionally four radio sonde launches per 24 h-station were accomplished to de-20

termine the MABL properties. For more details on the campaign and the meteorological
parameters see the cruise report by Bange et al. (2011) and the accompanying paper
of Fuhlbrügge et al. (2013).

Related to the ship expedition a land-based operation took place from 3 June to
8 June 2010 at the Cape Verde Atmospheric Observatory (CVAO) on Sao Vincente25

close to Mindelo at 17.6◦ N and 24.3◦ W (Fig. 1) were samples of atmospheric halocar-
bons were taken during two days.
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Atmospheric halocarbon mixing ratios and meteorological conditions were also de-
termined during a second cruise leg P399/3 from Las Palmas, Spain to Vigo, Spain
and are covered in Fuhlbrügge et al. (2013). In contrast, this manuscript focuses only
on results from leg P399/2. The words “whole cruise” will refer to leg 2 and “whole
campaign” includes leg 2 and the land-based operation at Cape Verde.5

2.1 Sampling and analysis of halocarbons in sea surface water and air

Dissolved halocarbons were sampled in 500 mL amber glass bottles from a continu-
ously working pump from the ships moon pool at a depth of 4.4 m. This allowed for
nearly hourly sampling of sea surface water at every diel station. In between 24 h-
stations, the samples were taken every 3 h. The water was analyzed for halocarbons10

using a purge and trap system attached to a gas chromatograph with mass spectro-
metric detection (GC-MS). 80 mL of water were purged with a stream of helium at
30 mLmin−1 at 70 ◦C in a glass chamber. The volatilized trace gases were desiccated
with a Nafion® dryer using nitrogen as drying gas and were trapped on glass beads
at −100 ◦C. After one hour of purging, the compounds were desorbed at 100 ◦C onto15

a deactivated capillary in liquid nitrogen as second trap. After three minutes, the sample
was injected into the GC-MS, the trace gases were separated on a Rtx-VGC capillary
column with a length of 60 m, a diameter of 0.25 mm and a film thickness of 1.40 µm,
and were detected in single ion mode. Quantification was achieved with volumetrically
prepared standards in methanol. Precision for these measurements lay within 16 % for20

CH3I, and 6 % for CHBr3 and CH2Br2 determined from duplicates.
Air samples were taken hourly at the diel stations, being pumped into stainless steel

canisters on the compass deck at a height of 13.7 m with a metal bellows pump. Sam-
ples were analyzed within a month at the Rosenstiel School of Marine and Atmospheric
Science in Miami with a precision of approximately 5 % using GC-MS (Schauffler et al.,25

1999). Additionally, air samples were taken at CVAO on an hourly basis parallel to the
first two diel stations of the ship. Samples were taken according to the method onboard
the RV Poseidon in approximately 3 m height above ground and then analyzed along
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with the other canisters collected during the cruise. Oceanic and atmospheric mea-
surements were intercalibrated against whole air working-standards obtained from the
NOAA Global Monitoring Division (Boulder, USA).

2.2 Phytoplankton pigment analysis and flow cytometry

Samples for pigment analysis were taken approximately every 2 h at every diel sta-5

tion. 1 L of sea surface water from the ships’ underway pump system was filtered
through 25 mm Whatman GF/F filters and stored at −80 ◦C until analysis. Back in
the lab, phytoplankton pigments were analyzed according to Tran et al. (2013) using
a waters high-performance liquid chromatography (HPLC) system at the Alfred We-
gener Institute for Polar and Marine Research Bremerhaven (AWI). The 28 marker10

pigments for which samples were analyzed include various chlorophyll type pigments
such as chlorophyll c1, c2 and c3, divinyl chlorophyll b, chlorophyll b, divinyl chloro-
phyll a, chlorophyll a (Chl a), and phaeophytin a. The following carotenoids were de-
tected: peridin, predinin derivative, 19-butanoyloxyfucoxanthin, fucoxanthin, neoxan-
thin, 19-hexanoyloxyfucoxanthin, violaxanthin, astaxanthin, prasinoxanthin, diadinox-15

anthin, alloxanthin, diatoxanthin, anthreaxanthin, zeaxanthin, lutein, α-carotene, and
β-carotene. The marker pigments are indicative for different phytoplankton groups.

For flow cytometry, 4 mL of water from the underway pump system were preserved
with glutaraldehyde with a final concentration of 0.1 %, shock frozen in liquid nitrogen
and stored at −80 ◦C. Flow cytometry samples were also analyzed at the AWI according20

to Taylor et al. (2011).

2.3 Calculation of sea-to-air fluxes and saturation anomaly

Sea-to-air fluxes (F ) of CH3I, CHBr3 and CH2Br2 were calculated using the air–sea
gas exchange parameterization of Nightingale et al. (2000). Schmidt number (Sc) cor-
rections for the compound specific transfer coefficients kw derived with the transfer25
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coefficient kCO2
of CO2 as reported by Quack and Wallace (2003) were applied.

kw
kCO2

=
Sc
660

− 1
2

(1)

The air–sea concentration gradient was derived from all simultaneous water (cw) and
air (catm) measurements calculated with the Henry’s law constants H of Moore and
co-workers (Moore et al., 1995a, b) to obtain the theoretical equilibrium concentration5

catm/H .

F = kw ·
(
cw −

catm

H

)
(2)

The saturation anomaly S was calculated from the concentration gradient as the per-
centage of the equilibrium concentration.

S =
((

cw −
catm

H

)
·100

)
·
(
catm

H

)−1

(3)10

Water temperature and salinity were continuously recorded using the ships’ thermos-
alinograph. Air pressure and wind speed were determined by sensors on the compass
deck and in 25.5 m height, respectively. 10 min averages of these four parameters were
included in the calculations, and wind speed was corrected to 10 m values.

3 Hydrography and environmental parameters during DRIVE15

High SST values between 23.0 and 24.7 ◦C and high salinities from 36.4 to 36.7 ob-
served at S1 and S2 close to Cape Verde (Figs. 1 and 2a, Table 1) were consistent with
tropical surface water characteristics (Tsuchiya et al., 1992). Low Chl a concentrations
between 0.00 and 0.43 µgL−1 were a sign of low primary production there. Stations S1

19708



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and S2 are hence defined as open ocean. Wind speed had the lowest mean of the
whole cruise at S1 with 4.6 ms−1 and was highest at S2 with a mean of 11.0 ms−1.
The MABL height in this region determined by Fuhlbrügge et al. (2013) ranged be-
tween 400 and 1100 m (Table 1). With decreasing distance to the Mauritanian coast,
starting at S3, a decrease in SST and salinity and an increase in Chl a concentra-5

tions were observed. This is a sign of the North West African upwelling system on the
African shelf as part of the wind-driven Canary Current extending from 30◦ N to 10◦ N
(Fedoseev, 1970). South Atlantic Central Water (SACW), characterized as a straight
T -S curve between 5 ◦C and 34.3 and 20 ◦C and 36.0 (Tomczak and Godfrey, 2005),
is transported to the Mauritanian coast by a poleward directed undercurrent. Between10

12◦ N and 20◦ N upwelling of the cold nutrient rich SACW takes place from late fall
to late spring (Minas et al., 1982; Tomczak, 1982; Hagen, 2001) after which the up-
welling starts to cease due to changing atmospheric conditions induced by the shift
of the Intertropical Convergence Zone (Mittelstaedt, 1982). The beginning ceasing of
the upwelling could be observed during DRIVE at stations S3–S6, which are defined15

as upwelling and coastal stations (further on called coastal stations). The lowest SST
with 18.4 ◦C as well as the highest daily mean Chl a concentration of 4.80 µg L−1 were
found at the northernmost station (S6), while the overall maximum Chl a concentration
of 8.12 µgL−1 was observed at S5. MABL heights generally ranged between surface
and 400 m at S3–S6, while wind speeds varied between 3.9 (S3) and 14.2 ms−1 (S6).20

At S5, the lowest MABL heights (close to the surface) together with the highest relative
standard deviation (further on referred to as variability) in wind speed with a mean of
8.9 ms−1 and a variability of 27 % was observed at one station in the course of 24 h
(Table 1).
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4 Results

4.1 Methyl iodide (CH3I)

4.1.1 Regional distribution

Oceanic CH3I was with 2.4 pmolL−1 on average higher at the open ocean stations S1
and S2 than at coastal stations S3–S6 with 1.8 pmolL−1 (Fig. 2b, Table 2). While maxi-5

mum mean (min–max) oceanic CH3I of 3.0 (1.7–5.4) pmolL−1 was observed at S1, S3
showed the lowest mean CH3I concentrations of 1.2 (0.2–2.1) pmolL−1 during 24 h. In
total, the mean regional variability of CH3I was the lowest of all three halocarbons with
a relative standard deviation of 56 %. Correlations to neither phytoplankton pigments
nor to picoplankton abundances were found for CH3I in sea surface water (Table 3).10

Atmospheric CH3I with an overall mean of 1.3 (0.6–3.3) ppt revealed a different distri-
bution in comparison to oceanic CH3I (Fig. 2a). It was generally lower above the open
ocean with 0.9 (0.6–1.3) ppt on average and increased towards the coast with a mean
(range) of 1.6 (0.9–3.3) ppt (see also Fuhlbrügge et al., 2013). In total, atmospheric
CH3I had a lower regional variability of 44 % than oceanic CH3I.15

4.1.2 Diel variations

Of all three halocarbons, oceanic CH3I showed the largest diel variability which was
also larger than its regional variability. The lowest and the highest mean variability
during 24 h were found at S1 with 29 % and with 62 % at S2, respectively. At the coastal
stations oceanic CH3I varied between 37 % (S6) and 60 % (S4). While at four stations20

maxima of CH3I in the surface water were found in the morning hours, elevations in the
afternoon were observed at open ocean station S2 and coastal station S6. Hence, no
overall diurnal cycle could be detected.

Low relative diel variability between 9 % (S2) and 11 % (S1) was observed in atmo-
spheric CH3I above the open ocean. The variability at CVAO at the same time ranged25
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between 9 % (4 June, parallel to S1) and 14 % (6 and 7 June, parallel to S2) (Fig. 3a,
Table 2) with mean mixing ratios of 1.2 ppt (0.7 ppt at 4 June – 1.8 ppt at 6 June). At
the coastal stations S3–S6, diel variability of 7 (S3)–33 % (S4) was observed. The high
mean atmospheric variability at S4 coincides with the largest oceanic variability. Simi-
larly to oceanic concentrations of CH3I, there is no overall diurnal cycle in atmospheric5

mixing ratios. Maxima and minima occurred in both day and night hours.

4.1.3 Saturation anomaly, sea–air concentration gradient and sea-to-air fluxes

Saturation anomalies (Fig. 4), sea–air concentration gradient (Fig. 5b) as well as sea-
to-air fluxes (Fig. 5c) were calculated according to Eqs.(1)–(3) (Table 2). To constrain
the atmospheric influence on the concentration gradient, and eventually on the sea-to-10

air fluxes, the fraction of the equilibrium concentration catm/H of the oceanic concen-
tration cw was calculated (Fig. 6a). This is the relative reduction of the concentration
gradient through the atmospheric mixing ratios, and consequently of the sea-to-air flux
(compare Eq. 2) which will be referred to as “flux reducing effect” further on.

Of the three halocarbons the highest saturation anomalies and the lowest concen-15

tration gradient cw−catm/H were calculated for CH3I with means of 931 (−66–4597) %
(Fig. 4a, Table 2) and 1.7 (−0.3–5.3) pmolL−1 (Fig. 5b) for the whole cruise. Both were
consistent with the oceanic distribution: they were highest in the open ocean with max-
ima at S1 where however no exceptionally high emissions of this compound were cal-
culated because of the prevailing low wind speeds during that time (Fig. 5c). The open20

ocean was generally highly supersaturated in CH3I with anomalies of 1715 % on av-
erage and decreasing towards the coastal stations with a coastal mean of 522 %. The
reducing effect of atmospheric CH3I was low. The concentration gradient, and there-
with the sea-to-air flux, was usually reduced by less than 50 %. One exception was S5
where low oceanic CH3I coincided with high atmospheric mixing ratios, and the flux25

reducing effect reached 300 %. Mainly positive fluxes could be observed with mean
sea-to-air fluxes of CH3I of 254 pmol m−2 h−1 for the whole cruise (−65 at coastal sta-
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tion S5 to 942 pmolm−2 h−1 at open ocean station S2) (Fig. 5c, Table 2). In agreement
with both saturation anomaly and concentration gradient, a slightly higher mean of
268 pmol m−2 h−1 was calculated for the open ocean stations S1 and S2 in comparison
to the mean coastal flux of 246 pmolm−2 h−1 for S3–S6.

4.1.4 Impact of oceanic CH3I and wind speed on fluxes5

For the whole cruise, the sea-to-air flux of CH3I showed significant but low regional
correlations with sea surface concentrations (R2 = 0.37) and wind speed (R2 = 0.24)
(Fig. 7a and d, Table 4). Considering each station individually, high significant correla-
tions of CH3I in sea surface water to sea-to-air flux were found at open ocean station
S2 and at all coastal stations with R2 ranging between 0.57 and 0.91. Significant corre-10

lations of wind speed to sea-to-air flux of CH3I could only be detected at coastal station
S3 and at open ocean station S1 (R2 = 0.24 and 0.76).

4.2 Bromoform (CHBr3) and dibromomethane (CH2Br2)

4.2.1 Regional distribution

CHBr3 and CH2Br2 in water showed analogous patterns (Fig. 2c and d, Table 2). Both15

were lower in the open ocean (S1 and S2) with means of 2.3 (1.0–3.8) pmolL−1 for
CHBr3 and 1.6 (1.0–2.2) pmolL−1 for CH2Br2 with minimum concentrations at S1. Both
compounds had higher coastal concentrations of 18.3 (8.1–42.4) pmolL−1 for CHBr3

and 5.8 (3.1–9.4) pmolL−1 for CH2Br2 with maxima at S5 and a much more pronounced
increase in oceanic CHBr3 than in CH2Br2. CHBr3 and CH2Br2 in sea surface wa-20

ter demonstrated much higher relative regional variability of 78 % (CHBr3) and 59 %
(CH2Br2) than oceanic CH3I.

Atmospheric CHBr3 and CH2Br2 increased towards the upwelling and coast similarly
to their oceanic counterparts (Fig. 2c and d, as well as Table 2). Atmospheric CHBr3

19712



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

showed with 56 % the highest mean regional variability of the three halocarbons, while
atmospheric CH2Br2 had the lowest regional variability of 33 %.

4.2.2 Diel variations

Diel variations of both CHBr3 and CH2Br2 in sea surface water were generally lower
than their regional variations. While the variability of CHBr3 only ranged between 14 %5

with a mean of 1.2 pmolL−1 (S1) and 19 % with a mean of 3.0 pmolL−1 (S2) in the open
ocean, the variability of CH2Br2 was even lower with 7 % (S1) and 9 % (S2) and mean
concentrations of 1.2–1.9 pmolL−1. At most of the coastal stations CHBr3 and CH2Br2
revealed similar distributions throughout 24 h with maxima in the evening and night
hours with the exception of S5 were maxima of 42.4 pmolL−1 (CHBr3) and 9.4 pmolL−1

10

(CH2Br2) were found in the morning hours. The highest diel variation of 23 % was found
at coastal station S3 for oceanic CHBr3, while CH2Br2 was generally less variable
ranging from 4 (S5) to 10 % (S4).

Atmospheric mixing ratios of CHBr3 and CH2Br2 were low in the open ocean with rel-
ative standard deviations of 13–19 % (CHBr3) and 5–9 % (CH2Br2). Atmospheric bro-15

mocarbons and their mean variability were generally higher at CVAO with means (vari-
ability) for CHBr3, respectively CH2Br2 of 6.7 ppt (43 %) and 1.4 ppt (16 %) on 4 June to
6.8 ppt (35 %) and 1.5 ppt (14 %) on 6 and 7 June (Fig. 3b and c, Table 2). The highest
atmospheric CHBr3 during the whole campaign of 12.8 ppt was measured at CVAO on
7 June. The diel variability of atmospheric CHBr3 at the coastal stations S3–S6 was20

generally lower than what was observed above the open ocean with 7 (S3)–14 % (S4).
The diel variability of atmospheric CH2Br2 at the coast was similar to the open ocean
with 5 (S6)–10 % (S4). Atmospheric CHBr3 and CH2Br2 showed no overall diurnal cy-
cles above neither open ocean nor coastal stations with maxima during both day and
night hours.25
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4.2.3 Correlations of CHBr3 and CH2Br2 with phytoplankton pigments

The correlation coefficient R2 of 0.38 and 0.49 for surface Chl a to CHBr3 respectively
CH2Br2 for the entire investigated region was significant at the 95 % level (Table 3,
Fig. 2a). Significant but low correlations were found to Prochlorococcus. Additionally,
multiple linear regressions (MLR) of brominated halocarbons to all phytoplankton pig-5

ments except for Chl a were carried out for the whole cruise. All pigment data related to
CHBr3 or CH2Br2 with p < 0.05 was regarded as significant. The six pigments chloro-
phyll b, chlorophyll c3, fucoxanthin, diatoxanthin, pyrophaeophorbide a and zeaxanthin
were found to describe the regional distribution of CHBr3 best (Fig. 2e, Table 3). Chloro-
phyll b, fucoxanthin, α-carotene (negatively correlated) and alloxanthin were important10

for CH2Br2 in the order of explanatory power.

4.2.4 Saturation anomaly, sea–air concentration gradients and sea-to-air fluxes

Saturation anomalies (Fig. 4), sea–air concentration gradients (Fig. 5b) and sea-to-
air fluxes (Fig. 5c) were calculated according to Eqs. (1)–(3) (Table 2), and similarly
to CH3I, the influence of the atmospheric mixing ratios on the concentration gradi-15

ent of CHBr3 and CH2Br2 via the equilibration concentration catm/H was determined
(Fig. 6b, c).

The ocean was generally supersaturated with both CHBr3 and CH2Br2. The overall
saturation anomaly of 65 (−40–243) % for CHBr3 was slightly lower than the mean of
CH2Br2 with 84 (3–204) % (Fig. 4b). Both displayed similar trends opposite to CH3I:20

lower saturation anomalies of around 30 % for both compounds at the open ocean
stations, followed by an increase towards the coastal stations S3–S6 with means of
83 % for CHBr3 and 110 % for CH2Br2. Maximum saturation anomalies coincided with
maximum oceanic and atmospheric bromocarbons at S5 with daily means of 148 %
for CHBr3 and 169 % for CH2Br2. The concentration gradient cw −catm/H of CHBr325

was the highest of all three halocarbons with a total mean of 5.8 (−1.3–30.0) pmolL−1,
followed by CH2Br2 with a mean of 2.2 (0–6.3) pmolL−1 and minima in the open ocean

19714



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

region (Fig. 5b). The reducing effect of atmospheric CHBr3 and CH2Br2 on the sea-
to-air flux was large in the open ocean (>75 %) where both compounds were close to
equilibrium and decreases simultaneously with the strongly increasing concentration
gradient towards the coast (Fig. 6b and c). For CHBr3 and CH2Br2 the flux reducing
effect was around 50 % at the four coastal stations (S3–S6). Sea-to-air fluxes of CHBr35

and CH2Br2 for the whole cruise were according to the considerably larger concentra-
tion gradients on average higher than CH3I fluxes with 787 (−273–6069) pmolm−2 h−1

and 341 (2–1429) pmolm−2 h−1, respectively (Fig. 5c, Table 2). Fluxes of both com-
pounds were low in the open ocean region with means of 41 pmolm−2 h−1 for CHBr3

and of 66 pmolm−2 h−1 for CH2Br2. Higher sea-to-air fluxes of CHBr3 and CH2Br2 with10

means of 1171 pmolm−2 h−1 and 483 pmolm−2 h−1 were observed at the coastal sta-
tions S3–S6. The maximum fluxes of both compounds were found at coastal station 5.

4.2.5 Impact of oceanic CHBr3 and CH2Br2 and wind speed on fluxes

Sea surface water concentrations of CHBr3 and CH2Br2 correlated regionally to sea-
to-air fluxes with R2 = 0.68 (CHBr3) and 0.71 (CH2Br2) for the whole cruise (Fig. 7,15

Table 4). Significant correlations of CHBr3 fluxes with sea surface water concentrations
were found at all 24 h-stations (R2 from 0.34 to 0.78). The highest correlations of sea
surface CH2Br2 to its sea-to-air fluxes were found at open ocean station S2 (0.64) and
coastal stations S3 and S4 (0.42, 0.53). No significant correlations could be observed
at coastal stations S5 and S6. In contrast, wind speed showed regionally significant20

but low correlations to the overall sea-to-air flux with R2 = 0.14 (CHBr3) and R2 = 0.29
(CH2Br2). Considering the stations individually, CHBr3 and CH2Br2 revealed high cor-
relations of wind speed with sea-to-air flux at coastal stations S4–S6 with R2 from 0.56
to 0.95.
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5 Discussion

5.1 Sea-to-air fluxes of CH3I

5.1.1 Oceanic and atmospheric CH3I as drivers of the regional and diel variabil-
ity of the concentration gradient

The ocean was highly supersaturated with CH3I throughout most of the cruise which5

is underlined by the low impact of atmospheric CH3I on its concentration gradient
(Fig. 6a). Regional and diel variability in the concentration gradient was primarily
a result of varying oceanic CH3I. The oceanic measurements during DRIVE (0.1 to
5.4 pmolL−1, Table 2) compare well to the measurements by Schall et al. (1997) of
0–3 pmolL−1 in the Atlantic north of 42◦ N during boreal wintertime. In contrast, Richter10

and Wallace (2004) measured 3–5 times higher oceanic CH3I with 7.1–16.4 pmolL−1

in boreal fall south of 15◦ N, and Jones et al. (2010) reported even 6 times higher con-
centrations (<1.0–36.5 pmolL−1) in the same region and season. Similarly to DRIVE,
Jones et al. (2010) found no significant difference between open ocean and coastal
regions which was ascribed to photochemical sources supported by the incubation15

experiments of Richter and Wallace (2004). Smythe-Wright et al. (2006) measured
CH3I as high as 45 pmolL−1 in the Atlantic region south of 40◦ N in late summer which
was accompanied by high Prochlorococcus abundance. During DRIVE, no outstand-
ing relationship of CH3I with picoplankton including Prochlorococcus or the marker
pigment divinyl chlorophyll a indicative of these species was found. Additionally, no20

correlation with diatom pigments, as suggested by Lai et al. (2011) for the production
of open ocean CH3I was observed, supporting photochemistry as important produc-
tion pathway for its formation as suggested by Moore and Zafiriou (1994). The likely
non-biological formation of CH3I also leads to high saturation anomalies in open ocean
surface waters. The lower saturation anomalies in the coastal zone are a result of lower25

temperature water upwelled to the surface diluting the more concentrated surface wa-
ter (Happell and Wallace, 1996) combined with the elevated atmospheric CH3I due to
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the low MABL above the Mauritanian upwelling. However, CH3I production may not be
completely independent of biological parameters. Bell et al. (2002) suggested that or-
ganic precursors from phytoplankton production could be involved in the photochemical
formation of CH3I in the surface ocean.

Atmospheric CH3I (0.6 to 3.3 ppt) measured during DRIVE falls well within the range5

of tropical Atlantic values reported by Williams et al. (2007) of 1.4 (0.6–3.0) ppt. Air
mass back trajectory analysis and similar ranges of atmospheric CH3I at open ocean
station S1 and parallel at CVAO on Cape Verde hint towards open ocean air masses
at both locations on 4 June (Fuhlbrügge et al., 2013). Wind speed at Cape Verde
was highly variable on 6 June (Fig. 3d) leading to high variations in local sea-to-10

air fluxes likely causing the observed higher mean variability in atmospheric CH3I at
CVAO parallel to open ocean station S2 (Sect. 4.1.2, Fig. 3a). Atmospheric CH3I during
DRIVE at CVAO (0.7–1.8 ppt) was generally lower than what was detected by O’Brien
et al. (2009) who measured on average between 1.4 and 4.6 ppt in a similar season.

Since the variability in oceanic CH3I was not correlated to the measured biological15

variables and the influence from atmospheric CH3I on oceanic concentrations was neg-
ligible, non-biological or indirect biological formation mechanisms in the surface water
can be accounted for as main driver for variations of its concentration gradient across
the air sea interface.

5.1.2 The relative influence of concentration gradient and wind speed on sea-20

to-air fluxes of CH3I

Applying the parameterization of Nightingale et al. (2000), sea water concentrations
and wind speed were almost equally important as driving factors for the CH3I sea-to-
air flux for the whole cruise region (Fig. 7) based on their similar regional variability
(see the scatter in Fig. 8a and similar error bars at the plot that includes all data points25

in Fig. 8b). Diel variability in fluxes could be mainly ascribed to variations in oceanic
CH3I, since they were much higher than the diel variability in wind speed (Fig. 8a, b).
Significant correlations of wind speed with sea-to-air fluxes of CH3I were only found at
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two 24 h-station with open ocean station S1 being the only diel stations with a very high
correlation. This was caused by the general low wind speed there that consequently
led to low sea-to-air fluxes despite high mean variability in CH3I in sea surface water.

In total, sea-to-air fluxes of CH3I encountered during DRIVE were 7.5 times lower
in the open ocean and 8.7 times lower in the upwelling than fluxes calculated by5

Jones et al. (2010), and 3.8 times lower than fluxes reported by Richter and Wallace
(2004) using similar flux parameterizations. For both other studies the higher fluxes
were caused by observed higher oceanic CH3I concentrations.

5.2 Sea-to-air fluxes of CHBr3 and CH2Br2

5.2.1 Oceanic and atmospheric CHBr3 and CH2Br2 as drivers of regional and10

diel variability of the concentration gradient

The ocean was supersaturated almost everywhere with bromocarbons during the
cruise except for S2 where atmospheric CHBr3 was increasing more pronounced than
oceanic CHBr3. The oceanic concentrations of both compounds were generally driving
factors for their concentration gradients during DRIVE. Only in the open ocean atmo-15

spheric CHBr3 and CH2Br2 reduced the sea-to-air fluxes significantly (Fig. 6) where the
low oceanic concentrations were close to equilibrium with the atmosphere. The impact
of oceanic concentrations on the concentration gradient increased with decreasing dis-
tance to the Mauritanian upwelling with a much more pronounced increase in oceanic
CHBr3 and CH2Br2 than in the atmosphere. The oceanic and atmospheric concen-20

trations as well as the concentration gradients of both bromocarbons peaked simul-
taneously at coastal station S5. Open ocean CHBr3 (1.0–3.8 pmolL−1) and CH2Br2

(1.0–2.2 pmolL−1) and increasing CHBr3 (8.1–42.4 pmolL−1) and CH2Br2 of (3.1–
9.4 pmolL−1) towards the coast of Mauritania during DRIVE were in good agreement
to earlier studies conducted in the oligotrophic tropical and subtropical Atlantic, as in25

March for CHBr3 (3.2–23.7 pmolL−1) and for CH2Br2 (1.7–5.8 pmolL−1) (Class and
Ballschmiter, 1988), in boreal wintertime 3.2–8.0 for CHBr3 and 1.0–1.8 pmolL−1 for
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CH2Br2 (Schall et al., 1997) and during the same season as DRIVE with 2.1–43.6 for
CHBr3 and 0.7–8.7 pmolL−1 for CH2Br2 (Carpenter et al., 2009) with the highest val-
ues in the Mauritanian upwelling and close to the coast (Carpenter et al., 2009; Quack
et al., 2007a). In contrast to oceanic CH3I during DRIVE, oceanic CHBr3 and CH2Br2
was elevated in the biological active regions and correlated with algal activity.5

Possible biological sources during DRIVE were investigated with MLR more thor-
oughly: CHBr3 and CH2Br2 showed a relationship to Chlorophytes and Diatoms while
CHBr3 also correlated significantly with Cyanobacteria and CH2Br2 with Cryptophytes
(Tables 3, 5). Similar biological sources for both bromocarbons are in agreement to
previous studies (Manley et al., 1992; Tokarczyk and Moore, 1994). The regional distri-10

bution of Chlorophytes and CHBr3 and CH2Br2 were in best agreement to each other.
Diatoms, although they were the dominant species in the Mauritanian upwelling and
have been shown to produce halocarbons in the laboratory (Moore et al., 1996), ap-
peared not as major contributors to bromocarbons which is in agreement to Quack
et al. (2007b). Additionally, pyrophaeophorbide a was shown to be significant for the15

CHBr3 distribution. This chlorophyll degradation product is specific for grazing which
could lead to release of bromocarbons (Nightingale et al., 1995) produced within the
algae (Moore et al., 1996).

Diel variability in the open ocean for both bromocarbons was very low and increased
towards the upwelling and the coast. No relationship of halocarbons to either light, SST20

or salinity was found during 24 h. Elevated CHBr3 and CH2Br2 were usually observed
during evening (S3, S4 and S6) and night hours (S5). In contrast, many laboratory and
field studies with both macroalgae and phytoplankton have shown maxima of CHBr3
and CH2Br2 during the day which was attributed to light induced oxidative stress on
the organisms (Ekdahl et al., 1998; Carpenter et al., 2000; Abrahamsson et al., 2004).25

Bromocarbon production from phytoplankton is still poorly characterized. Elevated bro-
mocarbon production during the night could be a hint for formation during respiration
in contrast to light linked production during photosynthesis (Ekdahl et al., 1998; Abra-
hamsson et al., 2004) or other stress factors such as grazing. Alternatively, CHBr3 and
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CH2Br2 could also be stored in the algal cells during light production and released later
during the night time (Ekdahl et al., 1998) which would obscure a correlation to light in
the field.

In conclusion, the regional variability of the concentration gradients of both bromo-
carbons was a result of the regional differences in primary production supported by5

their relationship to SST and phytoplankton pigment data (Sect. 4.2.3).

5.2.2 The relative influence of concentration gradient and wind speed on sea-
to-air fluxes of CHBr3 and CH2Br2

The regional distribution of sea-to-air fluxes of both bromocarbons was strongly de-
termined by biologically produced oceanic CHBr3 and CH2Br2. The regional variability10

in oceanic bromocarbons was much larger than the regional variations in wind speed
(Fig. 8c–f). However, within individual stations, the variability in oceanic CHBr3 and
CH2Br2 was mostly lower than the variations in wind speed. At the open ocean stations,
only very low oceanic bromocarbons were measured leading to very low concentration
gradients and thus to very low sea-to-air fluxes. Here, the wind speed did not have15

a large impact on sea-to-air fluxes. With increasing oceanic CHBr3 and CH2Br2 con-
centrations, the diel impact of changes in wind speed on the sea-to-air fluxes increased
which is expressed in high correlation coefficients (Table 5, Fig. 8c and e). This effect
was most pronounced for CH2Br2 which showed the lowest diel concentration variabil-
ity of all three halocarbons (see the scatter in Fig. 8e).20

Carpenter et al. (2009) derived 8.9 times higher open ocean fluxes for CHBr3 and
2.4 times higher for CH2Br2 in comparison to this study analysing the same region
and season. This resulted from larger concentration gradients due to their lower at-
mospheric mixing ratios using the same air–sea gas exchange parameterization. Their
coastal fluxes were in the same range for both compounds as in this study caused by25

similar coastal concentration gradients with comparable environmental conditions.
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5.3 Other impact factors on sea-to-air fluxes: MABL height and SST

Wind speed and concentration gradients are direct factors that influence sea-to-air
fluxes. Some more indirect factors that could possibly impact the emissions include
SST and the MABL through their intensifying or decreasing effect on the concentration
gradient. Possible effects of the changes in SST on the solubility of oceanic halocar-5

bons and therewith their concentration gradients during DRIVE were small compared
to the variability in sea water concentrations. This is supported by the observed re-
lationship of bromocarbons to increasing Chl a with decreasing SST (Fig. 2b–d). In
contrast, CH3I was independent of any physical parameters measured during DRIVE
including SST (Fig. 2a and d).10

The MABL height, however, has implications for both atmospheric mixing ratios of
halocarbons and sea-to-air fluxes via the concentration or dilution of atmospheric halo-
carbons within a decreasing or increasing MABL height. In order to understand the
possible effect of MABL variations, sea-to-air fluxes of all three halocarbons were cal-
culated with the minimum and maximum atmospheric mixing ratios associated with15

high (from S1) and low MABL heights (from S5) to cover the range of potential fluxes
(Fig. 9). A different concentration distribution can change the CHBr3 and CH2Br2 sea-
to-air fluxes on average between 19 % (S5) and 4160 % (S1) for CHBr3 and between
7 % (S5) and 1337 % (S1) for CH2Br2 (see the lower and upper limits in Fig. 9b and c;
the shading implicates the potential range). The effect on CH3I fluxes is lower, from 1 %20

(S1) to 42 % (S4) (Fig. 9a) due to its high supersaturation in sea water (Fig. 4a). Atmo-
spheric variability has a much larger potential impact on bromocarbon fluxes (Fig. 6b
and c). Considering the large MABL height changes occurring within one day above
coastal stations, e.g. from 100 to 350 m at S6, the effect of the entailing varying atmo-
spheric mixing ratios on local emissions has to be taken into account when assessing25

halocarbon sea-to-air fluxes from coastal upwelling regions.

19721

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

5.4 Oceanic influence on atmospheric mixing ratios of CH3I, CHBr3 and CH2Br2

5.4.1 The contribution of the oceanic emissions to the atmospheric mixing ra-
tios

We have shown in the last sections that the sea-to-air flux of halocarbons is domi-
nated by the oceanic production and that the sea water concentrations of bromocar-5

bons are increasing towards the coast. In addition, Fuhlbrügge et al. (2013) highlighted
that the MABL height, decreasing towards the coastal stations, is anticorrelated with
the atmospheric mixing ratios. In order to understand the importance for the sea-to-air
fluxes, we calculated their relative contributions to the atmospheric mixing ratios ob-
served at the individual 24 h-stations. Previous studies assigned the high CHBr3 and10

CH2Br2 mixing ratios above the coastal upwellling to air masses originating from the
North West African continent (Quack et al., 2007a) and very low atmospheric bro-
mocarbons to air masses from the northern open ocean (Carpenter et al., 2009; Lee
et al., 2010). Air masses during coastal station S5 also arrived from the northern open
ocean (Fuhlbrügge et al., 2013) which contradicts the hypothesis that high atmospheric15

halocarbons could only be accounted for by continental sources. We apply a fetch of
200 km (which is the mean distance between the diel stations), sea-to-air fluxes from
Sects. 4.1.5 and 4.2.6, according wind speeds and MABL heights (Table 1). Open
ocean background values for S1 and S2 were set to 0.50 ppt for CH3I and CHBr3,
and 0.75 ppt for CH2Br2, while higher coastal background values of 0.75 ppt for CH3I,20

1.80 ppt for CH2Br2 and 3.00 ppt for CHBr3 were defined for S3–S6. Here, it is note-
worthy that both the sea-to-air fluxes and the height of the MABL have numerically the
same influence on atmospheric mixing ratios since bromocarbons in the atmosphere
are within this assumption a product of both. The oceanic emissions are generally suffi-
cient to explain most of the atmospheric halocarbons (Fig. 10a–c). Oceanic halocarbon25

contributions at S1–S6 (except for S5) ranged from 39 to 135 % for CH3I, between 18
and 126 % for CHBr3 and from 47 to 148 % for CH2Br2 with generally lowest contribu-
tions at S2 (40–69 % for CH3I, 18–45 % for CHBr3 and 47–68 % for CH2Br2). At S5, the
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advected emissions contributed 560 (CH3I) – 800 % (CHBr3) of the observed mixing
ratios. At this station high oceanic and atmospheric CHBr3 and CH2Br2 coincided with
very low MABL heights. While all mixing ratios could generally be explained with a fetch
of 200 km, large scale advection seems to only account for a minor part. S5, where at-
mospheric halocarbons were highly overestimated with this approach, is likely a very5

local phenomenon that occurs when high sea-to-air fluxes, very low MABL heights and
high atmospheric mixing ratios are combined. Vertical transport has been neglected in
this simple approach, which may only introduce small errors since the top of the MABL
was stable and isolated above the coastal stations.

While the Mauritanian upwelling has been identified to contribute to high atmospheric10

abundances of bromocarbons in the region, the elevated and highly variable atmo-
spheric mixing ratios of CHBr3 and CH2Br2 at Cape Verde were attributed to local
sources. O’Brien et al. (2009) suggested high atmospheric halocarbons at CVAO orig-
inating from the coastal region off Mauritania. However, back trajectory analysis re-
vealed air masses at CVAO originating from the open ocean during our investigation15

(Fuhlbrügge et al., 2013). This together with the considerably lower atmospheric mix-
ing ratios measured at the open ocean stations (0.5–2.4 ppt for CHBr3 and 0.9–1.6 ppt
for CH2Br2) and around the upwelling contradicts upwelling originated halocarbons at
Cape Verde during DRIVE. In addition, CHBr3 reached its highest value of the whole
campaign at CVAO. Hence, the high and variable atmospheric CHBr3 and CH2Br2 at20

Cape Verde in combination with comparably variable wind speeds suggest local coastal
sources for both compounds.

5.4.2 Correlations between oceanic and atmospheric CHBr3 and CH2Br2

In contrast to Quack et al. (2007a) and Carpenter et al. (2009), atmospheric CHBr3
and CH2Br2 regionally followed the same regional distribution as their oceanic counter-25

parts. Water concentrations and atmospheric mixing ratios of CHBr3 (R2 = 0.74) and
CH2Br2 (R2 = 0.85) correlated regionally very well during DRIVE (Fig. 11a, b) which
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has not been observed during other cruises in the same region (Carpenter et al., 2009;
Quack et al., 2007a). This is likely caused by a combination of the stable and isolated
marine boundary layer observed over the upwelling and the combined effects of air–
sea exchange as slowest process (over a considerable fetch) and advection as the
fastest (diluting with background air) both influencing the atmospheric signals. We as-5

sume biological production of bromocarbons and mixing within the water column also
as rapid processes (Ekdahl et al., 1998). Correlations within the individual 24 h-stations
were only significant at open ocean station S2 for CHBr3 and at coastal stations S4 and
S6 for both compounds (Table 6). A diel anti-correlation of atmospheric mixing ratios
with water concentrations is also observed at several diel stations (S1, S2, S5, and10

S6). An explanation for this observation (see Table 6) between the atmospheric and
oceanic concentrations on a diel scale is still lacking, since neither wind-direction, in-
cluding land-sea breeze circulation (Fuhlbrügge et al., 2013), nor MABL height led to
significant and clear correlations.

Both mean positive and negative deviations from the mean good overall regional15

correlation of sea water concentrations and atmospheric mixing ratios could also be
observed at the individual stations. On the one hand atmospheric concentrations will
increase with wind speed and increasing sea-to-air flux. On the other hand, elevated
wind speeds will also trigger atmospheric dilution due to strong transport.

While low wind speeds in the open ocean led to a low anomaly in atmospheric mixing20

ratios at S1, revealing that dilution with background air appears more significant than
oceanic emissions, higher wind speeds at S2 triggered average mixing ratios (Fig. 11).
The increase in atmospheric mixing ratios at S2 may not only be a result of increasing
sea-to-air flux and fetch but may also be partly a result of the reduction of the MABL
height. While coastal stations S3, S4 and S6 have similar mean CHBr3 surface water25

concentrations, S6 showed the largest sea-to-air fluxes of these three stations due to
the largest prevailing wind speeds (see Fig. 5), but on average relatively low atmo-
spheric mixing ratios (Fig. 11a, b). We interpret this as intense transport phenomenon
and possible dilution of the large sea-to-air fluxes with background air masses due to
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intensifying winds and increasing MABL height. Although atmospheric mixing ratios for
CHBr3 and CH2Br2 were highest at S5, they are on average much lower as could be
expected from the overall regional correlation and the large sea water concentrations
(see the data points below the correlation line in Fig. 11a, b in contrast to most of the
data points from other stations that are above the line). We hypothesize that the high5

atmospheric mixing ratios at S5, the high sea to air fluxes and low MABL height are
very local phenomena with a small fetch and that regional mixing with background air
masses led to the lower than average correlation of sea surface CHBr3 and CH2Br2
and atmospheric bromocarbons. The good overall correlation between atmospheric
and oceanic bromocarbons shows the dominance of sea water production for the at-10

mosphere during our study within the known concepts of wind driven air–sea exchange
and transport by wind speed and MABL variations on a regional scale.

6 Summary and conclusions

We have discussed the temporal and spatial influence of biological productivity, wind
speed, MABL height and SST on oceanic emissions and atmospheric mixing ratios of15

halocarbons in the tropical North East Atlantic.
Oceanic CH3I neither showed a relationship to phytoplankton pigments nor to

cyanobacteria, and its distribution appeared mainly as a result of abiotic or indirect
biological formation. Oceanic CH3I was the main driver of the CH3I concentration gra-
dient between sea water and air. On a regional scale, neither wind speed nor oceanic20

CH3I were dominating the sea-to-air flux. Diel variations in emissions were a result of
varying oceanic CH3I concentrations almost throughout the whole cruise. The regional
oceanic CHBr3 and CH2Br2 distributions and emissions were a result of biological pro-
duction with no clear diurnal cycles. The variability in wind speed gained increasing
impact on the diel emissions with decreasing distance to the coast. This was especially25

true for CH2Br2 because of the very small diel variability in oceanic concentrations in
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comparison to the high diel variability in wind speed applying the flux parameterization
of Nightingale et al. (2000).

MABL height is an additional factor impacting oceanic emissions through its influ-
ence on atmospheric halocarbons. Sea-to-air fluxes of CH3I are hardly influenced by
the varying MABL as a result of its high supersaturation in sea surface water. In con-5

trast, the sea-to-air fluxes of CHBr3 and CH2Br2 could be substantially higher or lower
under different atmospheric conditions influencing their saturation anomalies. The at-
mospheric bromocarbons could generally be attributed to oceanic sources supported
by the significant and high overall correlations of oceanic concentrations to atmospheric
mixing ratios. Regional oceanic halocarbon emissions, driven by biological production10

can in combination with varying and low MABL heights and air mass transport ex-
plain most of the observed atmospheric halocarbons above the upwelling. Low MABL
heights and high sea to air fluxes coinciding with high atmospheric mixing ratios could
be a common feature in coastal upwelling systems (this study; Fuhlbrügge et al., 2013).
At CVAO the high atmospheric CH3I, CHBr3 and CH2Br2 mixing ratios could be at-15

tributed to local coastal sources.
The temporal and spatial development of the individual impact factors (biological

production, wind speed, SST and changes in atmospheric mixing ratios with MABL
height) will influence the future sea-to-air fluxes and their corresponding atmospheric
mixing ratios and their contribution to atmospheric chemical processes. SST and20

surface air temperature could play a crucial role in the future development of wind
speed via the potentially increased land-sea pressure gradients, as well as in the
oceanic production of halocarbons. An elevation in atmospheric CH3I with increasing
SST on a decadal scale has been shown by Yokouchi et al. (2012) in the tropical
and temperate Pacific region. The potential future increase of SST in the tropical25

oligotrophic Atlantic (Hoerling et al., 2001) could thus lead to enhanced oceanic
production of CH3I and in combination with reduced solubility to elevated emissions
of CH3I. At the same time, the enhancement of eastern boundary upwelling systems
accompanied by increasing primary production (Lachkar and Gruber, 2012) could
result in higher production of oceanic bromocarbons. Combined with elevated wind30

speeds (Bakun, 1990), increased emissions of brominated compounds would be the
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consequence. Hence, the relevance of the tropical ocean with respect to halocarbon
emissions will likely increase and the influence of the diel and regional drivers may
change. To better understand the current and future roles of halocarbon emissions
from marine upwelling regions on global ozone changes and atmospheric chemistry, it
is important to continue to better quantify the relative roles and interactions of oceanic5

halocarbon production, wind speed and MABL height, SST and seasonal variations,
as well as other relevant forcings in coastal upwelling regions around the global ocean.
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Fuhlbrügge, S., Krüger, K., Quack, B., Atlas, E., Hepach, H., and Ziska, F.: Impact of the marine
atmospheric boundary layer conditions on VSLS abundances in the eastern tropical and
subtropical North Atlantic Ocean, Atmos. Chem. Phys., 13, 6345–6357, doi:10.5194/acp-13-5

6345-2013, 2013.
Hagen, E.: Northwest african upwelling scenario, Oceanol. Acta, 24, S113–S128, 2001.
Happell, J. D. and Wallace, D. W. R.: Methyl iodide in the greenland/norwegian seas and the

tropical atlantic ocean: Evidence for photochemical production, Geophys. Res. Lett., 23,
2105–2108, doi:10.1029/96gl01764, 1996.10

Hoerling, M. P., Hurrell, J. W., and Xu, T. Y.: Tropical origins for recent north atlantic climate
change, Science, 292, 90–92, doi:10.1126/science.1058582, 2001.

Hossaini, R., Chipperfield, M. P., Monge-Sanz, B. M., Richards, N. A. D., Atlas, E., and
Blake, D. R.: Bromoform and dibromomethane in the tropics: a 3-D model study of chemistry
and transport, Atmos. Chem. Phys., 10, 719–735, doi:10.5194/acp-10-719-2010, 2010.15

Hossaini, R., Chipperfield, M. P., Feng, W., Breider, T. J., Atlas, E., Montzka, S. A., Miller, B. R.,
Moore, F., and Elkins, J.: The contribution of natural and anthropogenic very short-lived
species to stratospheric bromine, Atmos. Chem. Phys., 12, 371–380, doi:10.5194/acp-12-
371-2012, 2012a.

Hossaini, R., Chipperfield, M. P., Dhomse, S., Ordonez, C., Saiz-Lopez, A., Abraham, N. L.,20

Archibald, A., Braesicke, P., Telford, P., Warwick, N., Yang, X., and Pyle, J.: Modelling future
changes to the stratospheric source gas injection of biogenic bromocarbons, Geophys. Res.
Lett., 39, doi:10.1029/2012gl053401, L20813, 2012b.

Jones, C. E., Hornsby, K. E., Sommariva, R., Dunk, R. M., Von Glasow, R., McFiggans, G., and
Carpenter, L. J.: Quantifying the contribution of marine organic gases to atmospheric iodine,25

Geophys. Res. Lett., 37, L18804, doi:10.1029/2010gl043990, 2010.
Lachkar, Z. and Gruber, N.: A comparative study of biological production in eastern bound-

ary upwelling systems using an artificial neural network, Biogeosciences, 9, 293–308,
doi:10.5194/bg-9-293-2012, 2012.

Lai, S. C., Williams, J., Arnold, S. R., Atlas, E. L., Gebhardt, S., and Hoffmann, T.: Iodine con-30

taining species in the remote marine boundary layer: a link to oceanic phytoplankton, Geo-
phys. Res. Lett., 38, doi:10.1029/2011gl049035, L20801, 2011.

19729

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Laturnus, F.: Marine macroalgae in polar regions as natural sources for volatile organohalo-
gens, Environ. Sci. Pollut. R., 8, 103–108, doi:10.1007/bf02987302, 2001.

Lee, J. D., McFiggans, G., Allan, J. D., Baker, A. R., Ball, S. M., Benton, A. K., Carpenter, L. J.,
Commane, R., Finley, B. D., Evans, M., Fuentes, E., Furneaux, K., Goddard, A., Good, N.,
Hamilton, J. F., Heard, D. E., Herrmann, H., Hollingsworth, A., Hopkins, J. R., Ingham, T.,5

Irwin, M., Jones, C. E., Jones, R. L., Keene, W. C., Lawler, M. J., Lehmann, S., Lewis, A. C.,
Long, M. S., Mahajan, A., Methven, J., Moller, S. J., Müller, K., Müller, T., Niedermeier, N.,
O’Doherty, S., Oetjen, H., Plane, J. M. C., Pszenny, A. A. P., Read, K. A., Saiz-Lopez, A.,
Saltzman, E. S., Sander, R., von Glasow, R., Whalley, L., Wiedensohler, A., and Young, D.:
Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic10

experiments, Atmos. Chem. Phys., 10, 1031–1055, doi:10.5194/acp-10-1031-2010, 2010.
Manley, S. L., Goodwin, K., and North, W. J.: Laboratory production of bromoform, methylene

bromide, and methyl-iodide by macroalgae and distribution in nearshore southern california
waters, Limnol. Oceanogr., 37, 1652–1659, 1992.

McGivern, W. S., Sorkhabi, O., Suits, A. G., Derecskei-Kovacs, A., and North, S. W.: Primary15

and secondary processes in the photodissociation of chbr3, J. Phys. Chem. A, 104, 10085–
10091, doi:10.1021/jp0005017, 2000.

McGregor, H. V., Dima, M., Fischer, H. W., and Mulitza, S.: Rapid 20th-century
increase in coastal upwelling off northwest africa, Science, 315, 637–639,
doi:10.1126/science.1134839, 2007.20

Minas, H. J., Codispoti, L. A., and Dugdale, R. C.: Nutrients and primary production in the
upwelling region off northwest africa, Rap. Proces., 180, 148–183, 1982.

Mittelstaedt, E.: Large-scale circulation along the coast of northwest africa, Rap. Proces., 180,
50–57, 1982.

Montzka, S. A. and Reimann, S.: Ozone-depleting substances and related chemicals, in: Scien-25

tific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project,
Report No. 52, World Meteorological Organization (WMO), Geneva, 108 pp., 2011.

Moore, R. M. and Zafiriou, O. C.: Photochemical production of methyl-iodide in seawater, J.
Geophys. Res.-Atmos., 99, 16415–16420, doi:10.1029/94jd00786, 1994.

Moore, R. M. and Groszko, W.: Methyl iodide distribution in the ocean and fluxes to the atmo-30

sphere, J. Geophys. Res.-Oceans, 104, 11163–11171, doi:10.1029/1998jc900073, 1999.

19730



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Moore, R. M., Geen, C. E., and Tait, V. K.: Determination of henry law constants for a suite
of naturally-occurring halogenated methanes in seawater, Chemosphere, 30, 1183–1191,
doi:10.1016/0045-6535(95)00009-w, 1995a.

Moore, R. M., Tokarczyk, R., Tait, V. K., Poulin, M., and Geen, C. E.: Marine phytoplankton as
a natural source of volatile organohalogens, in: Naturally-Produced Organohalogens, edited5

by: Grimvall, A., and deLeer, E. W. B., Kluwer Academic Publishers, Dordrecht, 283–294,
1995b.

Moore, R. M., Webb, M., Tokarczyk, R., and Wever, R.: Bromoperoxidase and iodoperoxidase
enzymes and production of halogenated methanes in marine diatom cultures, J. Geophys.
Res.-Oceans, 101, 20899–20908, doi:10.1029/96jc01248, 1996.10

Nightingale, P. D., Malin, G., and Liss, P. S.: Production of chloroform and other low-molecular-
weight halocarbons by some species of macroalgae, Limnol. Oceanogr., 40, 680–689, 1995.

Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J.,
and Upstill-Goddard, R. C.: In situ evaluation of air–sea gas exchange parameteriza-
tions using novel conservative and volatile tracers, Global Biogeochem. Cy., 14, 373–387,15

doi:10.1029/1999gb900091, 2000.
O’Brien, L. M., Harris, N. R. P., Robinson, A. D., Gostlow, B., Warwick, N., Yang, X., and

Pyle, J. A.: Bromocarbons in the tropical marine boundary layer at the Cape Verde Observa-
tory – measurements and modelling, Atmos. Chem. Phys., 9, 9083–9099, doi:10.5194/acp-
9-9083-2009, 2009.20

O’Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H., Hameri, K., Pirjola, L.,
Kulmala, M., Jennings, S. G., and Hoffmann, T.: Marine aerosol formation from biogenic
iodine emissions, Nature, 417, 632–636, doi:10.1038/nature00775, 2002.

Pyle, J. A., Warwick, N., Yang, X., Young, P. J., and Zeng, G.: Climate/chemistry feedbacks
and biogenic emissions, Philos. T. R. Soc. A, 365, 1727–1740, doi:10.1098/rsta.2007.2041,25

2007.
Quack, B. and Wallace, D. W. R.: Air-sea flux of bromoform: controls, rates, and implications,

Global Biogeochem. Cy., 17, 1023, doi:10.1029/2002gb001890, 2003.
Quack, B., Atlas, E., Petrick, G., Stroud, V., Schauffler, S., and Wallace, D. W. R.:

Oceanic bromoform sources for the tropical atmosphere, Geophys. Res. Lett., 31, L23s05,30

doi:10.1029/2004gl020597, 2004.

19731

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Quack, B., Atlas, E., Petrick, G., and Wallace, D. W. R.: Bromoform and dibromomethane above
the mauritanian upwelling: atmospheric distributions and oceanic emissions, J. Geophys.
Res.-Atmos., 112, D09312, doi:10.1029/2006jd007614, 2007a.

Quack, B., Peeken, I., Petrick, G., and Nachtigall, K.: Oceanic distribution and sources of bro-
moform and dibromomethane in the mauritanian upwelling, J. Geophys. Res.-Oceans, 112,5

C10006, doi:10.1029/2006jc003803, 2007b.
Richter, U. and Wallace, D. W. R.: Production of methyl iodide in the tropical atlantic ocean,

Geophys. Res. Lett., 31, L23s03, doi:10.1029/2004gl020779, 2004.
Saiz-Lopez, A., Plane, J. M. C., Baker, A. R., Carpenter, L. J., von Glasow, R., Martin, J. C. G.,

McFiggans, G., and Saunders, R. W.: Atmospheric chemistry of iodine, Chem. Rev., 112,10

1773–1804, doi:10.1021/cr200029u, 2012.
Salawitch, R. J., Weisenstein, D. K., Kovalenko, L. J., Sioris, C. E., Wennberg, P. O., Chance, K.,

Ko, M. K. W., and McLinden, C. A.: Sensitivity of ozone to bromine in the lower stratosphere,
Geophys. Res. Lett., 32, L05811, doi:10.1029/2004gl021504, 2005.

Schall, C., Heumann, K. G., and Kirst, G. O.: Biogenic volatile organoiodine and organobromine15

hydrocarbons in the atlantic ocean from 42◦ N to 72◦ S, Fresenius, J. Anal. Chem., 359, 298–
305, 1997.

Schauffler, S. M., Atlas, E. L., Blake, D. R., Flocke, F., Lueb, R. A., Lee-Taylor, J. M., Stroud, V.,
and Travnicek, W.: Distributions of brominated organic compounds in the troposphere and
lower stratosphere, J. Geophys. Res.-Atmos., 104, 21513–21535, 1999.20

Smythe-Wright, D., Boswell, S. M., Breithaupt, P., Davidson, R. D., Dimmer, C. H., and
Diaz, L. B. E.: Methyl iodide production in the ocean: Implications for climate change, Global
Biogeochem. Cy., 20, Gb3003, doi:10.1029/2005gb002642, 2006.

Solomon, S., Garcia, R. R., and Ravishankara, A. R.: On the role of iodine in ozone depletion, J.
Geophys. Res.-Atmos., 99, 20491–20499, doi:10.1029/94jd02028, 1994.25

Taylor, B. B., Torrecilla, E., Bernhardt, A., Taylor, M. H., Peeken, I., Röttgers, R., Piera, J., and
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Table 1. Means and ranges (minimum–maximum) of ambient parameters (SST, salinity, Chl a,
wind speed, MABL height) during DRIVE for open ocean stations S1–S2 and coastal stations
S3–S6.

Parameter Unit S1 S2 S3 S4 S5 S6
17.6◦ N and
24.3◦ W

18.0◦ N and
21.0◦ W

18.0◦ N and
18.0◦ W

18.5◦ N and
16.5◦ W

19.0◦ N and
16.6◦ W

20.0◦ N and
17.3◦ W

SST ◦C 24.5
(24.4–24.7)

23.2
(23.0–23.6)

21.7
(21.6–21.8)

23.3
(23.1–23.4)

20.4
(20.2–21.0)

18.6
(18.4–18.7)

Salinity 36.7
(36.7–36.7)

36.4
(36.4–36.5)

35.9
(35.9–35.9)

35.9
(35.9–35.9)

35.8
(35.8–35.8)

35.9
(35.8–35.9)

Chl a µgL−1 0.05
(0–0.08)

0.30
(0.10–0.43)

1.00
(0.58–1.79)

1.63
(0.81–3.01)

4.50
(1.69–8.12)

4.80
(7.40–6.70)

Wind speed m s−1 4.6
(2.0–7.1)

11.0
(7.8–14.8)

6.0
(3.9–9.0)

9.7
(6.7–12.9)

8.9
(4.3–13.7)

11.0
(6.8–14.2)

MABL height m 950
(850–1100)

540
(400–700)

290
(200–400)

120
(50–200)

25
(surface–100)

190
(100–350)
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Table 2. Results of halocarbon measurements (water and air) and calculations (saturation
anomalies and sea-to-air fluxes) for all six diel stations and parallel air sampling at CVAO.

Compound Parameter Unit S1 S2 S3 S4 S5 S6
17.6◦ N and
24.3◦ W

18.0◦ N and
21.0◦ W

18.0◦ N and
18.0◦ W

18.5◦ N and
16.5◦ W

19.0◦ N and
16.6◦ W

20.0◦ N and
17.3◦ W

CH3I Water pmol L−1 3.0
(1.7–5.4)

1.8
(0.4–3.9)

1.2
(0.2–2.1)

1.6
(0.6–3.4)

2.2
(0.1–4.5)

2.0
(0.8–3.5)

Air ppt 0.7
(0.6–1.0)

1.1
(1.0–1.3)

1.0
(0.9–1.1)

1.6
(1.1–2.7)

2.3
(1.4–3.3)

1.3
(1.1–2.7)

CVAO air ppt 0.9
(0.7–1.0)

1.4
(1.1–1.8)

– – – –

Saturation anomaly % 2606.3
(1321.1–4597.1)

870.2
(99.4–2243.7)

532.2
(−8.5–967.1)

445.6
(90.8–1167.4)

410.8
(−65.8–928.7)

672.1
(210.1–1242.3)

Sea-to-air flux pmol m−2 h−1 158.3
(59.3–330.4)

372.6
(39.6–941.6)

79.0
(−1.7–212.2)

227.7
(61.4–500.5)

259.6
(−64.6–871.6)

382.5
(106.1–837.9)

CHBr3 Water pmol L−1 1.2
(1.0–1.6)

3.0
(1.9–3.8)

16.2
(11.3–25.5)

11.9
(8.1–14.7)

30.6
(26.1–42.4)

15.3
(12.8–17.5)

Air ppt 0.6
(0.5–0.8)

1.8
(1.2–2.4)

5.3
(4.2–6.1)

5.3
(4.2–6.6)

7.0
(5.4–8.9)

4.9
(4.1–6.0)

CVAO air ppt 6.7
(2.3–12.8)

6.8
(3.7–12.8)

– – – –

Saturation anomaly % 39.6
(−14.7–79.3)

17.7
(−40.3–97.3)

80.6
(43.0–212.7)

46.1
(5.2–94.4)

148.0
(69.4–243.1)

59.4
(5.4–105.5)

Sea-to-air flux pmol m−2 h−1 15.5
(−8.5–45.0)

65.6
(−273.4–426.7)

489.1
(241.4–1610.9)

611.7
(41.7–1333.8)

2423.0
(1063.3–6068.9)

1098.2
(77.8–2360.2)

CH2Br2 Water pmol L−1 1.2
(1.0–1.3)

1.9
(1.5–2.2)

4.0
(3.1–4.9)

5.4
(4.1–6.1)

8.8
(8.1–9.4)

5.1
(4.6–5.8)

Air ppt 1.0
(0.9–1.1)

1.4
(1.1–1.6)

2.2
(2.0–2.4)

2.4
(2.0–2.9)

2.8
(2.5–3.1)

2.1
(1.9–2.3)

CVAO air ppt 1.4
(1.1–2.1)

1.5
(1.2–2.0)

– – – –

Saturation anomaly % 24.7
(3.4–43.2)

37.7
(4.1–72.2)

64.7
(30.9–111.5)

122.0
(82.7–165.0)

169.0
(131.8–204.3)

86.1
(70.1–110.6)

Sea-to-air flux pmol m−2 h−1 10.6
(1.8–27.9)

118.5
(14.5–214.3)

115.7
(50.0–260.3)

511.8
(207.9–801.0)

815.4
(285.6–1429.4)

470.4
(295.5–671.6)
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Table 3. Correlation coefficients R2 of halocarbons to nano- and picoplankton abundances as
well as to phytoplankton pigment data (MLR – Multiple Linear Regression). The correlations to
Prochlorococchus are all significant on the p < 0.05 level. Negative correlations are printed in
bold.

n CH3I CHBr3 CH2Br2

Nano- and Prochlorococcus 72 0.10 0.39 0.26
picoplankton Others 72 <0.08 <0.09 <0.10

Phyotplankton Chl a 61 0.00 0.38 0.49
pigments MLR 61 None 0.79 0.77
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Table 4. Correlation coefficients for water concentrations of halocarbons and wind speed with
sea-to-air fluxes of halocarbons for the whole cruise and for the individual stations. Coefficients
printed in bold represent significant correlations with p < 0.05.

Station R2 of with F of n
CH3I CHBr3 CH2Br2

Whole cruise Water concentration 0.37 0.68 0.71 109
Wind speed 0.24 0.14 0.29

S1 (17.6◦ N and 24.3◦ W) Water concentration 0.24 0.66 0.35 18
Wind speed 0.73 0.28 0.21

S2 (18.0◦ N and 21.0◦ W) Water concentration 0.89 0.78 0.64 19
Wind speed 0.00 0.00 0.15

S3 (18.0◦ N and 18.0◦ W) Water concentration 0.67 0.66 0.42 17
Wind speed 0.24 0.21 0.56

S4 (18.5◦ N and 16.5◦ W) Water concentration 0.91 0.60 0.53 17
Wind speed 0.02 0.67 0.93

S5 (19.0◦ N and 16.6◦ W) Water concentration 0.57 0.34 0.09 18
Wind speed 0.02 0.55 0.95

S6 (20.0◦ N and 17.3◦ W) Water concentration 0.79 0.70 0.00 20
Wind speed 0.06 0.82 0.78
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Table 5. Phytoplankton pigments that were found to be significant at p < 0.05 and what they
are indicative for.

Pigment Indicative for CHBr3 CH2Br2

Chlorophyll b Chlorophytes x x

Chlorophyll c3 Haptophytes x

Fucoxanthin
Diatoms

x x
Diatoxanthin x

Zeaxanthin Cyanobacteria x

α-carotene
Cryptophytes

x
Alloxanthin x

Pyrophaephorbide a Grazing x
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Table 6. Correlation coefficients R2 and number of data points n of oceanic vs. atmospheric
bromocarbons for the whole cruise and each individual station. Bold numbers indicate signifi-
cant correlations with p < 0.05. Italic numbers mark negative correlations.

Whole cruise S1
(17.6◦ N and
24.3◦ W)

S2
(18.0◦ N and
21.0◦ W)

S3
(18.0◦ N and
18.0◦ W)

S4
(18.5◦ N and
16.5◦ W)

S5
(19.0◦ N and
16.6◦ W)

S6
(20.0◦ N and
17.3◦ W)

CHBr3 0.74 0.01 0.52 0.01 0.45 0.05 0.20
CH2Br2 0.85 0.19 0.09 0.01 0.40 0.18 0.28

n 109 18 19 17 17 18 20
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Fig. 2. SST, salinity and Chl a (a) along with halocarbon concentrations in water and atmo-
spheric mixing ratios of CH3I (b), CHBr3 (c) and CH2Br2 (d) and pigments significant for the
regional distribution of CHBr3 and CH2Br2 (e) during the DRIVE campaign.
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don cruise.
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and CH2Br2 during DRIVE.
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Fig. 6. Influence of atmospheric mixing ratios on the amount of oceanic halocarbons emitted
for CH3I (a), CHBr3 (b), and CH2Br2 (c). Oceanic concentrations are plotted in grey (left axis),
the equilibrium concentration is delineated in black, and the concentration gradient is shaded in
grey. The percentaged reduction of the concentration gradient by the equilibrium concentration
(flux reducing effect) derived from the atmospheric measurements (equilibrium concentration
in percent in relation to the water concentrations) is shown in red (right axis).
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Fig. 8. Left side – wind speed vs. CH3I (a), CHBr3 (c) and CH2Br2 (e) water concentrations.
Symbols are filled according to their sea-to-air flux (see color bars). Right side – mean wind
speed vs. mean CH3I (b), CHBr3 (d) and CH2Br2 (f) water concentrations with their standard
deviations which is expressed in error bars (horizontal for water concentrations and vertical for
wind speed) for each diel station (S1–S6) and for all stations together. Symbols are filled with
the relative standard deviations of the sea-to-air fluxes (see color bars).
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Fig. 9. Sea-to-air fluxes for CH3I (a), CHBr3 (b) and CH2Br2 (c) during DRIVE and the MABL
height, determined by Fuhlbrügge et al. (2013) as the dashed grey line are shown on the right
side. The upper and lower value of potential sea-to-air fluxes assuming the lowest MABL (lower
range, 3.0 ppt for CH3I, 3.1 ppt for CH2Br2 and 8.9 ppt for CHBr3) and the highest MABL (upper
range, 0.6 ppt for CH3I, 0.9 ppt for CH2Br2 and 0.5 ppt for CHBr3) valid for the whole region are
shaded in green.
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Fig. 10. Oceanic contributions to atmospheric halocarbons assuming a mean distance of
200 km, mean wind speeds, mean sea-to-air fluxes and background mixing ratios for the
open ocean (CH3I=0.50 ppt, CHBr3 = 0.50 ppt, CH2Br2 = 0.75 ppt) and the coastal region
(CH3I=0.75 ppt, CHBr3 = 3.00 ppt, CH2Br2 = 1.80 ppt), and the MABL heights determined by
Fuhlbrügge et al. (2013) at every measurement point for CH3I (a), for CHBr3 (b) and for CH2Br2
(c), outliers are excluded. The red dashed line marks 100 % in every plot.
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Fig. 11. Correlations of oceanic vs. atmospheric halocarbons (CHBr3 in (a) and CH2Br2 in (b))
filled with wind speed (see color coding). The black line indicates the regression line for the
whole cruise. For the individual correlation coefficients see Table 6.
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