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Abstract 

The scientific literature has many methods for estimating uncertainty, however, there is a lack of information 

about the characteristics, merits and limitations of the individual methods, particularly for making decisions in 

practice. This paper provides an overview of the different uncertainty methods for flood forecasting that are 

reported in literature, concentrating on two established approaches defined as the ensemble and the 

statistical approach. Owing to the variety of flood forecasting and warning systems in operation, the question 

‗which uncertainty method is most suitable for which application‘ is difficult to answer readily.  The paper 

aims to assist practitioners in understanding how to match an uncertainty quantification method to their 

particular application using two flood forecasting system case studies in Belgium and Canada. These two 

specific applications of uncertainty estimation from the literature are compared, illustrating statistical and 

ensemble methods, and indicating the information and output that these two types of methods offer. The 

advantages, disadvantages and application of the two different types of method are identified. Although there 

is no one ‗best‘ uncertainty method to fit all forecasting systems, this review helps to explain the current 

commonly used methods from the available literature for the non-specialist. 
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1. Introduction 

Quantification of uncertainty in flood forecasts is moving from the realms of scientific research into practice. 

This potentially provides more reliable forecast information, a greater wealth of forecast information and 

longer lead times. There has been a move towards the use of ensemble Numerical Weather Prediction 

(NWP) models to provide meteorological forecast ensembles for flood forecasting systems. The use of 

NWPs, allows the uncertainty of the meteorological forecasts that drive the flood forecasts to be assessed 

and forecast lead times to be extended (Cloke and Pappenberger, 2009; Smith et al., 2016; HEPEX, 2017). 

Although the meteorological forecast is an important source of uncertainty, uncertainty is present in all 

components of a flood forecasting system (Pappenberger et al., 2005). The typical component of a flood 

forecasting system are represented by the blue boxes shown in Figure 1. A growing range of techniques is 

available in the flood forecasting literature for quantifying uncertainty, sensitivity, risk and decision analysis. 

However, no well-accepted guidelines exist on implementing these principles and techniques for the multiple 

sources of uncertainty affecting flood forecasting systems (Zappa et al., 2010; Liu and Gupta, 2007). A lack 

of coherent terminology or systematic approaches means that it is difficult (or perhaps impossible) to assess 

the characteristics and limitations of individual methods and select the most appropriate method for any 

particular case (Montanari, 2007) particularly for those working outside -academia. The process of selecting 

the most suitable method to predict uncertainty is no different in principle from selecting the most suitable 

model for predicting a flood. This is described as follows: ‗The essential question is not which model 

(method) is the more suitable for flood forecasting, but rather what type of information a decision maker 

needs and how they can proficiently use it to produce good and, possibly, more reliable decisions‘ (Todini 

2017).  

For flood forecasting practitioners the available literature on uncertainty methods for flood forecasting is often 

opaque which results in ineffective use of the different uncertainty methods in practice. In addition, it is often 

not clear what questions concerning uncertainty these different methods can and cannot answer. This 

means that it can be challenging to identify where the strengths and weakness lie when applying the 

methods operationally. However, the question, ‗Which uncertainty method is most suitable for which 

application?‘ is too broad to answer, owing to the many different types of flood forecasting systems. Hence, 

this paper takes an alternative approach to help clarify the quantification of uncertainty for flood forecasting 

practitioners by providing an overview of what information an uncertainty method can provide into the flood 

warning process.  

This paper concentrates on describing what information two established uncertainty methods, based on the 

use of statistics and ensembles, can provide to flood forecasting processes, by discussing two operational 

fluvial flood forecasting systems in Belgium and Canada. The objective of this paper is to identify the main 

assumptions behind the methods, their strengths and drawbacks in a way that is easy to follow for specialist 

and non-specialist alike. This paper is aimed at an audience that does not necessarily have prior knowledge 

on the topic of uncertainty and therefore it includes definitions on terminology used frequently in this and 

other papers on flood forecasting uncertainty in Table 1 (italics indicate the term is in Table 1). The paper 

starts with a short overview of the terminology used for uncertainty and the approaches adopted by flood 

forecasting systems. It concludes  with identifying where the remaining challenges and opportunities lie in 

the application of uncertainty methods to flood forecasting systems. 
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2. Overview of uncertainty 

2.1. Definitions of uncertainty  

Uncertainty results from the lack of knowledge or  the inability to accurately measure or calculate an 

observed value, which can lead to differences between the modelled and its ‗true‘ value of a variable 

(Gouldby and Samuels, 2009). Two types of uncertainty can be defined: aleatory and epistemic. Aleatory 

uncertainty is the uncertainty due to the natural variability of the physical world and reflects the inherent 

randomness in nature, whereas, epistemic uncertainty is the uncertainty due to a lack of knowledge of the 

physical world and a lack of ability to measure and model it (Li et al., 2013). This division can be useful as it 

distinguishes which uncertainties can be reduced and which cannot (Der Kiureghian and Ditlevsen, 2007).  

The literature on uncertainty in flood forecasting frequently uses the terminology ‗predictive uncertainty‘ or 

‗predicting the uncertainty‘, examples include the work of (Palmer, 2000; Todini, 2008; Weerts et al., 2011; 

Zappa et al., 2011; Van Steenbergen and Willems, 2015). Todini, (2008) defines predictive uncertainty as 

―the probability of any future (real) value, conditional upon all the knowledge and information, available up to 

the present‖. The popularity of the term ―predictive uncertainty‖ in flood forecasting research is because it 

emphasizes that it is the uncertainty around the prediction which is being described or quantified, rather than 

―validation uncertainty‖ or ―model uncertainty‖; which are defined as: ―the ability of a model to reproduce 

reality‖ (Todini, 2008; Klein et al., 2016).  

Table 1: Some definitions commonly used in uncertainty quantification and flood forecasting and/or used in 
this paper. Italics alerts the reader that a term is defined in this table.  

Term Definition 

Correct alarm (HIT) When both modelled and observed values exceed a warning threshold. 

Correct alarm ratio 

(CAR) 

The ratio between the correct alarms (HIT) and the summation of the HITs and 

False Alarms (FA). A forecasting the model exhibits a  high forecast skill  when 

CAR values are close to one.   

Correct rejection (CR) When both simulated and observed value are below the warning threshold. 

Decision makers Anybody aiming to interpret and use a flood forecast to disseminate a flood  

warning or to take other actions to mitigate and reduce flood risk from an 

imminent event. 

Deterministic forecast A forecast that provides definite information as a single forecast. In meteorology 

a deterministic forecasting model is often run at a higher spatial resolution than a 

probabilistic model. 

Ensemble forecasting Ensemble forecasting provides a set of many plausible forecasts rather than 

providing a single deterministic forecast of future conditions, ensemble 

forecasting is common in NWP. 

Ensemble Kalman 

filter (EnKF) 

Computational algorithm that uses an ensemble in processing measurements to 

find an optimum estimation of the past, present or future states of a system.  

Ensemble spread The total area of variation between the most upper and lowest ensemble. A wide 

spread indicates a high uncertainty and low predictability. 

Ensemble members Individual forecasts within an ensemble.  

Event based models Models simulating a limited period of time using observed rainfall from the past 

or a hypothetical event of some estimated probability of occurrence. 

False alarm (FA) When the forecast value exceeds a warning threshold but the observed value 

does not. 
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Term Definition 

Feasible model space The set of all the plausible values required to run a model that can be found by 

using a finite combination of all the possible model initial conditions, parameters 

and/or boundaries conditions. This will often lead to a great number of values 

which can reduced by sampling using for example the Monto Carlo technique. 

Forecast accuracy The degree to which the forecast variable conforms to its  observed value.  

Forecast skill How much better a forecast is compared to the long term average on that day 

(climatology). 

Heteroscedasticity This refers to the circumstance in which the variability of a variable is unequal 

across the range of values of a second variable that predicts it. 

Initial conditions The system state at the start of the simulation.  For example for a hydrological 

model these can be the initial state of the soil moisture, snow cover, water  level 

or river flow. Also referred to as antecedent conditions or model states.  

Lead time The time between the forecast (or the issued warning) and the arrival of the 

predicted flood , or the length of time into the future that is forecasted.  

Miss rate (MR) The ratio between the missed alarms (MIS) and the summation of the MIS and 

correct rejections (CR). The model shows high forecast skill for a CAR value 

close to zero.  

Missed alarm (MIS) When the actual value exceeds the warning threshold, but the simulated one 

does not.  

Model spin-up When the initial conditions are unknown, the model can be run for a period of 

time after which the initial conditions are assumed to no longer significantly 

impact the results. This time period is referred to as the model spin-up or model 

warm up.  

Model residual The difference between the modelled value and the observations, sometimes 

termed ‗model error‘.  

Predictive uncertainty The probability of any future (real) value, conditional upon all the knowledge and 

information, available up to the present, see Todini, (2008). 

Probabilistic forecast When a forecast includes the associated probability of the event occurring.  

 

Reference Climatology The 30 year average hydrological or meteorological conditions for the calendar 

period in question.  

Under-dispersed 

ensemble 

When the width of the probability density of the forecast ensemble is narrower 

than the observations. This means that the ensemble members are too similar to 

each other and different from the observations.  

2.2. Sources of uncertainty 

Uncertainty affects each element in a flood forecasting system. Which sources of uncertainty are pertinent 

will depend on what elements the forecasting system contains, as shown in Figure 1. For example, if a 

hydraulic model is part of the chain which provides flood level and inundation extent, additional uncertainty 

sources are present compared to a system which uses a rainfall-runoff model to produce river flows alone or 

a simple level to level correlation. This means that in the literature the named sources affecting a forecast 

system can vary. In the literature the most commonly discussed sources of uncertainty for flood forecasting 

systems include: 
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 Uncertainty inherent in the meteorological forecast: Precipitation is often considered one of the most 

important atmospheric inputs into a flood forecasting system, especially in catchments without snowmelt 

processes.  NWP is commonly used to forecast precipitation. The uncertainty in NWP forecasts are 

related to the initial conditions, boundary conditions and model uncertainty, which are assessed using an 

ensemble. Ensembles comprise multiple weather and climate prediction models with explicit perturbation 

of initial conditions and model formulations (Palmer, 2000). Challenges in using precipitation forecasts for 

flood forecasting systems include: the scale of the atmospheric model does not necessarily match the 

hydrological model (uncertainty due to downscaling is not considered further in this paper, for more 

information see (Maraun et al., 2010; Schoof, 2013; Gutmann et al., 2014)); increasing uncertainty in 

precipitation forecasts for rare events; increasing uncertainty in precipitation forecasts with increasing 

forecast lead time and uncertainty related to convective precipitation which cannot be resolved at 10-

40km grid scales, a particular issue for medium range predictions (5 to 10 days)  (Pappenberger et al., 

2005; Rossa et al., 2011). For a comprehensive review on uncertainty of precipitation forecasting see 

(Palmer, 2000; Rossa et al., 2011; Liguori and Rico-Ramirez, 2014). 

 Uncertainty from measurement and observations: The calibration and verification of flood forecasting 

system uses observations, which themselves are uncertain (Gotzinger and Bardossy, 2007). 

Observations are subject to random and systematic errors that can vary over time. The spatial and 

temporal characteristics of the observations do not always directly correspond to the modelled fluxes and 

storages leading to uncertainties added during the processing of observation (Juston et al., 2013). For 

example, interpolation can lead to errors and issues with capturing the spatial variability (Gotzinger and 

Bardossy, 2007) and using rating curves, which relate water levels to flows, are a major source of 

uncertainty in discharge estimations (Di Baldassarre and Montanari, 2009; McMillan et al., 2012). For a 

complete overview of uncertainty due to measurements and remote sensing data see (McMillan et al., 

2012;  Li et al., 2016; Li et al., 2016). 

 Uncertainty due to initial conditions: Uncertainty due to initial conditions relates to the uncertainty of the 

land surface state, including the soil moisture, snow cover, initial state of the river and other waterbodies 

in the catchment (Madsen and Skotner, 2005; Gotzinger and Bardossy, 2007; Li et al., 2009). Land 

surface state measurements are often not in proportion to the heterogeneity of the land surface and this 

is a source of uncertainty. For example soil moisture is often a single point measurement which will be 

spread over to the modelled catchments or grid (Beven and Binley, 2014).  

 Uncertainty due to hydrological and hydraulic models being unable to fully represent processes: The 

inherent simplifications of the model in order to represent the more complex real system leads to 

uncertainty. Model structure uncertainty refers to the uncertainty of the represented processes, the 

chosen representations (e.g. St. Venant or kinematic wave equation for channel routing) and the 

spatiotemporal scales used in the model (Smith et al., 2016). An example of this is the use of polygons or 

grids to represent catchments, this will lead to uncertainty due to the physical processes often occurring 

on smaller scales than the model elements (Gotzinger and Bardossy, 2007).  

 Uncertainty due to model parameters: The estimation or calibration processes of parameters in models 

inevitably leads to uncertainty. Catchment characteristics have natural variability,  which leads to local 

spatial heterogeneities and non-stationarities in the catchments affect the parameters, making them 

difficult to estimate effectively (Gupta et al., 2003). A second issue affecting the uncertainty of model 

parameters is that the performance of a calibrated model in prediction is not necessarily as good as 

during calibration (Beven and Binley, 2014). This can be caused by future conditions inducing a different 

type or range of responses  beyond the models calibrated range (Beven, 2012). For a comprehensive 

overview on parameter uncertainty the reader is referred to (Beven and Freer, 2001; Vrugt et al., 2003).  

The above sources of uncertainty are essentially epistemic in character, although arguably they all have 

aleatory components. These sources of uncertainty are often combined in: input (observations, downscaling 

and NWP), initial conditions and modelling uncertainty (model structure and/or model parameter uncertainty) 
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(Liu and Gupta, 2007; Zappa et al., 2011; Van Steenbergen and Willems, 2015; Klein et al., 2016; Thiboult et 

al., 2016).  

 

 

 

Figure 1: Model elements and sources of uncertainty in a typical flood forecasting system 

2.3. Uncertainty methods in flood forecasting 

In quantifying flood forecasting uncertainty two different philosophies can be identified. The first is using the  

statistical analysis between forecast and observed values as a measure of uncertainty. Methods in this 

philosophy are referred to as ‗statistical methods‘. The second is philosophy is using a set of plausible 

forecasts as a measure of uncertainty. Methods within this philosophy are referred to as ‗ensembles 

methods‘. Some uncertainty methods use a combination of both of these two philosophies.  

The statistical methods can be referred to as post processors. They calculate the model residual and are 

based on the assumption that the model uncertainty from the past is representative of the uncertainty in the 

future. The information the statistical method provides is an estimation of the uncertainty of a specific water 

level/discharge for a specific lead time.  The question this estimation procedure answers is: ‗What is the 

probability of the forecasts being accurate, based on past performance?‘ Statistical methods range in 

complexity and in their assumptions. Some methods like the Hydrological Uncertainty Processor (HUP) 

(Krzysztofowicz, 1999) make direct assumptions on the distribution of the model residual, where other 

methods like Quantile Regression (QR) (Koenker, 2005) avoid this, but make other assumptions in order to 

calculate the quantiles (Wani et al., 2017). Finding a reliable statistical methods to use model residuals to 

represent uncertainty remains a mathematical and theoretical challenge.  

Ensembles are generally created by combining different runs, where each run is within the feasible model 

space of the model structure, model parameters and forcing data. The ensembles method assumes that it is 

possible to define the model structure and parameter space which is representative for the predictive 
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uncertainty. The information the ensemble method provides is a measure of the spread of the forecast based 

on the lack of knowledge on the models processes, parameters and/or initial conditions  (Todini, 2017). The 

question the method can answer is: What is the likely spread of the forecast given the known lack of 

knowledge on the model structure, parameter and/or initial conditions of the catchment, river and/or 

atmosphere? Finding a reliable methods to create and sample from model space is a mathematical and 

theoretical challenge. Methods to create ensembles reflecting uncertainty in flood forecasting models focus 

on one or more uncertainty sources (Boucher et al., 2012).  For example the Shuffled complex evaluation 

metropolis algorithm (Vrugt et al., 2003) creates an ensemble of model parameters, the Ensemble Kalman 

Filter (Evensen, 2003) creates an ensemble of initial conditions and the concept of using a multi-model 

ensemble treats model structural uncertainty (Thiboult et al., 2016; Todini, 2017).  

There are uncertainty methods that use a combination of both philosophies. For example (Hemri et al., 2013) 

use statistical methods to improve the hydrometeorological ensemble which has been produced by rerunning 

a hydrological model with a meteorological ensemble.  

An overview of methods capturing uncertainty that are applied to flood forecasting systems is presented in a 

table in the supplementary material and as summary in Error! Reference source not found.. The objective 

of the table is not to be complete, but to give a representative indication of the variety of methods available to 

flood forecasters. It is shown that uncertainty methods are able to deal with parameter uncertainty, 

uncertainty due to the meteorological forecast, model structure uncertainty, uncertainty in gauged flow data 

and ‗total‘ uncertainty as an aggregate. Most methods have been applied to hydrological models, although 

there are examples of hydraulic models and inundation models. The catchments that the uncertainty 

methods have been applied to vary both in size and location.  

3. Application of a statistical method 

This section provides an analysis of the character of a statistical method applied to forecast model residuals, 

using as an example the Non Parametric Databased Approach (NPDA) in the Belgian case reported by (Van 

Steenbergen et al., 2012).  

3.1. Application description  

Van Steenbergen et al., (2012) describe the forecasting system at the Flanders Hydraulics Research Centre 

(FHRC) (FHR, 2017) for navigable rivers which provides deterministic forecasts several times a day with a 

48 lead time for the main river in Flanders including the Yser, Dender and Demer, more information on the 

forecasting systems for these rivers is in Figure 4 and Table 2. During extreme flood events the system 

performed less well than hoped. For some catchments forecasts did not meet the acceptable level at a 

maximum relative error of 10%. The uncertainty in the forecasts is not surprising or indeed unique to this 

system. Any flood forecasting system that simulates complex hydrological and/or hydraulic processes will do 

so with a degree of uncertainty (Leedal et al., 2010; Pappenberger et al., 2005). To allow end users, flood 

managers and other decision makers to account for this uncertainty, transitioning to probabilistic forecasts 

was explored by applying Non Parametric Databased Approach (NPDA). The NPDA uses a statistical 

analysis of the model residual. The residuals are divided into classes where the distribution of the forecast 

residuals is assumed the same. The percentiles are calculated per class for the different lead times and 

populated into a three dimensional matrix. This matrix is used as a lookup table to provide a forecast with 

confidence intervals. The schematisation of the NPDA method is shown in Figure 5. FHRC explored  the 

NPDA due to its stability and speed, an ensemble approach was rejected due to its excessive computational 

needs. 
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Figure 2: Chronological overview of available methods for uncertainty estimation in flood forecasting based 
the table available in the supplementary material. 

 

Table 2: Characteristics of the application of the Non Parametric Databased Approach, a statistical method. 

 

Location Flanders, Belgium. The rivers Yser, Dender and Demer, overview in Figure 4. 

Forecast centre Flanders Hydraulics Research Centre for Navigable Rivers. 

Catchment mean 

annual rainfall 

700 to 800mm per year. 

Average annual flows 2 m
3
/s to 15 m

3
/s. 

Catchment area 1,101km
2
 (Heylen, 1997) to  2,275 km

2
 (Cauwenberghs and Maeghe, 2007) 

Catchment description Catchments with diverse land use including arable, urban and forest. Rivers  

including flow regulation structures in the form of hydraulic gates and sluices.  

Forecast length 48 hours 
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Models used in the 

flood forecasting 

system 

Lumped conceptual rainfall-runoff model for upstream catchments, 

hydrodynamic models for the main rivers and data-assimilation for real-time 

updating. 

 

Flood plain 

representation 

Quasi-two dimensional i.e. (the floodplain was schematized into one dimensional 

river branches linked to the main river by spills). 

 

Data for mode setup Field survey data at 50 m intervals, 5x5 m with ±0.1 m vertical resolution digital 

elevation model (for flood plain representation).  

Data for calibration Observed rainfall, evaporation, level and flow time series. Catchment average 

rainfall generated using Thiessen polygon approach. For the ungauged 

parameters of the neighbouring catchment are used. 

 

 

 

Figure 3: Schematisation of the Flood Forecasting models at FHRC (figure produced by L. Boelee) 

3.2. Performance of a statistical approach 

To assess the performance of the probabilistic forecast (Van Steenbergen et al., 2012) compared the 

exceedance of alarm levels of the deterministic with the probabilistic forecasts for three catchments. The  

probabilistic forecast was optimised using the Correct Alarm Ratio (CAR) and Miss Rate (MR). The CAR-MR 

is a value between 0 and 1, with 1 being a perfect forecast. All four catchments show in increase in the CAR-

MR score. Two out of the four catchments had a high CAR-MR for the deterministic forecasts. Using the 

probabilistic forecast for these catchments showed minor increase in the CAR-MR score (0.01 and 0.02) 

when compared to the deterministic forecasts. For the other two catchments where the performance of the 

deterministic forecast was lower according to the CAR-MR scores, the use of probabilistic forecast showed 

an improved performance with the CAR-MR score increasing with 0.1 for one catchment and a minor 

increase in the CAR-MR score 0.02 for the other. Producing probabilistic forecasts using the non-parametric 

data approach can be beneficial for the forecast accuracy. 
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Figure 4: Catchment locations of application 1, the NDPA 

Source: Reproduced from (Van Steenbergen et al., 2012) with permission of the authors.  

3.3. Advantages and disadvantages 

The advantages of using a probabilistic forecast generated by the NPDA is that there is an improved forecast 

performance. This is expressed quantitatively by the increase shown in the CAR-MR scores for the 

probabilistic forecasts when compared with the deterministic ones. The method is straightforward to apply to 

a new or existing system and requires modest computational resources. The speed and simplicity of the 

method means it can be combined with flood forecasting models that are run at a high frequency and where 

the hydrological and/or hydraulic models have longer run times. The method can be used to estimate ‗total‘ 

uncertainty of a forecast, aggregating initial condition uncertainty, past meteorological uncertainty and 

uncertainty from the hydrological and hydraulic models. The method‘s strength lies in applying it to a forecast 

system where probabilistic forecasts are required, but there is limited budget and computational resources, 

or a forecast system where it is undesirable to change the current deterministic setup. 
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Figure 5: Schematisation of the NPDA 

Source: Figures at step 3 and 4 reproduced from (Van Steenbergen et al., 2012)  with permission from the authors.  

Figures at step 1 and 2 produced by L.Boelee.  

The disadvantages of this approach is that it relies heavily on observed streamflow data and requires regular 

updates with new data, six monthly in the Belgian case. Owing to the databased aspect of the method the 

uncertainty matrix is directly linked to the gauged location and can only be reliably used there. The 

transferability of the uncertainty matrix to an ungauged location was not explored. Van Steenbergen (2012) 

uses two years of forecasts and observed data for the setup of the method, this could be a disadvantage for 

new systems. Another drawback of the method is that the uncertainty is not captured equally across the 

water level/discharge spectrum. Classes in which the percentiles are calculated will require a minimum 

number of data points. For more extreme flows there will be fewer model residuals and therefore the water 

level or flow class will need to be broadened, leading to less reliable percentile calculations. Extreme values 

that have not occurred before will assume the percentiles in the most extreme classes are representative. 

 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
4. Application of an ensemble approach 

This section provides an analysis of the character of a typical ensemble forecasting approach, using as an 

example the three-hourly forecasts in the Canadian case reported by (Thiboult et al., 2016). This operational 

system uses the ensemble meteorological forecasts available from the European Centre for Medium-Range 

Weather Forecasts (ECMWF). 

4.1. Application description  

Thiboult et al., (2016) describe the flood forecasting system of Québec (Table 3) which issues five days of 

three hourly stream flow forecasts to municipal water managers and five daily forecasts to the public. 

Currently a statistical method assesses uncertainty in 10 river basins, more details in (Centre d‘expertise 

hydrique du Québec and MDE, 2017) (Matte et al., 2017). With the aim of seeking more accuracy and 

reliability of the streamflow forecasts and improvement in the current estimation of uncertainty, an 

experiment was performed to disaggregate the sources of uncertainty. Three different ensembles were used 

to capture three types of uncertainty; meteorological uncertainty, initial conditions uncertainty and structural 

uncertainty of the hydrological models, shown in Figure 7. The assumption when using an ensemble is that 

the space from which the ensembles are sampled has been defined such that the ensemble spread is 

representative for the predictive uncertainty. For the meteorological uncertainty the 50 member ensemble  

from ECMWF was downscaled and for the initial conditions an ensemble Kalman Filter (EnKF) was used, 

producing a 50 member ensemble (Thiboult and Anctil, 2015a). The EnKF has been setup to assimilate the 

gauged stream flow data and has been optimised with all the hydrological models, more details on the EnKF 

see (Thiboult and Anctil, 2015b). To represent structural uncertainty of the hydrological model an ensemble 

of 20 members was used, by selecting 20 hydrological models of varying complexity (Seiller et al., 2012). 

The system is setup flexibly allowing the different ensembles to be turned 'off' or 'on', represented by the 

dotted arrows in Figure 7. In this experiment the evapotranspiration and snowmelt schemes were not varied, 

meaning that the model structural uncertainty in these component is not included in the predictive 

uncertainty. 

Table 3: Characteristics of the application the ensemble method.  

  

Location Qubec, Canada. 20 catchments, overview in Figure 6.  

Forecast centre Ministry of sustainable development, the environment and climate change 

(Ministère du Développement durable, de l‘Environnement et de la Lutte 

contre les changements climatiques).  

Catchment mean annual 

rainfall 

877mm to 1,412mm. 

 

Average annual flows 8 to 300 m
3
/s. 

Catchment area 512km
2
 to 15,342km

2
. 

Catchment description Natural catchments without any influence of dams and structures. 

Forecast length Five day forecast operationally, for the uncertainty experiment a 9 day 

forecast. 

Models used in the flood 

forecasting system 

Operational forecasting system uses a semi-distributed physics-based 

hydrological model HYDROTEL  (Fortin et al., 1995). The uncertainty 

experiment uses 20 lumped rainfall-runoff hydrological models (Seiller et al., 

2012).  
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Data for calibration 10 years of data, four years of data were used for the model spin-up and 

two years of forecast were created using 2 years of meteorological 

forecasts. The data included temperature, precipitation, telemetered flow 

data, forecast temperature and forecast precipitation. 

 

 

 

Figure 6: Catchment locations of application 2, the ensemble method 

Source: Reproduced from (Thiboult et al., 2016)  with permission from the authors 

 

4.2. Performance of the ensembles approach 

Thiboult et al., (2016) use different scores to assess the performance of the ensembles, which include 

comparing the probabilistic forecast, deterministic forecast and observations. The scores include the 

continuous ranked probability score, CRPS (Matheson and Winkler, 1976), reliability diagram (Stanski et al., 

1989), mean absolute uncertainty of the reliability diagram which is the average distance between the 

forecast and observed frequencies over all quantiles of interest (Brochero et al., 2013; Thiboult et al., 2016) 

and Spread Skill Plot which takes the root mean squared error (RMSE) compared to the square root of 

average ensemble variance for which the spread should match the RMSE (Fortin et al., 2014). Cloke and 

Pappenberger (2008) provide more information about skill scores. The forecast improvement and 

representativeness of the uncertainty are assessed by these scores.  

The results show the contributions of the three sources of uncertainty change when looking at different 

lead times and catchments. The meteorological uncertainty increases for longer lead times as is typical. With 

this specific probabilistic forecast (downscaled ECMWF) it improved forecast performance substantially for a 

nine day lead time, but only marginal improvements are visible for shorter lead times. It should be noted that 

for this particular case the ECMWF downscaled precipitation forecast is shown to have an under-dispersed 

ensemble spread. There are methods available that aim to improve the ensemble spread of the precipitation 

forecast (Verkade et al., 2013), however this was not part of Thiboult et al., (2016) research. Including 

hydrological structure uncertainty improved the forecasts substantially through the shorter lead time (up to 

three days). For day six there is a minor improvement and for day nine using the 20 member hydrological 

ensemble showed no more skill than the reference climatology. The initial conditions ensemble shows a 
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significant improvement of skill for the short lead time (up to three days) and a minor improvement compared 

to the deterministic forecast for day six. For day nine using the 50 ensembles generated by the EnKF does 

not show more skill than the reference climatology. The hydrological ensembles and the ensemble of initial 

conditions overlap in the treatments of uncertainty sources and indeed show a similar forecast improvement. 

 

 

 

Figure 7: Overview of the ensemble approach in the Quebec catchments (figure produced by L. Boelee).  

 

4.3. Advantages and disadvantages 

The advantages of the ensemble method are that combining the EnKF, the meteorological ensembles and 

the hydrological multi model to generate a probabilistic forecast offers an improved skill score compared to 

the deterministic forecast, for all lead times. The approach allows the different sources of uncertainty to be 

assessed separately in an operational setting. This knowledge can be used to give decision makers 

information on the total uncertainty and on where that uncertainty is coming from, offering richer information 

for decisions. The approach does not relay on a specific gauged location and results with uncertainty 

estimation can be extracted anywhere in the modelled domain and can be applied to any forecasting system 

where probabilistic forecasts are required. 

The disadvantages of the ensemble method are that creating an ensemble depends on the definition of the 

feasible model structure and parameter space. However, defining this space in itself is uncertain, which can 

lead to the ensemble being under or over dispersive and thus not representing the predictive uncertainty 

accurately. For some forecasting systems the total ensemble size of 50,000 members will be a significant 

drawback for use in practice, owing to the consequent required increase in computation resources, data 

management and fast running of models. Thiboult et al., (2016) found redundancy within the total ensemble, 

but effectively reducing the ensemble was not part of the research. Reducing the ensembles is not as 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
straightforward as selecting the most dominant source of uncertainty due to the varying nature of the 

uncertainty across catchments and lead times,  

5. Comparison and selection of the methods  

Using either the ensemble or statistical method to generate probabilistic flood forecasts has shown an 

increase in the skill scores as described in Sections 3 and 4, compared to using the deterministic forecast. 

Both the ensemble method and the statistical method are based on a different set of assumptions and 

capture different aspects of uncertainty. The statistical method is based on the assumption that the past 

performance is representative of the uncertainty in the future and the ensemble method bases the 

uncertainty on the lack of knowledge on the models processes, parameters and/or initial conditions. In 

addition to these  differences in the information that the methods capture, there are differences in the 

application, practicality and outputs of both methods. These differences are summarised in Table 4.  

Table 4: Overview of the statistical and ensemble methods 

 Statistical methods Ensembles 

Computational requirements, 

resources 

Most methods have low 

computational requirements and 

resources.  

Dependent on the size of the 

ensemble, however 

computational requirement and 

resources are likely to be higher 

than the statistical methods.  

Application to an existing system Can be added onto an existing 

flood forecasting chain as a post 

process.  

Forecast system would need to 

be structured in a way that makes 

rerunning of models within of the 

forecasting system possible 

Fixed location or whole domain Can only be applied to locations 

with gauged stream flow or level 

data 

Can be generated for the whole 

model domain 

Sources of uncertainty Captures the ‗total‘ uncertainty The uncertainty can be 

disaggregated per sources or 

targeted to a single source 

 

Four practical steps represent a possible approach for selecting a method and applying uncertainty in a 

current or future flood forecasting system: 

1. List the constraints of your current of future system; e.g. model type and run times, requirements of a 

pre-existing system, computational resources and data availability.  

2. Identify how the uncertainty will be used and what the associated requirements that will result in. For 

example, does the uncertainty need to be broken down into components, is there a NWP ensemble that 

needs to be included etc.  

3. Identify which type of method suits your application best: ensemble, statistical or combined, use Figure 8.  

4. Use the table in the supplementary material to find literature on suitable methods for your method type 

and catchment type.  
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Figure 8: Selection of Methods flow chart 

 

6. Discussion 

Five challenges for using and researching uncertainty in flood forecasting have been identified during this 

review. 

The first challenge is that there are many different definitions for uncertainty that are used within flood 

forecasting. There have been calls for a more coherent terminology (Montanari, 2007), however this has 

proved difficult to achieve. In the last decade there has been more consistency in using the term predictive 

uncertainty as defined by (Krzysztofowicz, 1999; Todini, 2008) to describe uncertainty in flood forecasting 

systems as opposed to uncertainty in event based models. However, there is little agreement on how 

predictive uncertainty is to be quantified, with (Todini, 2017) referring to uncertainty from an ensemble 

method as forecast sensitivity rather than uncertainty and (Matte et al., 2017) referring to a statistical 

methods as ‗dressing‘ a deterministic model. Although finding agreement on terminology is not a trivial 

matter, greater clarity can be achieved by defining the technical terms within a piece of work as in the 

FLOODsite Language of Risk (Gouldby and Samuels, 2009) and in this paper in Table 1.   

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
The second challenge is that both statistical and ensemble uncertainty quantification methods have 

mathematical and theoretical challenges remaining. Currently it is unclear what assumptions have been 

made in order to quantify uncertainty and what the consequences of these assumptions are, indicating a lack 

of knowledge about uncertainty estimation. Beven (2016) provides a comprehensive discussion about the 

theoretical challenges of uncertainty quantification from the perspective of their type (e.g. aleatory, 

epistemic). When using simulation and resampling techniques the challenges are how to create a reliable 

and practically sized ensemble. When using techniques based on statistical analysis of model residuals the 

challenges are how to deal with creating representative uncertainty bands for the future based on the 

historical model residual, this includes dealing with non-stationarity and heteroscedasticity of the residual. 

Research questions on the quantification of uncertainty that this review has brought forward are: How do the 

assumptions made when creating an ensemble affect the assessment of predictive uncertainty? And: What 

are the implications of assuming that the statistics of the historical model residuals are representative for the 

predictive uncertainty? This calls for more applied research testing different uncertainty quantification 

methods on different catchments and flood events in a comparable way.  

The third challenge is that research on the representativeness of the uncertainty spread for prediction 

and extreme events remains limited. For example the Belgian application Van Steenbergen et al., (2012) 

shows the performance of uncertainty spread using the same time period upon which the uncertainty matrix 

was constructed. This only shows the performance of the method on past uncertainty, not on the predictive 

uncertainty. The representativeness of the uncertainty bands for the forecasts remains unknown. There are 

opportunities using existing methods and techniques to assess and adjust the representative of a model 

ensemble or uncertainty bands for the predictive uncertainty, examples include (Abramowitz and Gupta, 

2008; Madadgar et al., 2014). A research question that arises is: ‗How can the representativeness of 

uncertainty bands around flood forecasts be assessed?‘. A review is needed of the available metrics which 

assess representativeness of uncertainty spread highlighting their strengths, weaknesses and application.  

The fourth challenge is that both methods struggle to represent uncertainty without observed data, the 

highest uncertainty is often related to ungauged catchments and the statistical method cannot be applied 

without data. The transferability of uncertainties from gauged to ungauged catchment has been explored 

(Bourgin et al., 2015), but more research is required.  For the ensemble methods, in defining the sampling 

space for ensembles observed data is used. Both methods are dependent on observed data in testing the 

representativeness of the uncertainty spread.  A research question that remains to be answered is: how can 

the representatives of uncertainty of an ungauged (sub) catchment be assessed? The Prediction in 

Ungauged Basins (PUB) initiative sought to answer this question and offered ways forwards which include 

the use and assimilation of satellite data (Hrachowitz et al., 2013). The PUB work needs not only to be 

continued, but also requires an equivalent focussing on Forecasting in Ungauged Basins.  

 

The fifth challenge is to generate uncertainty information which can be used by decision makers. Decision 

makers work in a complex environment in which scientific information is often not prioritised above 

regulatory, institutional, political, resource and other constraints (Morss et al., 2005). Recent work by 

(Leskens et al., 2014) shows that the usefulness of flood forecasting model outputs to decision makers 

depends on the type and quality of the output and the flexibility and speed of the model. In order to generate 

useful uncertainty information for decision makers, they need to be incorporated into the research and 

development process. This cannot be done without long-term partnerships between scientist, product 

developers and different groups of decision makers (Meo et al., 2002) and (NRC, 2004) and effective 

communication (Bruen et al., 2010).  

The research priority emerging from this discussion is the need to apply uncertainty quantification methods 

and theories more widely to catchments and flood events in a comparable way.  
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7. Conclusions 

This review aims to provide practitioners with information to help match an uncertainty quantification method 

to their application. This is not straightforward owing to the variety of flood forecasting and warning systems. 

This paper has focussed on two specific applications of two well-known types of uncertainty quantification 

methods: statistical and ensemble. This research concludes that the statistical uncertainty quantification 

methods can answer the question: what is the probability of the forecasts being accurate, based on past 

performance? This method should be applied when the users require an estimation of the uncertainty of a 

flood forecast as probabilistic bands based on the historical uncertainty. The question that the ensemble 

methods can answer is: what is the spread of the forecast given the known lack of knowledge on the model 

structure, parameter and/or initial conditions of the catchment, river and/or atmosphere? The application of 

this approach would be targeted at a forecast system where uncertainty information from a specific source is 

required, for example, uncertainty from the meteorological forecast. Another application is where the 

forecaster needs uncertainty information at ungauged locations as well as gauged location in the catchment. 

The advantages of the statistical methods are mostly practical, related to the low computational requirements 

and resources needed and the fact that it can be bolted onto an existing system as a post process. The 

drawbacks are that the outputs are limited to locations with observed data and uncertainty cannot be split out 

into different types. The strength of the ensemble method lies in the fact that it treats the uncertainty from the 

source leading to more information on uncertainty which can be disaggregated, tracked through the cascade 

of models and through lead times, and is available in locations without observed data. The drawbacks are 

related to the computational power required to run an ensemble and the resources required for post 

processing, analysing and archiving the additional volumes of data. In conclusion, both methods are able to 

improve on a deterministic forecast and the choice will be a trade-off between the information required, 

available resources and the available data. Using available methods and theories from literature together 

with this overview guiding practitioners it should be possible to estimate uncertainty and produce a 

probabilistic forecast using any flood forecasting system.  
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