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Abstract

In this paper, we report the synthesis of boron doped C3N4/NiFe2O4 nanocomposite and its 

application as a visible-light photocatalyst for the degradation of methylene blue (MB). Boron-doped 

C3N4 (BCN) was prepared by simple thermal condensation of dicyandiamide with boric acid, and 

NiFe2O4 nanoparticles were prepared by the simple sol-gel method. The as-synthesized 

nanocomposite materials were characterized and confirmed by the X-ray diffraction spectroscopy, 

Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, transmission 

electron microscopy, UV-Visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, 

and photoluminescence spectroscopy. The photocatalytic activity of BCN/NiFe2O4 nanocomposite was 

evaluated towards the degradation of MB in the presence of visible light irradiation. The obtained 

results confirmed that BCN/NiFe2O4 composite has higher degradation efficiency (98%) than that of 

BCN and NiFe2O4.

Keywords: Thermal condensation; Sol-gel method; BCN/NiFe2O4 nanocomposite; Visible-light 

photocatalyst; Methylene blue.
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Introduction

The major environmental issues are directly caused by the growth of industrialization with 

increasing world population leading to depletion of air, soil and water systems [1]. The untreated waste 

and pollutants discharged from these industries have a high concentration of organic contaminants, 

salts, dyes, and heavy metals [2]. Among all, dyes and pigments are considered as toxic pollutants due 

to their harmful effect on to the hydrosphere, agriculture and living organisms [3]. Furthermore, the dye-

containing effluents are more stable and non-biodegradable due to its complex structure [4]. To date, 

different methods have been employed to remove the dyes such as photocatalysis [5, 6], catalytic 

treatment [7] and chemical treatment [8]. Over the past few decades, the semiconductor photocatalytic 

technology has emerged as an alternate procedure for the elimination of organic pollutants and to make 

the pollutant mineralize into CO2 and H2O [9]. 

Carbon nitride (g-C3N4) is a well-known semiconductor material, has attracted much attention in 

a wide range of fields due to its high chemical stability [10], low cost [11], less toxicity [12] and 

significant bandgap (2.7-2.8 eV) [10]. More recently, g-C3N4 incorporated metals [13, 14], metal oxides 

[13, 15] and non-metals [13, 16] have shown enhanced photocatalytic performance towards the 

degradation organic dyes than pristine g-C3N4. Also, the introduction of non-metals such as boron or 

sulfur has maintained the metal-free nature of g-C3N4 because of their high ionization energy and high 

electronegativity [17]. Among different non-metals, boron is a lightweight element and forms a stable 

chemical bond with the g-C3N4 [18]. Due to the discussed unique properties, it can often alter the 

photocatalytic activity of g-C3N4 when combined with other semiconductor materials [19]. The useful 

addition of semiconductor materials into the boron doped g-C3N4 (BCN) matrix can reduce the energy 

band gap and electronic structure which may eventually increase the electron-hole separation and the 

catalytic activity [20]. More recently, the spinel ferrite structures (MFe2O4, M=Zn, Ni, Co) have found 

significant interest in the application of organic dye degradation [5, 21] and water splitting reactions [22, 

23]. In particular, nickel ferrite (NiFe2O4) is a well-known visible-light semiconductor and having a 
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narrow band gap of 2.19 eV with decent photocatalytic stability [24]. Recent studies revealed that the 

photocatalytic activity of C3N4 had been improved in the visible light region when combined with noble 

metal and metal oxides [25]. The heterojunction structure of the semiconductor composites is the main 

reason for the enhanced photocatalytic activity. However, NiFe2O4 decorated BCN nanocomposite has 

never been used for the photocatalytic applications. Given the above points, the integration of unique 

properties of BCN with NiFe2O4 could enhance the photocatalytic activity of organic dyes than that of 

the pure BCN and NiFe2O4. 

In this present work, we report the synthesis of BCN/NiFe2O4 nanocomposite for the first time. 

The as-prepared BCN/NiFe2O4 nanocomposite was used as a novel visible-light catalyst for the 

photodegradation of organic dye, and methylene blue (MB) was used as a model dye for the 

photocatalytic measurements. The photocatalytic activity of BCN, NiFe2O4 and BCN/NiFe2O4 towards 

the degradation of MB was studied and discussed in detail. The photocatalytic degradation mechanism 

of MB using the photocatalyst has also been discussed.  

Experimental

Materials 

Iron chloride (FeCl3, 98%, Alfa Aesar, WH, USA), nickel chloride (NiCl2.6H2O, Sigma Aldrich, 

MO, USA), boric acid (H3BO3, J.T. Baker, CV, PA), dicyandiamide (C2H4N4, 99%, Alfa Aesar, UK), 

sodium hydroxide (NaOH, Nihon Shiyaku Industries Ltd., Taiwan) and double distilled water was used 

throughout the experiment. All chemicals used in this work were of analytical grade and were used as 

received.

Synthesis of BCN

BCN was prepared by thermal polycondensation reaction using dicyandiamide and boric acid 

[25]. Briefly, 1.68 g of dicyandiamide and 0.6 g of boric acid were evenly grounded using an agate 

mortar. Further, this mixture was placed into a crucible with a lid and heated in a muffle furnace at 550 
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°C for 3h with a heating rate of 5°C min-1. The final powder was collected, washed with ethanol 

followed by water and dried in an oven for 5 hr at 80°C.  

Preparation of BCN/NiFe2O4 nanocomposite

The following procedure was used for the preparation of BCN/NiFe2O4 nanocomposite. First, the 

dispersion of BCN (1 g) in 100 mL water was prepared using ultra-sonication method (30 min). About 1 

M of NiCl2 and 2 M of FeCl3·9H2O was added into the above dispersion with continuous stirring. The pH 

of the solution was maintained at pH~13 using 3 M NaOH. Then, the emulsion was stirred for 1 h at 

80°C using magnetic stirrer and dried at 90°C. The obtained powder was calcined for 3h at 450°C with 

a heating rate of 5°C min-1. The obtained sample was labeled as BCN/NiFe2O4 nanocomposite. The 

similar procedure was used for the preparation of the NiFe2O4 and was prepared without BCN.

Characterization

The structural patterns and crystallite size of the synthesized materials were analyzed by the X-

ray diffractometer (XRD) PANanalytical X’Pert PRO instrument with CuKα radiation (λ=1.5418 Å). The 

surface morphology and elemental analysis of as-synthesized nanocomposite materials were analyzed 

using a JEOL-JEM2100F transmission electron microscopy (TEM) and JEOL JSM-7100F field-emission 

scanning electron microscope (FESEM). Fourier-transform infrared (FT-IR) spectra were obtained by 

Perkin Elmer FT-IR spectrometer. The FT-IR sample pellets were prepared using KBr substrate with 

synthesized different materials.  UV–visible diffuse reflectance spectra (UV-DRS) was analyzed using 

Cary 5000 UV-Vis-NIR spectrophotometer with an integrating sphere attachment. A spectralon blank 

was used as the reference. The X-ray photoelectron spectroscopy (XPS) was analyzed by JEOL JPS-

9030. Photoluminescence (PL) spectroscopy was measured using Dongwoo-Ramboss 500i, Gyeonggi-

Do, Korea.

Photodegradation Experiments

For the degradation experiments, the MB was used as a model textile pollutant to evaluate the 

catalytic performance of as-synthesized materials. The Mercury-Xenon lamp (350 W, 0.33 mW cm-2, 
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Prosper Technology, Taiwan) light was used as a visible light source. For the experiment, 100 mL of 

MB (5 ppm) dye was mixed with 100 mg of BCN/NiFe2O4 nanocomposite. Before the light introduction, 

the above mixture was stirred for 30 minutes to obtain dye-catalyst adsorption equilibrium. At a preset 

time (5 min), about 4 mL of the dispersion was drawn and filtered for the UV measurements. 

Results and discussion

Characterization of the as-synthesized materials

The structural and phase information of all the samples were characterized by XRD. Fig. 1A 

shows the two distinct diffraction peaks for typical BCN at 26.9° and 43.8° which can be indexed as 

(002) and (100) planes (JCPDS card No. 34-0421) [26]. The significant broad peak at (002) attributes to 

the higher inter-planar distance like boron nitride and graphite. The plane (100) is due to the in-plane 

reflections of BCN [27, 28]. The diffraction peak pattern of NiFe2O4 detected at 30.15°, 35.65°, 44.49°, 

51.95°, 57.24° and 62.96° which are designated by their corresponding indexes 220, 311, 400, 422, 

511 and 440 respectively (JCPDS 74-2081) [24]. The peaks at 26.74°, 35.65°, 44.49°, 51.95°, 57.24°, 

62.96° can be ascribed to the (002, 220, 311, 400, 422, 511 and 440) of BCN/NiFe2O4 nanocomposite. 

The results confirmed the successful formation of BCN/NiFe2O4 nanocomposite.

Fig. 1 A) XRD patterns of as-synthesized BCN, NiFe2O4 and BCN/NiFe2O4 nanocomposite. B) FT-IR 

spectra of BCN, NiFe2O4 and BCN/NiFe2O4 nanocomposite.
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The FT-IR spectra of BCN, NiFe2O4 and BCN/NiFe2O4 nanocomposites are shown in Fig. 1B. 

The NiFe2O4 and BCN/NiFe2O4 nanocomposite shows a broad vibration band at 3100-3500 cm-1 and is 

due to the stretching vibrations of N-H or O-H group. The peaks in BCN from 1200 to 1700 cm-1 can be 

attributed from the vibrational stretching band of C-N and C=N, and the peak around 806 cm-1 shows 

the band of triazine units [29]. The peaks of in-plane B–N and B–C are observed at 1462 and 1273 cm-1 

respectively [30, 31]. In NiFe2O4, the stretching vibrations of Fe–O bonds in tetrahedral positions and 

metal–O bonds in octahedral positions shows the sharp peak at 592 cm-1 and a weak peak at 466 cm-1 

respectively [32]. For BCN/NiFe2O4 nanocomposite, the bands at 1652, 1450 and 579 cm-1 assigned to 

BCN, B-N vibration and Fe-O bonds respectively. The result confirmed that the structure of BCN and 

NiFe2O4 remains unchanged in the nanocomposite.

The surface morphology of the synthesized materials was analyzed by the FESEM, and the 

corresponding FESEM images are shown in Fig. 2. In Fig. 2A, a rough sheet-like structure was 

observed for BCN. Fig. 2B shows the aggregated particles of NiFe2O4 with the average diameter 

around 100 nm. This variable size of the particles is due to the synthesis process including milling in an 

agate mortar [33]. The Fig. 2C represents the BCN/NiFe2O4 nanocomposite with aggregated NiFe2O4 

nanoparticles embedded on the sheet-like BCN. The size of the NiFe2O4 nanoparticles was reduced 

after incorporated with BCN than primary NiFe2O4 particles. The reduced size of the nanoparticles is 

may be due to the presence of more surface area and photogenerated electrons and holes of BCN. The 

elemental analysis (Fig. 2D) and elemental mapping (Fig .2 (E-J)) results of the BCN/NiFe2O4 

nanocomposite confirmed the presence of C, O, B, Ni, N, and Fe. 
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Fig. 2 FESEM images of BCN (A), NiFe2O4 (B), BCN/NiFe2O4 nanocomposite (C) and elemental 

analysis (D) and elemental mapping of O, Fe, Ni, C, N, and B (E-J) on BCN/NiFe2O4 nanocomposite.
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TEM was also performed to examine the structural morphology of as-prepared BCN, NiFe2O4 

and BCN/NiFe2O4 nanocomposite. Fig. 3 shows the TEM images of BCN (A), NiFe2O4 (B) and 

BCN/NiFe2O4 nanocomposite (C). Fig. 3A shows the sheet-like structure of BCN and the agglomerated 

NiFe2O4 nanoparticles are visible in Fig. 3B. Fig. 3C confirmed that NiFe2O4 nanoparticles embedded 

on the surface of BCN. The obtained TEM images of BCN, NiFe2O4 and BCN/NiFe2O4 nanocomposite 

has found to similar to the morphology of FESEM.

Fig. 3 TEM images of BCN (A), NiFe2O4 (B) and BCN/NiFe2O4 nanocomposite (C).

The UV-DRS of the as-prepared composite material were measured in the wavelength ranges 

between 200 and 800 nm. Fig. 4A shows the UV-DRS of BCN, NiFe2O4 and BCN/NiFe2O4 

nanocomposite. The BCN and NiFe2O4 show the band edge wavelengths in the visible light region of 

200-800 nm. It can be seen that the band edge of the BCN/NiFe2O4 nanocomposite increases 

compared with BCN and NiFe2O4 which indicates the effective absorption of visible light by the 

BCN/NiFe2O4 nanocomposite than others. Fig. 4B shows the indirect bandgap of BCN/NiFe2O4 

nanocomposite about 2.05 eV, and it was lower than that of BCN (2.65 eV) and NiFe2O4 (2.38 eV). 
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Fig. 4 UV-DRS of BCN, NiFe2O4 and BCN/NiFe2O4 nanocomposite (A), the indirect band gap of as-

prepared BCN, NiFe2O4 and BCN/NiFe2O4 nanocomposite (B).

The surface elemental composition and the electronic state of the BCN/NiFe2O4 

nanocomposite were characterized by XPS analysis and is shown in Fig. 5. The binding energies of B 

1s, C 1s, N 1s, Ni 2p, Fe 2p and O 1s of the nanocomposite are shown in Fig. 5 (A-F). The 

characteristic peak at 191.2 eV reveals the binding energy of B 1s and confirms the presence of B-N 

[34]. A broad peak of C1s includes C−C, C−O, C−N and C−B components appeared at binding 

energies of 284.9 eV, 288.4 eV, 285.6 eV, and 283.8 eV respectively [35]. The N 1s spectrum also 

includes the binding energies to pyridinic nitrogen at 398.6 eV, C-N-H group at 399.5 eV and graphitic 

nitrogen at 400.7 eV [36]. The binding energy of Ni 2p3/2 appears at 856.9 eV, and Ni 2p1/2 appears at 

875.1 eV [37]. For the binding energy of Fe 2p appeared at 711.1 eV and attributed to Fe 2p3/2. The 

peak at 724.4 eV indicates the presence of Fe 2p1/2 [38]. The characteristic peak at 532.5 eV shows the 

O 1s in the NiFe2O4 composite at which is assigned for the O2- and spinel metal oxides [38]. 
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Fig. 5 High-resolution XPS spectra (B 1s, C 1s, N 1s, Ni 2p, Fe 2p, and O 1s) of as-synthesized 

BCN/NiFe2O4 nanocomposite.

Photoluminescence spectroscopy

The PL spectra of BCN/NiFe2O4, NiFe2O4, and BCN, are shown in Fig. 6. A broad peak at 415 

nm is observed for the BCN which exhibits the higher recombination rate of electron-hole pairs. Fig. 6 

inset shows the reduced PL intensities of NiFe2O4 and BCN/NiFe2O4 which infers a significant 

reduction in the recombination rate when compared to BCN. There is a decrease in the emission peak 

intensity of BCN/NiFe2O4 which also indicates the effective e–/h+ charge separation and increases the 

transfer efficiency from the valence band to the conduction band. Further, NiFe2O4 nanoparticles 

incorporated with BCN behaves as an electron acceptor and thus increases the photocatalytic activity.
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Fig. 6 PL spectra of BCN and NiFe2O4, BCN/NiFe2O4 nanocomposite (inset)

Photo-catalytic degradation of MB

Fig. 7A shows the photo-catalytic degradation of MB by the as-prepared nanocomposite in the 

presence of visible light irradiation at a different time. It can be seen that the decrease in intensity at 

664 nm with the increasing the visible light irradiation time. The result indicates the effective 

photodegradation of MB by the BCN/NiFe2O4 nanocomposite. A plot of time vs. the percentage of dye 

remaining in the solution is shown in Fig. 7B. The obtained results revealed that the degradation 

efficiencies of 25.6, 69 and 98% were obtained using NiFe2O4, BCN and BCN/NiFe2O4 nanocomposites 

at 80 min.
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Fig. 7 Photocatalytic degradation of MB in the presence of BCN/NiFe2O4 nanocomposite (A). A plot of 

time vs. % of dye remaining in the solution (B). 

Photodegradation mechanism of MB

The synergistic effect between BCN and NiFe2O4 results in the enhance the photocatalytic 

activity and higher adsorption of MB on the catalyst surface. As discussed earlier that the as-

synthesized nanocomposite has lower bandgap (2.05 eV) than that of BCN (2.65 eV) and NiFe2O4 

(2.38 eV). The lower bandgap of the BCN/NiFe2O4 nanocomposite will help to achieve the enhanced 

photocatalytic activity towards the degradation of MB. Also, the recombination rate of BCN was reduced 

upon composite with NiFe2O4, and resulting in the higher electron-hole separation and a considerable 

population of e–/h+ pairs. The migration of electrons from the CB of BCN to the CB of NiFe2O4 causes 

a high negative (e–) rich environment which also makes slightly positive VB of NiFe2O4. The holes on 

the VB of NiFe2O4 migrate to VB of BCN simultaneously. This process of redistribution of electrons-

holes delays the recombination rate of the photoinduced carriers. The increased recombination rate of 

electrons and holes could reduce the catalytic activity due to the lack of producing OH• and O2•–. When 

the reaction medium introduced into the visible light irradiation, the valence band (VB) electrons were 

excited to the conduction band (CB), this photogenerated e– and h+ involved in the production of OH• 

and O2•– radicals. The as-formed OH• and O2•– radicals can oxidize the MB into the degradation 
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products such as CO2 and H2O. The mechanism of the photodegradation of dye can be expressed by 

the following equations (Eqn. 1–4).  

BCN/NiFe2O4 + hν         VB (h+) + CB (e–)             (1)

VB (h+) + H2O                 OH• + H+           (2)

CB (e–) + O2                                                O2–                                                    (3)

OH• + O2– + dye                                            degradation products      (4)

The kinetics and rate constant of the photocatalytic degradation reaction using NiFe2O4, BCN 

and BCN/NiFe2O4 are shown in Fig. 8A. A plot of ln(C/Co) vs. time follows the pseudo-first order 

kinetics. The rate constant (k’) value of BCN/NiFe2O4 nanocomposite (k’=4.4 x 10-2 min-1) was obtained 

from the intercept of the linear line which was 12.7 times greater than NiFe2O4 (k’=3.5 x 10-3 min-1) and 

3.2 times greater than that of BCN (k’=1.4 x 10-2 min-1). The correlation coefficient (R2) values of BCN, 

NiFe2O4 and BCN/NiFe2O4 nanocomposite materials are found to be 0.9608, 0.9595 and 0.9796 

respectively.

Fig. 8 A) Pseudo-first order kinetics of photodegradation using NiFe2O4 (a), BCN (b), BCN/NiFe2O4 (c), 

and reusability of BCN/NiFe2O4 nanocomposite (B).

Reusability

The economic feasibility and practical usability of a photocatalyst material are analyzed with the 

reusability studies. Hence, the reusability studies of the BCN/NiFe2O4 nanocomposite are shown in Fig. 
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8B. After the degradation, the catalyst nanocomposite was collected by centrifugation. Then, it was 

washed with deionized water and ethanol to remove the adsorbed MB molecules and dried in an oven 

for 3 h. The collected nanocomposite was used subsequently to measure the photocatalytic efficiency. 

From the obtained results, the percentage degradation of MB was calculated to be 97.68%, 96.23% 

and 95.99% for three successive cycles. The result indicates the excellent cyclic stability of the 

BCN/NiFe2O4 nanocomposite.

Fig. 9 Degradation % of MB using BCN/NiFe2O4 nanocomposite in the presence of different 

scavenging species (scavengers).

To understand the role of the active species generated during the photocatalytic reaction, 

ethylenediaminetetraacetic acid (EDTA), K2S2O8 (PP), acrylamide (AA) and tertiary butyl alcohol (T-

BuOH) were used as the scavenger materials to trap holes (h+), electrons (e–), superoxide radicals (•O2-

–) and hydroxyl radicals (•OH) respectively. The degradation process without scavengers shows 98% of 

MB degradation after 80 min. After the addition of EDTA, PP, AA, and T-BuOH scavengers into the 

system, the degradation percentage of MB was 81.2, 96.87, 44.0 and 85.1% respectively (Fig. 9). The 
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results indicate that the contribution of active species in the photodegradation of MB as in the order of 

•O2–>•OH>h+>e–. Therefore, the degradation of MB significantly reduced because of the addition of AA 

to capture the •O2–. On the other hand, the degradation percentage of MB slightly decreased when PP, 

T-BuOH, and EDTA were added to the system.  

Conclusion

In conclusion, a novel BCN/NiFe2O4 photocatalyst was prepared by simple thermal 

condensation and sol-gel methods for the first time. The synthesized materials were confirmed by 

different physicochemical techniques. The as-synthesized nanocomposite material was used for the 

effective degradation of MB. The obtained results revealed that BCN/NiFe2O4 nanocomposite had 

better catalytic activity towards MB than that of pristine NiFe2O4 and BCN. The degradation of the MB 

was confirmed by intensity variations of its UV absorption peaks, and the obtained results confirmed the 

pseudo-first-order kinetics mechanism. As a future perspective, the synthesized BCN/NiFe2O4 

nanocomposite can be used as a low-cost photocatalyst material for the applications of environmental 

decontamination of organic dyes. 

Conflicts of interest

The authors confirm that there are no conflicts to declare.

Acknowledgments

The authors would like to thank the Precision Analysis and Materials Research Centre, National Taipei 

University of Technology, Taipei, Taiwan for the financial support to this research.



  

17

References

[1] Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Photocatalytic degradation 

pathway of methylene blue in water, Appl. Catal. B, 31 (2001) 145–157.

[2] S.B. Bukallah, M. Rauf, S. AlAli, Removal of methylene blue from aqueous solution by adsorption 

on sand, Dyes Pigm., 74 (2007) 85–87.

[3] U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-

based photocatalysts: a review, J. Hazard. Mater., 170 (2009) 520–529.

[4] Cripps, J.A. Bumpus, S.D. Aust, Biodegradation of azo and heterocyclic dyes by Phanerochaete 

chrysosporium, Appl. Environ. Microbiol., 56 (1990) 1114–1118.

[5] S. Balu, K. Uma, G.-T. Pan, T. Yang, S. Ramaraj, Degradation of methylene blue dye in the 

presence of visible light using SiO2@ α-Fe2O3 nanocomposites deposited on SnS2 flowers, 

Materials, 11 (2018) 1030.

[6] K. Uma, S. Balu, G.-T. Pan, T. Yang, Assembly of ZnO nanoparticles on SiO2@α-Fe2O3 

nanocomposites for an efficient Photo-Fenton reaction, Inorganics, 6 (2018) 90.

[7] Namasivayam, D. Kavitha, Removal of Congo Red from water by adsorption onto activated carbon 

prepared from coir pith, an agricultural solid waste, Dyes Pigm., 54 (2002) 47–58.

[8] H. Métivier-Pignon, C. Faur-Brasquet, P. Le Cloirec, Adsorption of dyes onto activated carbon 

cloths: approach of adsorption mechanisms and coupling of ACC with ultrafiltration to treat coloured 

wastewaters, Sep. Purif. Technol., 31 (2003) 3–11.

[9] F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide 

photocatalysts for the degradation of organic dyes in wastewater treatment: a review, Appl. Catal. 

A., 359 (2009) 25–40.

[10] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci., 391 

(2017) 72–123.



  

18

[11] Y. Zhang, J. Liu, G. Wu, W. Chen, Porous graphitic carbon nitride synthesized via direct 

polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale, 4 

(2012) 5300–5303.

[12] G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: electronic 

structure, photocatalytic and photoelectronic properties, J. Photochem. Photobiol., C, 20 (2014) 33–

50.

[13] G. Mamba, A. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting 

generation of visible light driven photocatalysts for environmental pollution remediation, Appl. 

Catal., B, 198 (2016) 347–377.

[14] M. Zhang, X. Bai, D. Liu, J. Wang, Y. Zhu, Enhanced catalytic activity of potassium-doped graphitic 

carbon nitride induced by lower valence position, Appl. Catal., B, 164 (2015) 77–81.

[15] P. Xia, B. Zhu, B. Cheng, J. Yu, J. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme 

photocatalyst for enhanced photocatalytic activity, ACS Sustainable Chem. Eng., 6 (2017) 965–

973.

[16] Y. Deng, L. Tang, G. Zeng, Z. Zhu, M. Yan, Y. Zhou, J. Wang, Y. Liu, J. Wang, Insight into highly 

efficient simultaneous photocatalytic removal of Cr (VI) and 2, 4-diclorophenolunder visible light 

irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: 

performance and reaction mechanism, Appl. Catal., B, 203 (2017) 343–354.

[17] L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for 

photocatalysis: a reveiw, Appl. Catal., B, 217 (2017) 388–406.

[18] F. Hou, Y. Li, Y. Gao, S. Hu, B. Wu, H. Bao, H. Wang, B. Jiang, Non-metal boron modified carbon 

nitride tube with enhanced visible light-driven photocatalytic performance, Mater. Res. Bull., 110 

(2019) 18–23.



  

19

[19] Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Constructing 2D porous graphitic C3N4 

nanosheets/nitrogen‐doped graphene/layered MoS2 ternary nanojunction with enhanced 

photoelectrochemical activity, Adv. Mater., 25 (2013) 6291–6297.

[20] Y. Liu, Y. Song, Y. You, X. Fu, J. Wen, X. Zheng, NiFe2O4/g-C3N4 heterojunction composite with 

enhanced visible-light photocatalytic activity, J. Saudi Chem. Society, 22 (2018) 439–448.

[21] G. Zhao, L. Liu, J. Li, Q. Liu, Efficient removal of dye MB: Through the combined action of 

adsorption and photodegradation from NiFe2O4/Ag3PO4, J. Alloys Compd., 664 (2016) 169–174.

[22] N. Gokon, H. Murayama, A. Nagasaki, T. Kodama, Thermochemical two-step water splitting cycles 

by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices, Sol. Energy, 

83 (2009) 527–537.

[23] Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M.-J. Cheng, D. Sokaras, T.C. 

Weng, R. Alonso-Mori, Identification of highly active Fe sites in (Ni, Fe) OOH for electrocatalytic 

water splitting, JACS, 137 (2015) 1305–1313.

[24] T. Peng, X. Zhang, H. Lv, L. Zan, Preparation of NiFe2O4 nanoparticles and its visible-light-driven 

photoactivity for hydrogen production, Catal. Commun., 28 (2012) 116–119.

[25] S. Zhang, P. Gu, R. Ma, C. Luo, T. Wen, G. Zhao, W. Cheng, X. Wang, Recent developments in 

fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards 

water purification: A critical review, Catal. Today, (2018) 

https://doi.org/10.1016/j.cattod.2018.09.013.

[26] J. Pang, Y. Chao, H. Chang, H. Li, J. Xiong, M. He, Q. Zhang, H. Li, W. Zhu, Tuning electronic 

properties of boron nitride nanoplate via doping carbon for enhanced adsorptive performance, J. 

Colloid Interface Sci., 508 (2017) 121–128.

[27] X. Liu, Y. Gao, M. Zhang, X. Zhang, S. Wang, B. Feng, Synthesis of fluorescent BCN hybrid 

nanosheets: A highly efficient fluorosensor for rapid, simple, sensitive Ag+ detection, RSC Adv., 5 

(2015) 52452–52458.



  

20

[28] E.D. Rivera-Tapia, C.A. Fajardo, Á.J. Ávila-Vega, C.F. Ávila, F.M. Sánchez-Arévalo, I. Chango-

Villacís, F.J. Quiroz-Chávez, J. Santoyo-Salazar, R.C. Dante, Synthesis of boron carbon nitride 

oxide (bcno) from urea and boric acid, Fullerenes, Nanotubes and Carbon nanostructures, 24 

(2016) 8–12.

[29] W. Lei, D. Portehault, R. Dimova, M. Antonietti, Boron carbon nitride nanostructures from salt 

melts: tunable water-soluble phosphors, JACS, 133 (2011) 7121–7127.

[30] A. Prakash, S.D. Nehate, K.B. Sundaram, Boron carbon nitride based metal-insulator-metal UV 

detectors for harsh environment applications, Opt. Lett., 41 (2016) 4249–4252.

[31] D.H. Kim, E. Byon, S. Lee, J.-K. Kim, H. Ruh, Characterization of ternary boron carbon nitride films 

synthesized by RF magnetron sputtering, Thin Solid Films, 447 (2004) 192–196.

[32] H.Y. Zhu, R. Jiang, S.H. Huang, J. Yao, F.Q. Fu, J.B. Li, Novel magnetic NiFe2O4/multi-walled 

carbon nanotubes hybrids: facile synthesis, characterization, and application to the treatment of 

dyeing wastewater, Ceram. Int., 41 (2015) 11625–11631.

[33] Moeinpour, A. Alimoradi, M. Kazemi, Efficient removal of Eriochrome black-T from aqueous 

solution using NiFe2O4 magnetic nanoparticles, J. Environ. Health Sci. Eng., 12 (2014) 112.

[34] W. Tian, Q. Shen, N. Li, J. Zhou, Efficient degradation of methylene blue over boron-doped g-

C3N4/Zn0.8Cd0.2S photocatalysts under simulated solar irradiation, RSC Adv., 6 (2016) 25568–

25576.

[35] M. Florent, T.J. Bandosz, Irreversible water mediated transformation of BCN from a 3D highly 

porous form to its nonporous hydrolyzed counterpart, J. Mater. Chem. A, 6 (2018) 3510–3521.

[36] S. Zhang, L. Gao, D. Fan, X. Lv, Y. Li, Z. Yan, Synthesis of boron-doped g-C3N4 with enhanced 

electro-catalytic activity and stability, Chem. Phys. Lett., 672 (2017) 26–30.

[37] X. Li, L. Wang, L. Zhang, S. Zhuo, A facile route to the synthesis of magnetically separable 

BiOBr/NiFe2O4 composites with enhanced photocatalytic performance, Appl. Surf. Sci., 419 (2017) 

586–594.



  

21

[38] S. Huang, Y. Xu, M. Xie, H. Xu, M. He, J. Xia, L. Huang, H. Li, Synthesis of magnetic CoFe2O4/g-

C3N4 composite and its enhancement of photocatalytic ability under visible-light, Colloids and 

Surfaces A: Physicochem. Eng. Aspects, 478 (2015) 71–80.

Highlights

 For the first time, BCN/NiFe2O4 nanocomposite has been used for the photocatalytic 

degradation of organic dye. 

 MB has been used as a model organic dye to study the photocatalytic behavior of synthesized 

nanomaterials.

 The photocatalyst can able to degrade 98% of MB within 80 min under visible light irradiation.

 The BCN/NiFe2O4 nanocomposite has enhanced photocatalytic activity towards MB than that 

of BCN and NiFe2O4.

 The as-synthesized nanocomposite photocatalyst had excellent cyclic stability.


