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Abstract 

We investigated whether postural after-effects witnessed during transitions from a moving to 

stable support are accompanied by a delayed perception of platform stabilization in older 

adults, in two experiments. In Experiment 1, postural sway and muscle co-contraction were 

assessed in eleven healthy young, eleven healthy older and eleven fall-prone older adults 

during blind-folded stance on a fixed platform, followed by a sway-referenced platform then 

followed by a fixed platform again. The sway-referenced platform was more compliant for 

young adults to induce similar levels of postural sway in both age groups. Participants were 

asked to press a button whenever they perceived that the platform had stopped moving. Both 

older groups showed significantly larger and longer postural sway after-effects during 

platform stabilization compared to young adults, which were pronounced in fall-prone older 

adults. In both older groups elevated muscle co-contraction after-effect was also witnessed. 

Importantly, these after-effects were accompanied by an illusory perception of prolonged 

platform movement. Following this, Experiment 2 examined whether this illusory perception 

was a robust age-effect or an experimental confound due to greater surface compliance in 

young adults, which could create a larger perceptual discrepancy between moving and stable 

conditions. Despite exposure to the same surface compliance levels during sway-reference, 

the perceptual illusion was maintained in Experiment 2 in a new group of fourteen healthy 

older adults, compared to eleven young adults. In both studies, older adults took five times 

longer than young adults to perceive platform stabilization. This supports that sensory 

reweighting is inefficient in older adults.  

New and Noteworthy: This is the first paper to show that postural sway after-effects 

witnessed in older adults after platform stabilization may be due to a perceptual illusion of 

platform movement. Surprisingly, in both experiments presented it took older adults five 

times longer than young adults to perceive platform stabilization. This supports a hypothesis 
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of less efficient sensory reintegration in this age group, which may delay the formation of an 

accurate postural percept.  

 

Keywords: aging, falls, postural control, sensory integration, perception  
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Introduction 

Postural control is a complex sensorimotor process that requires coordination between 

multiple peripheral and central components of the nervous system (Horak et al., 1989; Horak 

& Macpherson, 1996). A fundamental component of this process is the efficient and adaptive 

integration of sensory signals, including visual, vestibular and somatosensory signals, in 

order to form an accurate percept of the current postural state. Adaptive sensory integration is 

achieved through a process known as sensory reweighting, whereby the importance 

(weighting) of a sensory channel is determined by its relative reliability in the current context 

(Ernst & Banks, 2002; Peterka & Loughlin, 2004). For example, when moving from well-lit 

to dark conditions, visual information must be relied upon less and somatosensory and 

vestibular information is up-weighted to maintain postural control. However, a plethora of 

research now indicates that this process is subject to age-related slowing (Teasdale & 

Simoneau, 2001; Dickin et al., 2006; O’Connor et al., 2008; Doumas & Krampe, 2010; Jeka 

et al., 2010; Eikema et al., 2012, 2013; Craig et al., 2017).   

Prolonged sensory reweighting has been demonstrated in older adults during the 

manipulation of both visual (O’Connor et al., 2008; Jeka et al., 2010; Eikema et al., 2012) 

and proprioceptive stimuli (Teasdale & Simoneau, 2001; Doumas & Krampe, 2010; Eikema 

et al., 2013). For example, Jeka et al. (2010) demonstrated prolonged high postural gains in 

response to high amplitude visual stimuli in healthy and fall-prone older adults, indicative of 

a delayed ability to reduce reliance on the visual system, despite the considerable postural 

instability that this induced. On the other hand, Doumas and Krampe (2010) manipulated the 

accuracy of proprioceptive input using a technique called sway-referencing, in which the 

support surface rotates about the ankle joint in proportion to the participant’s body sway. 

They found that in the absence of vision, when sway-referencing was introduced no age 

differences in the speed of adaptation were shown. However, when a stable platform was 

restored significantly greater and longer postural after-effects were observed in older, 

compared with young adults (Doumas & Krampe, 2010; Craig et al. 2017), suggesting 

difficulties in reintegrating veridical proprioceptive information when it is re-introduced.  

Based on this evidence, it could be argued that the delayed sway reduction during the 

reinstatement of a stable support reflects a conservative response by the postural control 

system. This response is utilized to preserve CNS resources during transient conditions when 

there is less postural threat (Jeka et al., 2008), compared with transient conditions with higher 
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threat, such as when sway reference is introduced. This evidence is in line with research in 

young adults which showed that sensory reweighting is faster when an unstable, threatening 

environment is introduced but slower when a less threatening environment is restored (Jeka et 

al., 2008; Polastri et al., 2012; Assländer & Peterka, 2014; Logan et al., 2014). However, our 

recent work demonstrated that the postural after-effects witnessed during platform 

stabilization were accompanied by prolonged use of muscle co-contraction in older adults, 

which suggests that this sensory transition posed considerable postural threat to this age 

group (Craig et al., 2017). This could have important real-life implications, as it suggests that 

everyday sensory transitions, such as stepping off public transport, could pose considerable 

postural instability and increased fall risk to older adults.  

Overall, inefficient sensory reweighting may contribute to increased falls risk, as 

during sensory transitions older adults will experience prolonged instability until sensory 

reweighting has been accomplished. Accordingly, evidence supports that sensory reweighting 

is particularly inefficient in fall-prone older adults, compared to healthy older adults (Jeka et 

al., 2010; Pasma et al., 2015). This link between deficient sensory reweighting and balance 

impairment is in line with a study that examined which parameters could best detect unstable 

older adults at risk of multiple falls (Soto-Varela et al., 2015). The authors found that the two 

best predictors were: mean scores on the Sensory Organization Test, which assesses sensory 

reweighting abilities, and directional control scores on the Limits of Stability test, which 

assesses ability to control the center of gravity (CoG). These variables may contribute to the 

leading cause of falls in older adults which is incorrect weight shifting (Robinovitch et al., 

2013), as sensory reweighting determines an accurate postural percept and directional control 

determines the ability to efficiently adjust the CoG. 

The current paper aimed to examine how postural after-effects during reinstatement of 

a stable support may differ in healthy and fall-prone older adults, compared to young adults. 

Importantly, considering the suggestion that slower sensory reweighting can reflect a 

conservative response during conditions of reduced postural threat (Jeka et al., 2008; Polastri 

et al., 2012; Assländer & Peterka, 2014; Logan et al., 2014), we aimed to assess whether 

older adults recognized whenever the platform had stabilized and consequently perceived less 

postural threat. We postulated that if postural after-effects were due to a deficit in sensory 

reweighting in older adults, then these after-effects would be accompanied by a delayed 

perception of platform stability, due to the delayed formation of an accurate postural percept.   
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In line with our previous study (Craig et al., 2017), Experiment 1 assessed postural 

sway and muscle co-contraction during blindfolded adaptation to an age-matched sway-

referenced support surface, followed by reinstatement of a stable support, in healthy older, 

fall-prone older and young adults. We predicted that both older groups would show a larger 

and longer postural after-effect once the stable platform was restored, compared to young 

adults, despite showing similar levels of postural sway during adaptation to sway-referencing. 

In addition, we predicted that this would be accompanied by higher muscle co-contraction in 

older groups and that both postural and muscular after effects would be exaggerated in fall-

prone older adults.  Perception of platform stability was assessed using a button-press 

measure during the reintegration phase, which participants were instructed to press whenever 

they perceived that the platform had stopped moving. We predicted that both older groups 

would be slower to perceive a stable platform than young adults, and this would be 

pronounced in fall-prone older adults. 

Experiment 2 was conducted as a follow-up to Experiment 1 to investigate whether 

group differences in the perception of a stable support were a result of the age-matched sway-

referencing protocol. In Experiment 1, young adults were exposed to a higher sway-

referencing gain setting (Young gain = 1.6, Older gain = 1), in order to ensure similar 

postural sway levels during the adaptation phase, similar to our previous research (Craig et 

al., 2017). However, this could create a larger perceptual discrepancy between the moving 

and stable platform, which could result in a quicker perception of stability in young adults. 

Consequently, Experiment 2 utilised the same gain setting in both young and older adults 

(Gain = 1) in order to replicate age differences in the aftereffect and to assess whether the 

perceptual illusion was a robust age difference or an experimental confound. We predicted 

that a perceptual delay would remain in older adults during the reintegration phase, which 

would strengthen the argument for an age-related deficit in sensory reweighting. 

Experimental Procedures 

Participants 

Experiment 1 

Based on the data from Craig, Calvert and Doumas (2017), a statistical power analysis 

indicated that a sample of N= 10 should be sufficient to replicate the postural after-effects 

witnessed whenever a previously sway-referenced platform is stabilized (alpha = .05, power 
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= .08). Twelve healthy young, twelve healthy older and fourteen fall-prone older adults 

volunteered to participate in the study. Participants were excluded based on any medical 

history or recent medication use that could impair postural performance. For example, 

participants were automatically excluded if they gave a confirmatory response to any of the 

following; use of orthopedic shoes, previous stroke, Parkinson’s disease, hip/knee 

replacement, use of tricyclic antidepressants or sleep tranquilizers. Inclusion criteria for both 

older groups also included, scoring 25+ on the Mini-Mental State Examination (MMSE)  and  

being classified as independent according to the Katz Basic Activities of Daily Living test 

(Katz et al., 1963) and the Instrumental Activities of Daily Living Scale (Lawton & Brody, 

1969). Failure to meet the MMSE inclusion criteria, missing motion tracking data (gaps 

>500ms) and extreme outliers resulted in a final sample of 11 young, 11 healthy older and 11 

fall-prone older adults. The demographic information from the retained participants are listed 

in Table 1. 

 Older adults were classified as ‘fall-prone’ if they reported any incidence of falls in 

the last year or if they scored ≤ 46 on the Berg Balance Scale (BBS; Berg, 1989). This cut-

off score was recommended by Lajoie and Gallagher (2004) and has been utilized in other 

studies examining sensory reweighting deficits in fall-prone older adults (Jeka et al., 2010). 

Older adults also completed the Rapid Assessment of Physical Activity (RAPA; Topolski et 

al., 2006). Written informed consent was obtained from all participants and the study was 

approved by the School of Psychology, Queen’s University Belfast Ethics Committee. 
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Table 1.  

Experiment 1 Participant Characteristics 

Measure Young (N=11) Healthy older (N=11) Fall-prone (N=11) 

Age (yrs) 24.18 (4.24) 72.09 (5.50) 72.09 (5.39) 

Sex(male, female) 2, 9 1, 10 2, 9 

Height (cm) 166.27 (10.19) 162 (11.2) 166.27 (4.98) 

Weight (kg) 62 (10.95) 59.27 (11.64) 71.27(13.40)* 

BMI 22.30 (2.06) 22.48 (2.16) 25.70 (4.08)* 

MMSE N/A 29.18 (1.25) 28.82 (1.54) 

ADL N/A 8 (0) 8 (0) 

IADL N/A 8 (0) 8 (0) 

RAPA N/A 5.82 (1.25) 5.27 (1.27) 

BBS N/A 54.82 (2.09) 44.55 (11.17)* 

 

Note. Values represent mean values, with standard deviations in parentheses. BBS = Berg 

balance scale; BMI = body mass index; MMSE = Mini Mental State Examination; ADL = 

Katz Basic Activities of Daily Living; IADL = Instrumental Activities of Daily Living; 

RAPA = Rapid Assessment of Physical Activity. 

* p< .05. 

 

Experiment 2 

Participants were recruited according to the same medical inclusion criteria utilized in 

Experiment 1. In this case, only older adults with no history of falls within the last year were 

recruited. Fifteen older adults and thirteen young adults volunteered for the study, however, 

following exclusion of a faulty button press and extreme outliers (>2 SD) fourteen older 

adults and eleven young adults were retained. The demographic information from the 

retained sample can be found in Table 2. Written informed consent was obtained from all 

participants and the study was approved by the School of Psychology, Queen’s University 

Belfast Ethics Committee. 
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Table 2. Experiment 2 Participant Characteristics 

Measure Young (N=11) Healthy older (N=14) 

Age (yrs) 23.36 (2.62) 72.57 (5.14) 

Sex(male, female) 2, 9 2, 12 

Height (cm) 169.27 (9.12) 163.71 (9.18) 

Weight (kg) 64.1 (9.47) 67.43 (11.39) 

BMI 22.37 (2.44) 25.05 (2.92)* 

 

Note. Values represent mean values, with standard deviations in parentheses. BMI = body 

mass index. * p< .05. 

 

Apparatus and tasks 

Experiment 1 

Postural assessment. The postural adaptation task was assessed using the Smart 

Balance Master (NeuroCom International, Inc., Clackamas, OR, USA). This device consists 

of an 18” x 18” dual force plate which records vertical forces at a sampling frequency of 

100Hz. The platform was sway-referenced using a servo-controlled motor which introduced 

platform tilts in the sagittal plane about the ankle joint axis in proportion to the participant’s 

expected CoM sway angle (Nashner et al., 1982). The mechanical compliance of the platform 

was determined by the pre-selected gain level. In line with Craig, Calvert and Doumas 

(2017), the current experiment utilized a gain level of 1.0 for older and fall-prone older adults 

and 1.6 for young adults. At a gain level of 1.0, the platform tilts 1o for every 1o of CoP sway. 

Whereas, at a gain factor of 1.6, platform tilt is 1.6 times greater than AP CoP sway, thus 

inducing greater postural sway (Clark & Riley, 2007). Similarly, to our previous studies, this 

manipulation was utilized in order to induce similar levels of postural sway in both age 

groups. A blindfold and a non-restrictive safety harness were worn throughout the postural 

adaptation task. Participants held a wireless mouse with their dominant hand throughout this 

task and were asked to click on the mouse button when the platform stopped moving. 

Motion capture. Body kinematics were assessed during the postural adaptation task 

using a Codamotion CX1 sensor unit (Charnwood Dynamics Ltd., Rothley, Leicestershire, 

UK). This is an active marker system that utilizes infrared light-emitting diodes (ILEDs) to 
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capture motion data across three dimensions. The marker set-up (Figure 1) consisted of: 2 

platform markers, one on the fixed section of the platform and one in front of it on the 

posterior right corner of the moving support surface, and 4 body landmark markers, which 

were placed at the C7 vertebra (neck level), L5 vertebra (hip level), right popliteal fossa 

(knee level) and right superior calcaneus (ankle level). The CX1 unit was placed behind the 

participant at a distance of approximately 2-metres from the fixed platform ILED. Motion 

capture data were collected at a sampling rate of 100Hz. 

 

[Insert Figure 1 here] 

 

EMG recordings. Co-contraction of the tibialis anterior (TA) and the gastrocnemius 

medialis (GM) and soleus (SOL) muscles of the dominant leg were assessed using surface 

electromyography (EMG) during postural assessment. Disposable Ag-AgCl electrodes 

(Cleartrace, CONMED, Utica, NY, USA) with an inter-electrode distance of 3cm were 

attached vertically along the muscle belly of the TA, GM and SOL and a ground electrode 

was placed on the patella. The EMG signal was pre-amplified at a gain of 2000 using a 

differential amplifier (EMG100C, Biopac Systems, Inc., Santa Barbara, CA). The signal was 

sampled at 2 kHz and was initially band-pass filtered at 10-500 Hz. Following this, EMG 

data were normalized in relation to the maximum values recorded during three maximum 

voluntary contractions (MVCs) from the TA, SOL and GM. 

Experiment 2 

The postural assessment task from Experiment 1 was exactly replicated in Experiment 2, 

however, the gain setting for young adults was adjusted to 1.0, to match that of the older 

group. This modification allowed us to examine if any perceptual differences between age 

groups in Experiment 1 were merely a result of a lower gain setting. EMG signals were not 

recorded in Experiment 2, as the focus was on the perceptual effects.   

Additionally, the push button apparatus was upgraded in Experiment 2 to include a hand-held 

push button, which was sampled at 100Hz. The push button signal was recorded through a 

Micro1401-3 data acquisition device using Signal v7 software (Cambridge Electronic Design 

Ltd., Cambridge, UK). 
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Procedure 

Experiment 1 

For older participants, the experiment commenced with the completion of a number of 

short tests, including the RAPA, MMSE and BBS. Following this, the session continued for 

older adults, and commenced for young adults with the recording of three maximum 

voluntary contractions (MVCs) of the TA, SOL and GM muscles, the largest of which would 

then be used to normalize the EMG recordings. TA MVCs were assessed during seated 

maximal isometric dorsiflexions of the ankle, with the knee flexed at 90o. SOL MVCs were 

assessed similarly during seated isometric plantarflexions of the ankle. During both TA and 

GM MVCs, the participants were instructed to flex the foot to full range of motion of the 

ankle joint. GM MVCs were assessed during standing single-leg heel raises (Nelson-Wong et 

al., 2012a).  

 The session continued with the postural adaptation task (Figure 2). Participants were 

given two 1-min practice trials (one with eyes open, the other with eyes closed) during which 

the platform was sway-referenced at the gain set for that age group (1.0 for older and 1.6 for 

young participants). Subsequently, the experimental task comprised three phases: (1) a stable 

2-min baseline phase, (2) a 3-min sway-referenced adaptation phase and (3) a stable 3-min 

reintegration phase, all of which were performed blindfolded. Postural adaptation was 

assessed in the range of minutes, rather than in short trials lasting up to a minute which is 

typical in most postural control studies, on the basis of our previous work (Doumas & 

Krampe, 2010). That study, using a long period of adaptation (18 min) showed that the 

largest amount of adaptation to the sway referenced environment occurred after 3 minutes 

and that after-effects lasted 1min for young and over 2 minutes for older adults. In a 

subsequent study, age differences in the after-effect were present even with a 3 min 

adaptation phase (Craig et al., 2017). The same durations were used in the present study. 

Participants were instructed to stand as still as possible with their arms by their side. 

They were warned 10 seconds before the sway-referenced phase was about to commence but 

were not told whenever sway-referencing had stopped. Instead, participants were asked to 

press a wireless mouse button whenever they believed the platform had stopped moving. 

EMG activity from the dominant leg TA, SOL and GM muscles was recorded to assess co-

contraction levels during each phase of the postural task. Motion tracking was recorded as a 
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measure of AP path length and to explore the postural strategies employed. Participants wore 

a safety harness that did not restrict movement during all postural assessment. 

 

[Insert Figure 2 here] 

Experiment 2 

The postural adaptation task procedure from Experiment 1 (Figure 2), detailed above, was 

exactly replicated in Experiment 2. 

 

Data analysis 

Experiment 1 

Preliminary data analysis was carried out using custom-written Matlab software. Gaps 

(<500ms) in the motion tracking data from each marker were interpolated using a cubic 

spline routine in Matlab (Warnica et al., 2014). Data from each marker were low-pass filtered 

at 4Hz using a 4th order dual-pass Butterworth filter.  

In terms of the EMG data, raw EMG data were full-wave rectified and linear 

envelopes were created using a 5th order Butterworth dual-pass filter with a cut-off frequency 

of 4 Hz. The data from the postural trials were then normalized as a percentage of each 

participant’s peak MRs. Co-contraction indices (CCI) were calculated between the tibialis 

anterior (TA)  and the gastrocnemius medialis (GM) and additionally between the TA and the 

soleus (SOL), using the equation described below (Equation 1). This equation was chosen as 

it permits the calculation of CCI without the identification of agonist and antagonist muscle 

pairs (Lewek et al., 2004; Nelson-Wong et al., 2012), which can be difficult during static 

postural control. 

 Equation 1 

CCI(𝑁) = avg (
EMGlow𝑖

EMGhigh𝑖

) (EMGlow𝑖
+ EMGhigh𝑖

 ) 

N is the selected time window, EMGlow is the lower EMG value from the selected 

muscle pair (TA/GM or TA/SOL) at the ith data point and EMGhigh is the higher EMG value 

at the ith data point. CCI was initially calculated for 1-s time windows (N), which included 
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4000 data points (i) in each, for the duration of each postural assessment block. For each ith 

point, the ratio of the low over the high value from each muscle pair was calculated and then 

multiplied by the sum of both values. In line with our previous paper (Craig et al., 2016),the 

mean CCI value of these products was calculated, rather than the overall sum. The 1-s mean 

CCI values were then used to assess the overall mean CCI value for each 30s of the overall 

data acquisition block. CCI analyses demonstrated a similar pattern of CCI across postural 

phases in both muscle groups, however, the TA and GM pair showed larger CCI values, 

therefore only the results from this muscle pair are reported.  

AP path length of the hip marker and CCI were calculated in 30s windows for the 

three phases. This window duration was chosen because it represents a typical duration of a 

postural control trial in the literature, it is also sufficiently long to capture approximately 

three full cycles of body movement during sway referencing (body movement frequency: 

0.1Hz; Peterka & Loughlin, 2004; Doumas & Krampe, 2010) and because it allowed us to 

plot and statistically analyze AP path length and CCI in the same manner. In a further 

analysis AP path length for baseline and reintegration was calculated in 10s windows. This 

calculation was used in order to increase our temporal resolution and to identify a more exact 

time point in the reintegration phase in which sway returned to baseline levels and to 

compare this point with the button-press. The 10s window at which each participant’s AP 

path length returned to baseline was determined as the first 10s reintegration time window 

which was within one standard deviation of the baseline mean. The difference between this 

return to baseline time and the time at which participants perceived that the platform was 

stable (button press time) was then compared. 

Statistical analysis. An outlier analysis was initially performed on each measure, 

which identified outliers that fell two standard deviations beyond the group mean. Outliers 

that were only present in one time window were normalized to the group mean, however, 

participants who showed several outliers were excluded from the experiment.  In line with 

Craig et al. (2017), differences in AP path length and CCI within each phase were assessed 

using two-way mixed-design ANOVAs with age as between- and time window (per 30s) as 

within-subject factors. Differences in AP path length and CCI during the sensory transitions 

were assessed using mixed-design ANOVAs, which compared the baseline mean to the mean 

of the adaptation and reintegration phase in both age groups. Paired samples t-tests were run 

to examine whether there were significant differences between the exact 10s window that 
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each group’s AP path length returned to baseline and the time of their button press to indicate 

when they perceived the platforms return to stability. In ANOVAs in which sphericity was 

violated a Greenhouse-Geisser correction was applied. Predicted effects and/or interactions 

were explored further with simple effects analyses and unexpected effects were explored 

further using Bonferroni post hoc tests.  

Experiment 2 

The data from Experiment 2 was pre-processed and statistically analysed according to the 

same protocol specified for motion tracking data from Experiment 1. 

 

Results 

EXPERIMENT 1 

Anterior-posterior (AP) path length of the hip marker 

BASELINE. Figure 3A illustrates the mean AP path length of the hip marker across 

each 30s for each of the three postural phases in young, healthy older and fall-prone older 

adults. A mixed-design ANOVA showed no overall group differences (p= .21) in the baseline 

phase, but there was a change in AP path length over time as shown by a main effect of 

window F(3,90)= 6.42, p= .001, 𝜂𝑝
2 = .18. Bonferroni pairwise comparisons demonstrated an 

increase in path length from window B3 to window B4 (p< .001). There was no significant 

interaction (p=.86). 

ADAPTATION. Exposure to a sway-referenced support instilled a large increase in 

AP path length of the hip marker in all groups, as shown in Figure 3A. A mixed-design 

ANOVA, which compared the mean AP path length during adaptation to the mean during 

baseline, confirmed that AP path length was significantly higher during the adaptation phase, 

F(1,30) = 161.88, p< .001, 𝜂𝑝
2 = .84. There was no difference between groups or interaction 

between group and condition. Analysis of AP path length throughout the adaptation phase, 

also found no overall effect of group, mirroring our previous findings that increasing the gain 

setting for young adults can remove any age differences in postural sway. AP path length 

decreased over time as shown by a main effect of window, F(3.56,106.81)= 13.47, p= 

.001, 𝜂𝑝
2 = .31. Bonferroni pairwise comparisons indicated that AP path length showed 
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successive decline between windows A1 and 2 (p< .001). There was no interaction between 

time window and group in the adaptation phase. 

REINTEGRATION. The restoration of a stable support surface resulted in clear 

postural after effects, which were larger in older adults, especially fall-prone older adults 

(Figure 3A). The significance of these after-effects was confirmed using a mixed-design 

ANOVA, which compared the mean AP path length of the hip marker during reintegration 

with the mean of the 4 baseline windows (B1-B4). Results showed that AP path length was 

significantly higher during reintegration, F(1,30) = 51.14, p< .001, 𝜂𝑝
2 = .63. More 

importantly, a group by phase interaction, F(1,30) = 7.77, p= .002, 𝜂𝑝
2 = .34, suggested older 

and fall prone older adults may show a greater AP path length increase compared with young 

adults. Paired samples t-tests with an alpha level corrected for multiple comparisons to 0.017, 

showed that both older adult groups showed significantly higher AP path length during 

reintegration (Healthy: t(10) = 4.97, p= .001; Fall-prone: t(10) = 5.62, p< .001), but this 

increase was not shown in young adults. The duration of any significant after-effects were 

examined using paired samples t-tests comparing each 30s reintegration window with the 

mean of the baseline windows, with an alpha level corrected for multiple comparisons to 

0.008. Tests showed that for young adults the after-effect was only significantly different 

from baseline in the first 30s (R1), t(10) = 3.71, p= .004. However, for both older groups, the 

after-effect was significant for up to 60 s (window R2) (Healthy: t(10) = 8.24- 3.40, p<= 

.001-.007; Fall-prone: t(10) = 7.27- 3.38, p<= .001-.007). Between window R2 and R4 there 

was also a slight increase in path length for the healthy older group, resulting in an additional 

difference between baseline and window 4, t(10) = 3.99, p= .003. 

Analysis of AP path length of the hip marker throughout the reintegration phase was 

performed to assess whether the observed pattern of results (Figure 3A) showing that fall 

prone older adults exhibit the largest after-effect was statistically reliable.  Results showed a 

main effect of group within the reintegration phase, F(2,30) = 4.01, p= .03, 𝜂𝑝
2 = .21, which 

varied across 30s time windows, as shown by a significant time window by group interaction, 

F(5,150) = 8.91, p<.001, 𝜂𝑝
2 = .37. Simple effects analyses demonstrated that there was a 

significant difference between fall-prone and young adults for windows R1 and R2, (winR1: 

F(1,20) = 16.11, p= .001; winR2: F(1,20) = 4.35, p= .03), whereby fall-prone older adults 

showed a larger after-effect compared to young adults (Figure 3A). Additionally, fall-prone 

older adults also showed a larger after-effect than healthy older adults during window R1, 
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F(1,20) = 7.33, p= .01, and healthy older adults showed a larger after-effect than young 

adults during this window, F(1,20) = 5.74, p= .01. AP path length declined over time as 

shown by a main effect of window, F(2.23,66.79)= 77.02, p= .001, 𝜂𝑝
2 = .72. Bonferroni 

pairwise comparisons revealed that all groups only showed a significant decrease in path 

length between successive windows from R1 to R2, (Young: p= .04; Healthy: p= .001; Fall-

prone: p< .001).  

 

[Insert Figure 3 here] 

 

 

Muscle co-contraction (CCI) 

BASELINE. Figure 3B illustrates the mean CCI values for the GM and TA across 

each 30s for each of the three postural phases in young, healthy older and fall-prone older 

adults. The mixed-design ANOVA revealed no significant effects of group or time window 

during baseline and no group by time window interaction. 

ADAPTATION. During exposure to a sway-referenced support, all groups showed an 

increase in CCI levels, however, this was particularly pronounced in fall-prone older adults 

(Figure 3B). A mixed-design ANOVA comparing the adaptation mean to the baseline mean 

confirmed that CCI levels were higher during the adaptation phase, F(1,30) = 34.34, p< .001, 

𝜂𝑝
2 = .53. However, there was no difference between groups or interaction between group and 

condition. Analysis of CCI levels across the adaptation phase showed that the effect of group 

approached significance (p= .050) and CCI declined over time, F(3.12,93.70) = 6.84, p< 

.001,  𝜂𝑝
2 = .19. Bonferroni pairwise comparisons indicated that the change in CCI levels was 

gradual, as there were no significant differences between successive windows, however, 

window A1 was significantly higher than all windows apart from A2, (p= .001-.03). There 

was no group by time window interaction. 

REINTEGRATION. During the restoration of a stable support surface, each group 

showed a peak in CCI levels during the first 30s window (R1), which was larger in fall-prone 

older adults (Figure 3B). Similarly to the AP path length analysis, a mixed-design ANOVA 

comparing the mean of the reintegration phase to the baseline mean was used to examine the 
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significance of this CCI after-effect. The analysis confirmed that CCI levels were greater 

during the reintegration phase, F(1,30) = 9.22, p= .005, 𝜂𝑝
2 = .24. Additionally, the test found 

a significant effect of group, F(1,30) = 3.40, p= .047, 𝜂𝑝
2 = .19, which Bonferroni pairwise 

comparisons showed was due to larger CCI levels in fall-prone older adults compared to 

young adults (p= .03). The duration of the CCI after-effect for each group was assessed using 

paired samples t-tests comparing each 30s reintegration window with the mean of the 

baseline windows, with an alpha level corrected for multiple comparisons to 0.008. These 

tests demonstrated that young adults showed no significant CCI after-effect for any window. 

However, both healthy older and fall-prone older adults show a significant after-effect in the 

first 30s window (Healthy: t(10) = 3.29, p= .008; Fall-prone: t(10) = 3.56, p= .005).  

Analysis of CCI levels throughout the reintegration phase also showed group 

differences, F(1,30) = 3.48, p= .04,  𝜂𝑝
2 = .19. Bonferroni pairwise comparisons revealed that 

this was due to significantly greater CCI values in fall-prone older adults compared to young 

adults (p= .04). Similarly to the adaptation phase, CCI levels declined over the reintegration 

phase as shown by a main effect of window F(2.04,61.10) = 5.08, p= .009,  𝜂𝑝
2 = .15. 

Bonferroni pairwise comparisons demonstrated that this effect of time was due to a decrease in 

CCI from window R1 to R2 (p= .002). There was no group by time window interaction.  

Perception of platform stability and postural after-effects 

Two-tailed independent samples t-tests, with an alpha value corrected for multiple 

comparisons to 0.016, were used to explore whether there were significant age differences in 

the time at which each group perceived that the platform had stabilized at the start of the 

reintegration phase (Figure 4). Both older groups pressed the push button significantly later 

than the young group (healthy vs. young: t(20) = 3.03, p = .007; fall-prone vs. young: 

t(12.89) = 4.27, p= .001) and there were no differences in the perception of platform stability 

between the two older adult groups.  

Paired samples t-tests were also used to examine differences between the time 

window at which the postural after-effect returned to baseline and the time at which the 

participants perceived that the platform had stopped moving, for each group (Figure 4). Only 

young adults showed a difference between the two latencies, namely they perceived the 

reinstatement of a stable platform earlier than postural sway returned to baseline levels t(10) 

= 2.95, p= .02. (Figure 4). However, for both older groups the time at which they perceived 
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the reinstatement of a stable platform was similar to the time that postural sway returned to 

baseline levels. Albeit not significant, it is instructive to note that healthy older adults’ sway 

returned to baseline before they perceived the return to stability a few seconds later, whereas 

for fall-prone older adults they perceived the stable platform ~14s before their sway returned 

to baseline. Additionally, it should be noted that one fall-prone older adult never pressed the 

push-button, as they failed to recognise that the platform had stopped moving throughout the 

duration of the reintegration phase. This participant’s time was normalized to the group 

mean. No participant pressed the push-button before the platform had stabilized. 

[Insert Figure 4 here] 

 

EXPERIMENT 2 

Anterior-posterior (AP) path length of the hip marker 

 BASELINE. Figure 5A illustrates the mean AP path length of the hip marker across 

each 30s for each of the three postural phases in young and healthy older adults. A mixed-

design ANOVA showed an overall group difference, F(1,23) = 18.40, p< .001,  𝜂𝑝
2 = .44, 

whereby older adults showed a larger AP path length (M = 162.2 ± 53.27cm) compared to 

young adults (M = 101.85 ± 23.21cm). In addition, there was a change in AP path length over 

time as shown by a main effect of window F(3,69)= 3.65, p= .017, 𝜂𝑝
2 = .14. However, 

Bonferroni pairwise comparisons found no significant difference between windows. There was 

no significant interaction (p=.42). 

ADAPTATION. In line with Experiment 1, exposure to a sway-referenced support 

instilled a large increase in AP path length of the hip marker in both groups, as witnessed in 

Figure 5A. A mixed-design ANOVA, which compared the mean AP path length during 

adaptation to the mean during baseline, confirmed that AP path length was significantly 

higher during the adaptation phase, F(1,23) = 107.85, p< .001, 𝜂𝑝
2 = .82. In this case, there 

was also a significant difference between groups, F(1,23) = 13.02, p= .001, 𝜂𝑝
2 = .36, which 

suggested that the age difference witnessed at baseline was maintained in the adaptation 

phase. There was no significant interaction (p = .24). Analysis of AP path length throughout 

the adaptation phase, also showed a significant difference between groups, F(1,23) = 6.95, p= 

.015, 𝜂𝑝
2 = .23, and a significant change across time windows, F(5,115) = 4.98, p< .001, 𝜂𝑝

2 = 

.18. There was also a significant interaction between group and time window, F(5,115) = 
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2.75, p= .02, 𝜂𝑝
2 = .11. Examination of the effect of time window in each group individually 

showed that young participants did not show a significant reduction in AP path length over 

time (p = .72), whereas older adults did show an effect of time window, F(5,65) = 7.31, p< 

.001, 𝜂𝑝
2 = .36. Bonferroni pairwise comparisons showed that AP path length showed 

successive decline between windows A1 and 2 (p= .03) for older adults. In addition, 

independent samples t-tests with an alpha level corrected for multiple comparisons to 0.008, 

showed that the older adult group showed significantly higher AP path length compared to 

young adults during the first adaptation window only (t(23) = 3.09, p= .005). 

 REINTEGRATION. In line with Experiment 1, restoration of a stable support surface 

resulted in clear postural after effects, which were larger in older adults (Figure 5B). This was 

confirmed using a mixed-design ANOVA, which compared the mean AP path length of the 

hip marker during the reintegration phase with the mean during baseline (B_M). Results 

showed that AP path length was significantly higher during reintegration, F(1,23) = 40.22, p< 

.001, 𝜂𝑝
2 = .64, and there was a significant group difference, F(1,23) = 27.62, p< .001, 𝜂𝑝

2 = 

.55. Additionally, a group by phase interaction, F(1,23) = 11.49, p= .003 , 𝜂𝑝
2 = .33, suggested 

that the after effect may differ between age groups. The duration of the after-effect for each 

group was assessed using paired samples t-tests comparing each 30s reintegration window 

with the baseline mean (Figure 5B), with an alpha level corrected for multiple comparisons to 

0.008. In younger adults, AP path length was only significantly higher than baseline during 

the first 30s reintegration window (t(10) = 4.51, p= .001). However, in parallel to Experiment 

1, the after-effect was significant for up to 60s (R2) in older adults (t(10) = 7.05- 4.14, p≤ 

.001). 

Analysis of AP path length of the hip marker throughout the reintegration phase was 

performed to assess whether age differences occurred across different time windows. The 

analysis found an overall group difference, F(1,23) = 28.75, p< .001, 𝜂𝑝
2 = .56, and change in 

path length across time windows, F(5,115) = 36.01, p< .001, 𝜂𝑝
2 = .61. In addition, there was 

a significant interaction between age group and time window, F(5,115) = 5.56, p< .001, 𝜂𝑝
2 = 

.20. Examination of the effect of time window in each group individually showed that both 

groups showed a significant reduction in AP path length over time (Young: F(1.71,25.60) = 

17.30, p< .001, 𝜂𝑝
2 = .63; Older: F(1.97, 25.60) = 26.34, p< .001, 𝜂𝑝

2 = .67). Bonferroni 

pairwise comparisons showed that only older adults showed an immediate significant decline 

in path length between windows 1 and 2 (p < .001), whereas in young adults decline was 
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more gradual, with a significant reduction from window 1 shown from window 3 onwards 

(p= .007-.02). In addition, independent samples t-tests with an alpha level corrected for 

multiple comparisons to 0.008, showed that the older adult group showed significantly higher 

AP path length compared to young adults across all reintegration time windows (p≤ .003). 

[Insert Figure 5 here] 

 

Perception of platform stability and postural after-effects 

A two-tailed independent samples t-test was used to investigate whether there was a 

significant age difference in the time at which each group perceived that the platform had 

stabilized at the start of the reintegration phase (Figure 6). In line with Experiment 1, the 

older adults pressed the push button significantly later than the young group (t(14.53) = 6.06, 

p< .001). On average, older adults pressed the push button over 5x later than young adults 

(MYoung
 = 5.18 ± 2.66s, MOlder = 26.63 ± 12.86s).  

Paired samples t-tests were used to examine whether there was a significant difference 

between the time at which AP path length returned to baseline levels and the time at which 

each group perceived that the platform had stopped moving. Only young adults showed a 

significant difference between these latencies (t(9) = 5.73, p< .001), in which they perceived 

the reinstatement of a stable platform earlier than postural sway returned to baseline levels 

(Figure 6). 

[Insert Figure 6 here] 

 

Discussion 

The current paper had two key aims; (1) to investigate whether postural sway and 

muscle co-contraction after-effects during the restoration of a stable support differed in 

healthy and fall-prone older adults, and (2) to examine whether such after-effects were 

accompanied by a delayed perception of platform stabilisation, in support of the argument of 

an age-related slowing of sensory reweighting. In line with our previous findings, in 

Experiment 1 we found that both older groups showed significantly larger and longer postural 

after-effects when a stable platform was reinstated and proprioceptive information was 

reintegrated, compared to young adults (Doumas & Krampe, 2010; Craig et al., 2017). As 
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predicted, this postural after-effect was also significantly larger in the fall-prone group, 

compared to the healthy older adults, suggesting that this transition may instill additional 

instability in this group. Additionally, in both older groups, after-effects were also witnessed 

in terms of muscle co-contraction. More importantly, we demonstrated that these after-effects 

were accompanied by a delayed perception that the platform had stopped moving, as it took 

both older groups five times longer than the young group to detect this change.  

Despite absent visual feedback, young adults recognized that the platform had stopped 

moving in ~8 seconds. In contrast, both older groups took on average ~40 seconds to 

recognize that the platform had stabilized. Considering the magnitude of these latencies, these 

age differences cannot be explained by age-related delays in reaction time, which typically 

occur on the scale of milliseconds (Fozard et al., 1994). Additionally, this cannot be 

explained by the level of postural sway prior to platform stabilisation, as our gain 

manipulation during sway-referencing successfully induced similar levels of sway in young 

and older groups during the adaptation phase. Despite this, the fact that young adults were 

standing on a more compliant surface (gain = 1.6) compared with older adults (gain = 1), 

could suggest that the perceptual illusion may be an experimental confound, whereby young 

adults experienced a larger perceptual discrepancy between the moving and stable platform, 

which resulted in a quicker perception of stability. Consequently, the aim of Experiment 2 

was to examine whether the perceptual illusion would be replicated following postural 

adaptation to the same gain setting (gain = 1) in both young and older adults. 

In support of our hypothesis, the perceptual illusion was maintained in Experiment 2, 

in which a healthy older sample once more took five times longer than the young group to 

detect platform stabilization, despite postural adaptation to the same gain setting (gain = 1). 

Additionally, Experiment 2 successfully replicated other key findings of Experiment 1, 

namely the similar adaptation rates between age groups and the larger and longer aftereffects 

for older adults in the 30s reintegration phase analysis. However, some secondary differences 

were shown between the two experiments with older adults showing larger baseline postural 

sway compared with young adults, which has also been shown in one of our previous studies 

(Doumas & Krampe, 2010). Older adults also showed lower group variability in both the 

perceptual delay and the return to baseline in Experiment 2 compared with Experiment 1 (see 

error bars in Figures 6 and 4 respectively) suggesting that the older group in Experiment 2 

was inherently more homogeneous. Regardless of these secondary differences between 
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experiments, the replication of a fivefold delay in the time to detect platform stabilization in 

older adults supports that the perceptual illusion is a robust age-specific effect. This finding, 

in combination with the age-related postural sway after-effects witnessed in both studies, 

provides compelling evidence that sensory reweighting is deficient when attempting to 

reintegrate veridical proprioceptive information. The duration of this perceptual illusion of 

continued movement is striking, as it implies that the previously noted age-related delays in 

sensory reweighting  (O’Connor et al., 2008; Doumas & Krampe, 2010; Jeka et al., 2010; 

Eikema et al., 2012, 2013) could have significant perceptual consequences in real life. For 

example, everyday sensory transitions, such as, stepping off recently moving transport 

(especially in dark conditions) could pose a considerable fall risk to an older person. 

Age-related Deficits in Sensory Reweighting  

The age-related postural sway after-effects shown in the present paper are observed 

after prolonged adaptation to a sway-referenced surface. When standing on this surface, 

proprioceptive information about body sway is inaccurate and as a result the weight assigned 

to proprioception is reduced (Peterka & Loughlin, 2004). At the same time the weight for the 

accurate, vestibular input increases and gradually sway is reduced over the 3 minutes of 

adaptation. However, when the stable surface is restored the initial weights also have to be 

restored. Restoration of the two weights is much slower in older adults (Doumas & Krampe, 

2010; Craig et al., 2017) and in the present Experiment 1 in fall-prone older adults, and this 

slowing is reflected in the age-related postural sway after-effect. Our findings suggest that 

this slow sensory reweighting in older adults results in the delayed formation of an accurate 

postural percept. Previous research had suggested that postural after-effects during platform 

stabilization could be due to a conservative strategy to preserve CNS resources dedicated to 

postural control during transient conditions of reduced postural threat (Jeka et al., 2008). 

However, our finding of a continued perception that the platform is moving (Experiment 1 & 

2) and prolonged muscle co-contraction in older adults (Experiment 1), suggests that 

considerable postural threat is still experienced during this transition. Rather, slowed sensory 

reweighting in older adults results in the delayed formation of an accurate postural percept, 

which is associated with prolonged postural sway until sensory reweighting is completed, 

which may instil a postural illusion in this age group that the platform is still moving.  

It is interesting to note in Experiment 1, that whilst fall-prone older adults 

demonstrated a significantly larger postural sway after-effect compared to healthy older 
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adults, there was no significant difference in the time at which these groups perceived 

platform stabilisation. This could suggest that sensory reweighting delays are similar in both 

groups but the body’s ability to compensate for this is impaired in fall-prone older adults. In 

support of this, fall-prone older adults showed similar postural sway in the first 30s of the 

reintegration phase to that shown during the first 30s of sway-referencing, suggesting that this 

transition resulted in considerable postural instability in this group. Furthermore, the extent of 

fall-prone older adults’ reliance on co-contraction during the reintegration phase was 

noteworthy, as whilst their postural sway levels gradually reached the same values as young 

adults’, their CCI remained higher than young adults’ throughout the reintegration phase. 

This is important, because if used excessively, muscle co-contraction is likely to be 

maladaptive, as literature shows that co-contraction can increase postural sway (Laughton et 

al., 2003; Reynolds, 2010; Nagai et al., 2011; Warnica et al., 2014) and has been associated 

with increased falls risk (Ho & Bendrups, 2002; Nelson-Wong et al., 2012). This increased 

falls risk could be due to increased lower limb rigidity and impeded adaptive reactions to 

postural perturbations (Tucker et al., 2008) or reduced proprioceptive input from active 

muscle spindles, compared to passive muscle spindles (Wise et al., 1998; Proske & 

Gandevia, 2012). 

Muscle Co-contraction 

This pattern of increased reliance on muscle co-contraction in fall-prone older adults 

was shown throughout each postural phase in Experiment 1 but only reached significance 

during reintegration, whenever postural sway also showed a significant age difference. The 

literature suggests that muscle co-contraction is witnessed in response to increased challenge 

to postural stability (Chambers & Cham, 2007; Cenciarini et al., 2010; Warnica et al., 2014) 

and is generally higher in those with poorer postural control ability (Nagai et al., 2011, 2016). 

It is thought that muscle co-contraction is used as ankle stiffening strategy to minimize 

postural sway (Baratta et al., 1988; Hortobágyi & Devita, 2000; Benjuya et al., 2004; 

Engelhart et al., 2015). In support of this, we found that all groups showed increased muscle 

co-contraction when exposed to increased postural sway due to a sway-referenced support. 

However, in contrast to our previous findings (Craig et al., 2016, 2017) and other literature 

(Nagai et al., 2011, 2013), we did not find significant age differences in muscle co-

contraction throughout all phases. This is likely due to the stratification of older adults into 

‘healthy’ and ‘fall-prone’ groups in the current study, which was not done in the previous 
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literature. Nagai et al (2011, 2013)  reported that high muscle co-contraction was strongly 

associated with poorer postural performance in older adults. In light of which, they proposed 

that muscle co-contraction use could be utilised as a predictor of postural impairment (Nagai 

et al., 2013). Consequently, our current results may not be surprising and could support the 

use of muscle co-contraction as an indicator of balance impairment and potential falls risk. 

Study Limitations and Future Directions 

This argument of increased reliance on muscle co-contraction in fall-prone older 

adults would be strengthened if Experiment 1 found significantly higher muscle co-

contraction in the fall-prone group during the postural adaptation phase. However, high 

variability in CCI in this group resulted in this measure failing to reach significance. This 

variability may be due to problems defining fall-prone individuals. In order to understand fall 

incidents it is important to study postural control in fall-prone older adults. However, a 

limitation of this work is that there is no clear, formal and generally accepted way of 

categorizing older adults as fall-prone. Experiment 1 utilized the same definition as that used 

by Jeka et al. (2010) in another study examining sensory reweighting deficits in fall-prone 

older adults. However, this categorization is problematic because self-reporting of falls can 

be unreliable and because the BBS, a widely used instrument for the functional assessment of 

balance has shown limited predictability of actual falls (Lima et al., 2018). The use of more 

reliable reporting techniques, such as, third-party recall (e.g. clinician or family member 

report) or prospective falls diaries may result in a more homogeneous sample. It is likely that 

such a sample would demonstrate significantly higher CCI levels throughout all postural 

phases. 

Another potential study limitation was the way in which the EMG activity was normalized in 

Experiment 1. Our calculation of the co-contraction index was based on a well-established 

method used by many previous studies (Nelson-Wong et al., 2012), however, both this 

method as well as another commonly used method of calculating muscle co-contraction 

(Falconer & Winter, 1985) normalize EMG by the MVC. This may not be the most 

functionally relevant method of normalizing EMG because MVC is calculated outside the 

postural control task. A more appropriate and functionally relevant method would be to 

normalize by the baseline EMG before sway referencing was introduced, or even to not 

normalize at all and to simply multiply the filtered EMG signals of the flexor and extensor 

muscles (Reynolds, 2010).   
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In conclusion, the current dual-experiment paper provided compelling evidence 

that postural after-effects witnessed during stabilization of a previously sway-referenced 

support are accompanied by a perceptual illusion that the platform is still moving in 

older adults. This corroborates previous findings that sensory reweighting is delayed in 

this age group, resulting in a delayed formation of an accurate postural percept. 

Interestingly, in Experiment 1, despite showing a larger postural sway after-effect, fall-

prone older adults did not show prolonged perceptual delays compared to healthy older 

adults. This could suggest that sensory reweighting delays are similar in these groups 

but the way the body compensates for these delays differs. An example of this may be 

witnessed in the fall-prone group’s excessive use of muscle co-contraction during the 

reinstatement of the stable support. Excessive use of muscle co-contraction may be a 

physiological marker for fall-risk in older adults. Future research should examine 

differences in how muscle co-contraction is implemented in healthy and fall-prone older 

adults.  
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Figure 1. Diagram of the postural adaptation task.  

The accuracy of proprioceptive information was manipulated using sway-referencing, during which 

the support surface tilts in proportion to body sway in the AP axis. Postural sway was assessed using 

infrared Codamotion markers placed at the C7, L5, right popliteal fossa, and right superior calcaneus. 

Muscle co-contraction (CCI) was assessed using EMG of the dominant TA, SOL and GM. 
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Figure 2. Schematic of experimental procedure.   

Motion capture and EMG data were recorded during a 2-minute stable baseline phase, followed by 3 

minutes of adaptation to sway-referencing and finally a 3-minute reintegration phase, in which the 

platform was stabilized. A push-button measure was used during the reintegration phase to assess the 

time at which participants perceived that the platform had stabilized.  
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Figure 3. Experiment 1 AP path length from the hip marker and muscle co-contraction (CCI) results.  

(A) Mean AP path length from the hip marker for each 30s window of each postural phase; baseline 

(B1-4), adaptation (A1-6) and reintegration (R1-6) for each group. (B) Close up of the mean AP path 

length for each 30s window of the reintegration phase (R1-6), alongside the overall baseline mean 

(B_M) for each group. (C) Mean CCI values for the TA and GM, for each 30s window of each 

postural phase (B1-4, A1-6, R1-6) for each group. (D) Close up of the mean CCI values for each 30s 

window of the reintegration phase (R1-6), alongside the overall baseline mean (B_M) for each group. 

N = 11 per group. Error bars represent the SEM. ● Significant group difference, indicated by simple 

effects analysis following ANOVA with group as between- and time window (per 30s) as within-

subject factors, p< .05. Dashed lines represent the time windows over which this difference remained 

significant. */*/* Significant difference from baseline mean (B_M), indicated by paired t-tests with 

alpha level corrected for multiple comparisons,  p< .008. 
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Figure 4. Experiment 1 group averages of the time taken to perceive that the platform had stopped 

moving (button press) and the time that each group’s postural sway returned to baseline levels, 

compared to when the platform stopped moving (time=0).  

N = 11 per group. Error bars represent SEM. ● Significant difference from both other groups, 

indicated by two-tailed independent samples t-test with alpha level corrected for multiple 

comparisons, p< .016. 
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Figure 5. Experiment 2 AP path length from the hip marker results. (A) Mean AP path length from 

the hip marker for each 30s window of each postural phase; baseline (B1-4), adaptation (A1-6) and 

reintegration (R1-6) for each group. (B) Close up of the mean AP path length for each 30s window of 

the reintegration phase (R1-6), alongside the overall baseline mean (B_M) for each group.  

NYoung = 11, NOlder = 14. Error bars represent the SEM. ● Significant group difference, indicated by 

mixed ANOVA, followed up by independent samples t-test with alpha level corrected for multiple 

comparisons, p< .008. Dashed lines represent the time windows over which this difference remained 

significant. */* Significant difference from baseline mean (B_M), indicated by paired t-tests with 

alpha level corrected for multiple comparisons, p< .008. 
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Figure 6. Experiment 2 group averages of the time taken to perceive that the platform had stopped 

moving (button press) and the time that each group’s postural sway returned to baseline levels, 

compared to when the platform stopped moving (time=0).  

NYoung = 11, NOlder = 14. Error bars represent SEM. ● Significant difference between groups, indicated 

by two-tailed independent samples t-test (p< .001). 

 

 

 

 

 

 

 

 


