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ABSTRACT 

With the growing availability of ‘big’ data, increasing computer power, and improved data 

storage capacities, machine learning techniques are now frequently employed in order to 

make sense of data.  Yet, the social sciences have been slow to adopt these techniques, 

and there is little evidence of their use in some academic fields.  This thesis explores the 

methods most commonly utilised in social science research, that is, linear regression and 

null hypothesis significance testing, in order to identify how machine learning methods 

might complement these more established methods. 

A case study exploring the Troubled Families programme provides a practical example of 

how machine learning techniques can be utilised on complex, interlinked social data in 

order to provide deeper understanding and more insight into the data.  Eleven different 

types of families were identified using cluster analysis, and analysis was performed in 

order to understand how the family’s lives changed after joining the TF programme when 

compared to before.  The analysis provided insight into the various types of families that 

existed and the problems that they had.  It also highlighted that, had the data been 

analysed on an overall global level, it would have been prone to an averaging effect 

whereby many of the changes that occurred were not apparent; analysis on the cluster-

level resulted in identification of cluster-level patterns, and a greater understanding of 

the data. 

This thesis demonstrated that machine learning techniques, such as cluster analysis and 

decision tree learning, can be effectively utilised on complex ‘real-life’ social science 

datasets.  These methods can identify hidden groups and relationships, and important 

predictors in a dataset, provide a better understanding of the structure of the data, and 

aid in generating research questions and hypotheses.  
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1 INTRODUCTION 

1.1 BACKGROUND 

The analysis and understanding of data is fundamentally important to society.  Analysis of 

data might be used to: test an existing hypothesis; formulate new hypotheses; check the 

reliability and quality of a dataset; evaluate the level of impact of one or more variables 

against another; gain insights and explore hidden relationships; show that a dataset is not 

completely random; or to predict future cases or events.  There are many reasons for 

data analysis, but perhaps the overall aims are to discover something useful, to predict 

something, or to support decision and policy making. 

In recent years data-driven analysis (or data science) has become more prevalent, both in 

academic research and in industry.  This has coincided with the growth of ‘big data’, a 

reduction in the cost of data storage, and ever more powerful computers.  Data is being 

stored at a rapid rate and in massive volumes, and it is collected from almost every 

imaginable source - for example, customer databases, social media, sensor data, financial 

data, governmental data, and biomedical and scientific data.  This ever-increasing store of 

data has generated great interest into how best to derive insights or gain competitive 

advantage from it.  Many traditional statistical techniques are simply not equipped to 

cope with the size, type and dimensionality of these large quantities of data.  This has 

prompted improvements in the methods used to analyse it, such as more efficient 

algorithms and the development of free, open-source software. 

Whilst much of the focus has been on ‘big’ data with regards to machine learning, the 

methods can usefully be deployed upon ‘smaller’ data, and they are particularly suited to 

the types of data that are synonymous with social science research (such as social 

surveys, and wide, interlinked data).  Academic fields such as computer science have deep 

involvement in developing methods for, and analysing, this data; however, the social 

sciences have seemingly lagged behind in adopting these new methods.  Social scientists 

are ideally placed to ask informed research questions of this new data, to aid in 

understanding results and to take advantage of these methods.  Yet, whilst there is 

growing interest in the use of machine learning methods, they are not frequently utilised 

in social science research.  
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1.2 AIMS  

This project aims to show that machine learning techniques can be utilised effectively on 

social science datasets and that they can be particularly useful for identifying patterns 

and hidden underlying relationships. 

The project also aims to show that machine learning techniques can effectively 

complement the more established methods, such as regression.  Machine learning might 

be used for exploratory data analysis, to discover hidden groups within data, to identify 

relationships and important predictors, determine the structure of a dataset, to generate 

hypotheses, or be utilised to confirm results.  The adoption of machine learning methods 

such as cross-validation could also produce more robust work when applied to 

established methods.   

1.3 RESEARCH QUESTIONS AND OBJECTIVES 

The overall research questions are: 

 Can machine learning techniques be effectively utilised or adapted to facilitate the 

analysis and comprehension of large social science data sets? 

 Which data mining methods are most effective for discovering otherwise hidden 

patterns within complex and often noisy social data? 

 Can data mining methods provide a detailed picture of trends and patterns within 

a dataset? 

 Can machine learning methods be utilised to suggest new hypotheses and 

research questions? 

The objectives of this research are to explore the use of machine learning in the social 

sciences, and to discover how these methods might be best utilised on social science 

data.  This includes considering the methods that are currently employed and exploring 

why there may be a reluctance to explore the utilisation of more data-driven methods.   

A practical analysis of the use of machine learning methods will be provided by a large 

analysis of data pertaining to the Troubled Families Programme.  The data is anonymised 

so as not to identify individuals or families.  It is also noisy and interlinked, and contains 

information pertaining to the events that families had (such as school absence, criminal 

offences and child safeguarding events) and details that described the families and the 
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individuals in them (such as age, location, and details of the intervention treatments that 

families received).  

This analysis will consider whether machine learning methods can be effectively utilised 

to identify groups or patterns within the data.  More explicitly, it asks: 

 Whether there exist unique groups of families within the Troubled Families data 

 Does the identification of these groups provide deeper insight than one overall 

analysis of the data might provide? 

 How do the lives of the families in each cluster change following their introduction 

to the TF programme, and is it possible to predict, or identify important factors 

that may indicate where positive future outcomes will occur? 

1.4 OUTLINE 

Chapters 2 and 3 provide a description of the methods that are most commonly used in 

social science research, this is in order to provide a baseline for the following chapters 

which discuss alternative methods that might be used to complement these methods.  

Chapter 2 provides a description of linear regression, and the various assumptions that 

must be satisfied in order for results to be valid.  It explores model interpretation and 

considers the issues with linear regression that might lead to flawed results.   

Chapter 3 considers null hypothesis significance testing and explores the various issues 

surrounding its use, a broader discussion of reproducibility is also included.  Chapter 4 

provides an outline of data mining, including a brief history, and outline of various 

methods.  The methods utilised in this thesis are explored; these are clustering, decision 

tree learning, random forests and boosted methods.  There is a discussion of both the 

positive and negative aspects of data mining.  Chapter 5 explores the use of data mining 

methods in existing social science research and considers the ways that these methods 

might be optimally utilised. 

Chapters 6 and 7 comprise parts 1 and 2 of the case study.  This explored data 

surrounding the Troubled Families programme, which was set up by the UK Government 

in order to target and provide help to families with multiple problems (such as school 

exclusion, child safeguarding issues, or criminal offences).  Chapter 6 provided a 

description of the Troubled Families Programme and aimed to discover whether there 

were any clusters, or groups of similar families within the data.  The geographical location 
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of the families was also explored in order to determine whether location might be an 

important factor in a family’s problems.  Chapter 7 continued the analysis from Chapter 6 

and utilised the clusters to investigate the lives of the families in the year after they 

joined the TF programme.  This considered whether families had shown any improvement 

in their circumstances one year later.  Both of the chapters utilised data mining methods, 

such as cluster analysis, decision tree learning and visualisation techniques in order to 

explore and analyse the data. 

Chapter 8 concludes the thesis and provides a summary of the research together with a 

consideration of the contributions of the research and avenues for future work. 
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2 REGRESSION 

2.1 INTRODUCTION 

The purpose of this, and the following, chapter is to discuss established approaches used 

in the social sciences, and to highlight the advantages and disadvantages of these 

methods.  These methods are explored in order to establish a reason for considering the 

use of alternative methods, and to provide a baseline for discussion of these alternatives. 

Linear regression and other correlational methods are widely used in the social sciences, 

and can be powerful tools, in that their results are relatively easy to understand, and they 

can intuitively highlight relationships between attributes.  However, linear regression 

relies upon strict statistical assumptions to be effective and this chapter explores those 

assumptions and the consequences of not satisfying them. 

This chapter also provides a brief description of Ordinary Least Squares Linear Regression.  

Methods of interpretation and evaluation of regression models are described, 

highlighting that there can be weaknesses with some of the methods used.  The 

importance of visualisation and exploratory data analysis in the modelling process is 

considered.  A discussion of the literature surrounding the various issues associated with 

the use of linear regression in the social sciences is provided.  This explores what the 

consequences of misspecified regression models are, gives a consideration of why models 

are sometimes misspecified, and considers suggestions as to how to overcome some of 

the problems. 

2.2 BACKGROUND 

Regression Analysis is one of the fundamental processes of modern statistics and 

encompasses a broad range of techniques and methods, but in essence, it explores the 

relationship between a target (or dependent, outcome or response) attribute and one or 

more predictor (or independent or explanatory) attributes.  It is used to identify whether 

there is a relationship between the predictor/s and the target attribute, to describe both 

the form and strength of those relationships, and to also provide an equation (or 

mathematical model) describing the relationship such that the predictors can be used to 

predict the target. 
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Ordinary Least Squares (OLS) Linear Regression is one of the most commonly used 

methods in Social Science papers that require some form of quantitative analysis of the 

relationships between attributes.  The method had its beginnings in the early 1800s when 

mathematicians Adrien-Marie Legendre (1752-1833) and Carl Friedrich Gauss (1777-1855) 

both, independently of each other and for the purpose of calculating astronomical orbits, 

published papers describing the method of least squares (Sorenson, 1970). 

Building upon this, scientist Sir Francis Galton (1822-1911) was instrumental in the 

development of modern ideas of regression and correlation.  He was particularly 

interested in genetics and heredity, and presented the first regression line at a lecture in 

1877 (Stanton, 2001).  In further work on the heights of parents and their children, he 

first described the phenomenon of regression towards the mean (Galton, 1886).  Galton’s 

colleague, mathematician Karl Pearson (1857-1936), and Udny Yule (1871-1951) extended 

and formalised mathematically much of their ideas on regression and correlation (Yule, 

1897; Pearson et al., 1903).  Pearson himself is generally credited as being one of the 

founders of modern statistics, having defined the Pearson Product Moment correlation 

coefficient, the Chi-squared distribution, and the idea of p-values and statistical 

hypothesis testing (Pearson, 1900). 

Although in recent years new regression methods have been developed to deal with 

more complex data and problems, OLS regression is still arguably the most commonly 

used method (Berk et al., 2014).  Newer methods include: robust regression, which 

attempts to deal with outliers and heteroscedasticity; nonparametric regression which 

can provide a more flexible regression curve and relaxes the assumption of linearity; 

Bayesian regression which is useful for poorly distributed and more complex data and 

provides analysis within the context of Bayesian inference; ridge regression which 

attempts to alleviate multi-collinearity of predictors; and time series regression. 

2.3 OLS LINEAR REGRESSION 

Simple linear regression is the method of predicting a quantitative target attribute Y from 

a single predictor attribute X, assuming that there is a linear relationship between the two 

(i.e. that their relationship can be described by a straight line when plotted).  

Mathematically, where there are n data points, a target attribute 𝑦𝑖, and the single 

predictor 𝑥𝑖  the relationship is written as: 
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𝑦𝑖 =  𝛽0 +  𝛽1𝑥𝑖 + 𝜖𝑖 (2.1) 

For 𝑖 = 1, … , 𝑛 and where the regression coefficients 𝛽0 and 𝛽1 are unknown constants 

that represent the intercept and slope terms in the model.  𝜖𝑖 is the error term or 

residual.  The intercept 𝛽0 is the value of y when x = 0, i.e. it is the point at which the 

regression line crosses the y-axis when plotted.  The slope, 𝛽1, refers to how much change 

there is predicted in y for one unit change in x.  The residual is the difference between the 

predicted value (�̂�𝑖) and actual value of 𝑦𝑖, written 𝜖𝑖 =  𝑦𝑖 −  �̂�𝑖.  Residuals may be 

positive or negative; if the residuals were all zero, all data points would sit on the 

regression line and there would be no error at all in the model. 

In many cases, a simple model is not adequate and there is a need to consider more than 

one predictor; this is particularly true when dealing with complex datasets and real-world 

problems.  In this case, multiple linear regression is required.  The equation for this is: 

𝑦𝑖 =  𝛽0 +  𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖 (2.2) 

For 𝑖 = 1, … , 𝑛 and where there are n data points, 𝑦𝑖 is the target, and 𝑥𝑖1 to 𝑥𝑖𝑗 are the 

predictors.  𝛽0 is the intercept and 𝛽1 to 𝛽𝑗 are the regression coefficients. 

For both multiple and simple linear regression, the optimal solution is found by using the 

data to estimate the values of the unknown constants 𝛽0 to 𝛽𝑗.  There are various 

methods for accomplishing this, but by far the most commonly used (Hayes and Cai, 

2007; James et al., 2013) is the method of Ordinary Least Squares, or OLS.  This may be 

because it is relatively quick and easy to implement (it is included in most statistical 

software as standard), the basic methodology is relatively easy to understand (especially 

for those without a mathematical background), and it is easily interpretable.  OLS seeks to 

find the straight line or plane that cuts through the data points, producing the least 

amount of error. 

The OLS function derives the estimates (�̂�₀ to �̂�𝑗) by finding the line or plane that 

minimizes the sum of squared errors (SSE) between the actual and predicted values for 

𝑦𝑖.  Squaring the errors removes any issue over whether the error is negative or positive. 

𝑆𝑆𝐸 = ∑ 𝜖𝑖
2

𝑛

𝑖=1

=  ∑(𝑦𝑖 −  �̂�𝑖)
2

𝑛

𝑖=1

(2.3) 

Minimising this gives, in the case of simple regression, the following equations (James et 

al., 2013): 
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�̂�1 =  
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 −  �̅�)𝑛

𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

(2.4) 

�̂�0 =  �̅� −  𝛽1̂�̅� (2.5) 

Where �̅� and �̅� are the means of the target and predictor attributes. 

Multiple linear regression can be generalised to handle categorical target attributes and 

those that are not Normally distributed.  In the case of a binary target, logistic regression 

may be used.  Logistic regression aims to estimate the probability of a specific level of the 

target attribute given the predictors, and can be employed for both binary or multinomial 

target data.  Linear and logistic regression (and Poisson regression, ANOVA, etc.) belong 

to a broader class of models called the generalised linear model, or GLM (Nelder and 

Wedderburn, 1972).  GLM is a flexible generalisation of linear regression that allows for 

target attributes that follow any distribution from the Exponential family (rather than just 

those that are Normally distributed) and allows for a link function of the mean to vary 

linearly with the predictors (rather than assuming that the target itself must vary linearly). 

2.4 ASSUMPTIONS 

Linear regression remains popular in the social sciences because it provides a relatively 

easy to understand equation that can help to identify significant predictors.  It also allows 

a researcher the ability to examine the effect of one predictor on the target whilst holding 

all other variables constant.  This is particularly useful in a social science context, where 

unlike with more natural sciences (for example, chemistry), the experimental variables 

often cannot be manipulated.  For example, a researcher cannot change a subject’s 

income or age whilst holding all other variables constant; much social science data is 

observed, and not manipulated through experiments.  However, as with many statistical 

methods, for OLS regression to be effectively implemented, and for its results to be 

reliable it must satisfy certain assumptions (Boslaugh, 2013; James et al., 2013): 

 Linearity – The target should be linearly related to the predictor/s.  That is, the 

relationship could be plotted on a straight line (or on an n-dimensional plane 

where there are n predictors) 

 Normality – all continuous attributes should be approximately Normally 

distributed, and without extreme outliers 

 Independence of errors – the prediction error for each data point should be 

independent of the prediction error of all other data points, and errors should be 

Normally distributed 
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 Homoscedasticity – the variance of the target should not vary for different values 

of the predictors.  That is, the prediction errors should be constant over the entire 

data range, and not, for instance, smaller or larger when Y is small 

 Multicollinearity – for multiple regression, none of the predictors should be 

correlated with each other.  Highly correlated predictors can obscure the true 

relationship of each individual predictor to the target attribute 

Linear regression also generally relies upon the idea that the data is of good quality (no 

measurement errors), is not too small, and where it is a sample, that it is drawn from a 

random sample of the whole population.  In reality, when dealing with complex social 

science data, these assumptions can be very difficult to identify and satisfy.  Often, they 

may be only partially satisfied, if at all.  Yet if they are not, then it is likely that regression 

results will be inaccurate, and that conclusions drawn from the model may be misleading 

(Freedman, 1995; Berk et al., 2017).  The severity of the consequences varies greatly 

depending upon the assumptions that are not satisfied.  Outliers and non-linearity can 

cause bias in the regression parameters, meaning that the relationships are not described 

accurately.  Heteroscedasticity, multicollinearity and residuals that are not Normally 

distributed result in biased standard errors of regression estimates, which then lead to 

incorrect confidence intervals and significance tests (Erceg-Hurn and Mirosevich, 2008).  

This can cause problems when making statistical inferences and generalising to a larger 

population. 

There are methods to deal with some of these issues.  For example, data might be 

transformed into a more linear form (e.g. using a log or inverse transformation), 

interaction terms might be included, or outliers removed, so that assumptions are met.  

But these transformations must be deemed suitable for the particular model and also be 

interpretable.  However, often the first difficulty may simply be identifying that there is a 

problem, particularly when dealing with large, complex datasets.  In reality, models may 

rarely completely satisfy all of the assumptions.  Where assumptions cannot be 

adequately satisfied, or the data simply is not linear, it may be that a more robust or non-

parametric method would be more suitable, rather than performing linear regression. 

2.5 MODEL INTERPRETATION 

Ideally models should be interpreted and evaluated by a mixture of visualisation and 

statistical measures (Achen, 2005; Draper and Smith, 2014; Woodside, 2016), these are 

considered in the following section. 
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2.5.1 Visualisation 

Whilst there are many statistical measures available to evaluate a model, visualisation is 

also a vital tool.  Visualisation of data is important both before and after a regression as it 

may reveal problems that are not easily identifiable from numerical statistics alone.  Prior 

to regression, visualisation may highlight when a dataset does not satisfy regression 

assumptions and enable suitable transformations to be made to the data where 

appropriate; it thus may help avoid making Type I and Type II errors.  It can be particularly 

useful in identifying outliers, non-linear relationships, collinearity of predictors, and 

homoscedasticity. 

After regression, visualisation can be a useful tool for analysing the residuals and may also 

help to identify possible weaknesses in the model, such as heteroscedasticity.  Useful 

methods include plotting the residuals against the fitted values and predictors, and 

quantile (Q-Q) plots to check for normality. 

Given how useful it can be, visualisation should be a vital step in the regression process, 

yet in general, statistical visualisation is frequently underused in the social sciences (Zuur 

et al., 2010; Healy and Moody, 2014).  Despite the increased availability and usability of 

software to aid in the production of visualisations (and in data analysis generally), it 

seems that the social sciences, and in particular sociology, are lagging behind other areas 

in their use of statistical visualisation (Healy and Moody, 2014).  As highlighted by Healy 

and Moody (2014) it is common for top sociology journals to publish papers with many 

tables but no figures, whereas the opposite is true of the top natural science journals; in 

these, a key figure is often central to the article and this may help to illuminate the 

discussion. 

The consequences of relying solely upon descriptive statistical outputs and not 

adequately exploring and visualising data were effectively highlighted by Anscombe 

(1973) and more recently by Soyer and Hogarth (2012).  Despite its age, the Anscombe’s 

quartet example is still widely quoted (for example, Shoresh and Wong (2012), Branch 

(2014), Healy and Moody (2014), Lindsay (2015), Nielsen (2016) and Woodside (2016)) 

because it effectively illustrates that exactly the same summary and regression output 

statistics can be obtained from very different datasets. 

Anscombe (1973) created four simple datasets of x and y values, with 11 observations for 

each, and performed a regression on each dataset.  The data is contained in Table 1; in 
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the first three datasets the x values are identical, however, the y values are different for 

all datasets.  Table 2 highlights the summary statistics for each dataset, which are almost 

identical despite differences in the data. 

Table 1: Anscombe’s quartet data, x and y values for four datasets, from Anscombe (1973) 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 

x1 y1 x2 y2 x3 y3 x4 y4 

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58 

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76 

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84 

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47 

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04 

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25 

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50 

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56 

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89 

 

Table 2: Anscombe’s quartet summary statistics for all four datasets, from Anscombe (1973) 

Statistics for all four datasets: Value: 

Mean of x 9 (exact) 

Variance of x 11 (exact) 

Mean of y 7.50 (to 2 d.p.) 

Variance of y 4.1 (to 1 d.p.) 

Correlation between x and y 0.82 (to 2 d.p.) 

Linear regression equation y = 3.0 + 0.5x (to 1 d.p.) 

𝑹𝟐 0.67 

 

The 𝑅2 for all the models is the same, and is moderately high, explaining two thirds of the 

variation in the data.  However, when the x and y values for each dataset were plotted 

together with the regression lines an interesting picture emerged (Figure 1).  For Dataset 

1, the model had captured the relationship, with the regression line going directly 

through the middle of the points, but for the other three models there were clear 

problems.  Dataset 2 showed no linear relationship between x and y (so linear regression 

was not appropriate, at least without transformation).  Dataset 3 had one clear outlier 

which had forced the regression line upwards (without it, there would be a straight line).  

And dataset 4 also had one clear outlier that had skewed the relationship from what 

would have been a simple straight line. 
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Figure 1: Anscombe’s Quartet data (Anscombe, 1973) plotted to illustrate the importance of data visualisation 

Whilst a simple example in two dimensions, Anscombe highlighted the importance of not 

relying solely upon numerical statistics, and of visualising the data both before and after a 

regression.  It also highlighted that, in this case, evaluating the models using the 𝑅2 value 

would have led to a belief that all models were equally valid, when they clearly were not.  

Another example is provided by Matejka and Fitzmaurice (2017) who created multiple 

datasets that wildly differed visually but shared identical summary statistics. 

Contrasting Anscombe’s work, Soyer and Hogarth (2012) illustrated that providing 

numerical regression outputs alone can result in misleading interpretations of regression 

models.  Their experiment asked leading academic economists to interpret simple linear 

regression outputs (such as 𝑅2, standard errors, regression coefficients and scatter plots) 

and make probabilistic inferences from them.  The participants produced the most 

accurate interpretations where given only visualisations to study.  When given just 

numerical regression outputs they were less accurate; interestingly, the addition of 

visualisations to these made little difference.  Where forced to consider only 
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visualisations (scatter plots with regression lines) participants were more accurate and 

Ziliak (2012:713) suggests that this was because a simple graph allowed them to visualise 

the model uncertainty, whereas without this the econometricians fell back upon 

focussing on 𝑅2 and t values and hence were likely to ‘vastly’ over or underestimate the 

levels of uncertainty. 

As acknowledged by the authors, there were limitations to the study.  It had only a 9% 

response rate, and asked questions which might be considered ‘tricky’ as they involved 

calculating probabilities (as opposed, say, to simply assessing the ‘significance’ of 

particular variables).  However, it highlighted the extent to which regression outputs 

alone may be misinterpreted, and identified that providing basic visualisations allowed 

the experts to infer levels of uncertainty more accurately.   

Both the Soyer and Hogarth (2012) and Anscombe (1973) examples highlight that 

visualisations can allow more accurate inference, and that summary statistics alone 

cannot always identify correlations and non-linear relationships within a dataset.  

However, these were both simple, two-dimensional examples and it should be noted that 

more complex, higher dimensional data may be more difficult to analyse.  Newer data 

mining visualisation methods present ways to do this (Liu et al., 2017), but seem so far to 

be more frequently utilised outside the field of social science.  In particular, as well as 

more established methods such as Principal Component Analysis, a method such as t-

Distributed Stochastic Neighbor Embedding (t-SNE) is effective at representing high-

dimensional data in two (or three) dimensions, which may then be visualised in a 

scatterplot (Van Der Maaten and Hinton, 2008).   

2.5.2 Statistical Measures 

Statistical measures used to evaluate a regression model generally include the F statistic, 

Residual Standard Error (RSE), coefficient of determination (𝑅2), the standard errors of 

the regression coefficients and their t-values and p-values, and tests to determine the 

distribution of the residuals, such as the Kolmogorov-Smirnov test (Boslaugh, 2013; James 

et al., 2013).  Where there are multiple predictors, the standard errors and their p-values 

are typically used to decide which predictors are significant. 

As well as considering the standard errors of the individual regression coefficients, the 

Residual Standard Error (RSE) is also a popular measure of overall fit (or lack of fit) of a 
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regression model (James et al., 2013).  It is an estimate of the standard deviation of the 

residuals, 𝜖, and has the formula 

𝑅𝑆𝐸 =  √
1

𝑛 − 𝑝 − 1
∑(𝑦𝑖 −  �̂�𝑖)2

𝑛

𝑖=1

(2.6) 

Where n is the sample size, p is the number of predictors, and 𝑦𝑖 −  �̂�𝑖 is the error, or 

residual.   

RSE is measured in units of Y, and not in the form of a percentage or proportion.  This 

means it should provide a meaningful measure of fit (since it is in the same unit as the 

target), but in practice it can be difficult to determine what a good RSE value is.  However, 

a small RSE generally indicates that there is only small error and the model fits the data 

well, i.e. that 𝑦𝑖 ≈  �̂�𝑖  for i = 1,…,n.  Whereas a large RSE may indicate a lack of fit, i.e. that 

the values of �̂�𝑖 are very far from 𝑦𝑖.  It is dependent upon the specific dataset as to what 

might constitute acceptably ‘small’ or ‘large’ RSE values.  An advantage of the RSE is that 

it can be used to compare different regression models (as opposed to the 𝑅2, which 

cannot where different data samples are used). 

2.5.2.1 R-Squared 

Perhaps the most commonly used method of evaluating model fit (Renaud and Victoria-

Feser, 2010; Draper and Smith, 2014) is to calculate the coefficient of determination, or 

𝑅2.  The 𝑅2 is generally defined as the proportion of variation in the target, Y, that is 

explained by the model.  𝑅2 takes a value between 0 and 1, where an 𝑅2 of zero would 

mean a model that explained none of the variation, and an 𝑅2 of 1 would mean a perfect 

model (all points on the regression line/plane).  An 𝑅2 of 0.9, for example, would mean 

that 90% of the variation in the values of Y could be accounted for by the values of X.   

For simple linear regression the 𝑅2 is calculated as the square of the correlation between 

the target (Y) and predictor attribute (X), that is 𝐶𝑜𝑟(𝑋, 𝑌)2.  In the case of multiple linear 

regression, 𝑅2 is calculated as the square of the correlation between the target and the 

prediction, 𝐶𝑜𝑟(𝑌, �̂�)2.   

Adding more predictors to a model will always increase the 𝑅2, regardless of whether 

there is any significant effect (James et al., 2013:212).  Therefore, it can be a deceptive 

metric where there are many predictors.  An alternative measure is the adjusted 𝑅2, 
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which corrects for sample size and the number of predictors, by penalizing the addition of 

predictors that add nothing to the model (James et al., 2013:212).   

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −  
𝑆𝑆𝐸 (𝑛 − 𝑝 − 1)⁄

𝑇𝑆𝑆 (𝑛 − 1)⁄
(2.7) 

where p is the number of predictors, n the data sample size, SSE is the sum of squared 

errors, and TSS is the total sum of squares.   

The adjusted 𝑅2 may be a more suitable measure than 𝑅2 if a model contains many 

predictors, or when comparing models that contain different numbers of predictors (but 

use the same dataset).  However, despite the apparent usefulness of the adjusted 𝑅2 in 

these conditions, it seems that it is still not utilised as often as it could be in academic 

research.  This may be because some regression texts do not seem to stress its usage (for 

example, Draper and Smith (2014:140)) or because it is seen simply as a measure to 

enable choice between many models and this is often not required.   

Overall, the 𝑅2, with its value measured as a proportion between 0 and 1, can be an 

attractive metric as it appears much easier to understand than measures such as the RSE.  

However, the 𝑅2 value can be deceptive, and in practice, it is not always easy to 

determine what a ‘good’ 𝑅2 value should be.  It is dependent upon the context of the 

model; the particular dataset and the model goal.  In fields such as machine learning, a 

value close to 1 would be expected from a ‘good’ model, whereas in fields that contain 

noisy data with much unmeasured error, a much smaller 𝑅2 may be deemed acceptable.  

Reporting 𝑅2 values of less than 0.1 is common in fields such as sociology and political 

science and whilst such low values could indicate measurement difficulties or large 

random effects, it could also indicate that important factors have been omitted from the 

model (Freedman, 2009:52). 

The 𝑅2 has long been considered a controversial measure of fit for regression models, 

with the criticism spanning many decades (for example, Tufte (1969), Achen (1977), King 

(1991), Berk (2004)).  A problem with using the 𝑅2 as a measure of fit is that in the simple 

case, it does not evaluate the model at all, it is simply an indicator of correlation.  In the 

case of multiple regression, the 𝑅2 always increases as the number of predictors 

increases, irrespective of model performance, and this can be misleading.  And since the 

𝑅2 is dependent upon underlying variation in the data, it cannot be used to compare 

models built upon different data samples, therefore two (or more) model 𝑅2 may differ 



16 
 

simply because of different sample variance, rather than that the underlying relationships 

have changed (Achen, 1977). 

Achen (1990) describes the 𝑅2 as meaningless and a measure only of the particular data 

sample, making it useless for determining the quality of model fit.  Whereas (King, 1986) 

points out that there is no statistical theory behind the 𝑅2, it simply measures the spread 

of data points around the regression line/plane.  Despite the criticism over the years, it 

seems it is not uncommon for social science academic papers to report only the 𝑅2 value 

of their models when referring to overall fit.  The previous example of Anscombe’s (1973) 

quartet highlighted the danger of evaluating a model using only the 𝑅2; all four models 

had the same 𝑅2 despite three of them being completely misspecified.  Correlation, in 

general, is a poor way of summarising data; Tufte (1969) also performed a very similar 

experiment to Anscombe’s, which highlighted the faults of the correlation coefficient by 

plotting three datasets all with the same correlation, but very different data distributions. 

However, despite the criticism, much of the critical literature still make the point that the 

𝑅2 can be useful.  It is a useful first metric to consider (Draper and Smith, 2014:34), in the 

sense that, superficially at least, a high value may provide some indication that the model 

has captured relationships between the predictor and target attributes for that particular 

dataset, whereas a low value indicates that the model probably has failed to capture 

relationships, if there are any.  As Freedman (2009:53) states ‘the 𝑅2 measures goodness 

of fit, not the validity of any underlying causal mechanism’, and this means that other 

statistical metrics must also be considered when evaluating a model.  The 𝑅2 should not 

be reported in isolation (Luskin, 1991), as this can be misleading.  For instance, a high 𝑅2 

value without any individual significant regression coefficients might warrant further 

investigation into whether the model meets all assumptions, such as multicollinearity. 

2.6 CRITICAL LITERATURE SURROUNDING THE IMPLEMENTATION OF 

LINEAR REGRESSION IN THE SOCIAL SCIENCES 

Regression models can be a powerful tool for social scientists, in that their results are 

relatively easy to understand, and they can highlight relationships between attributes.  

Where assumptions are well understood, regression models can provide useful 

explanatory power of a particular phenomenon and detail the effects of each predictor 

upon a target whilst holding all others constant (or controlling for).  This is all without 
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requiring much data (they can be used with relatively small datasets) or computing 

power.  However, criticism of the use of linear regression in social science research has 

been around for many years (for example, Leamer (1983), McGregor (1993), Freedman 

(1995), Wilcox (1998), Berk (2004), Achen (2005), Erceg-Hurn & Mirosevich (2008), Elwert 

& Winship (2010), Armstrong (2012), Woodside (2016)).  The criticism generally focusses 

on the misuse of the method (whether knowingly or not), and unrealistic expectations 

that surround its usage.  The method itself is not criticised, simply its implementation.   

Perhaps the main problem associated with the use of linear regression is that it relies on 

very strict statistical assumptions which are extremely difficult to satisfy (Berk et al., 

2017); failure to satisfy these assumptions means that the method is often misused and 

incorrectly applied.  It seems that little attention is paid to this problem, yet if a model is 

misspecified and initial regression assumptions are not satisfied then this can result in 

Type I and Type II errors, leading to inconsistent research and the production of flawed 

conclusions (McGregor, 1993; Freedman, 1995; Berk et al., 2017). 

Wilcox (1998) makes the point that there has been no shortage of academic research 

over the years stating that methods such as OLS linear regression, ANOVA and other 

correlational methods are not robust when the underlying assumptions are not met.  And 

regression assumptions are rarely satisfied when analysing ‘real’ data (McGregor, 1993; 

Freedman, 1995; Berk, 2004; Erceg-Hurn and Mirosevich, 2008).   

McGregor (1993:802) states that regression assumptions are ‘almost always ignored, 

dismissed, left unexamined, or consciously violated’, and argues that regression models 

have been an impediment to progress in the social sciences, in that ignoring assumptions 

can result in misleading errors and wrong conclusions.  Similarly, Freedman (1995) argues 

that the regression models used by social scientists to make causal inferences generally 

depend upon many untested and unarticulated assumptions.  Models built upon such a 

foundation are prone to a lack of reproducibility, and reliance upon their results can be 

misleading. 

Perhaps the simplest assumption of a regression model is that the relationship between 

the target and predictor attributes is linear and additive.  That is, that the relationship 

could be plotted on a straight line (or an n-dimensional plane where there are n 

predictors).  Yet in reality, this represents such a simple model of any problem, and given 

the complex nature of many social science research questions, it is unlikely that many 
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models would truly fall into such a linear relationship.  It therefore seems that the 

method of linear regression is often inappropriate for usage on complex social science 

data (McGregor, 1993). 

Heteroscedasticity is a regression assumption which can be difficult to identify (Erceg-

Hurn and Mirosevich, 2008); it can be caused by non-linear relationships, interactions, 

incorrect scaling of data or the existence of different groups within the data.  Although 

heteroscedasticity should not bias the estimate of the regression coefficients, it can affect 

the validity of significance tests and confidence intervals, producing liberal or 

conservative estimates and therefore lead to Type I and Type II errors (Hayes and Cai, 

2007).   

Another regression assumption that can be particularly difficult to detect and satisfy, 

even for trained statisticians, are interactions.  When dealing with complex, high-

dimensional data it may be almost impossible to realistically identify all interactions.  

Even for low-dimensional data, the complexity of much social science data means that 

relationships within the data may not be clearly understood.  Yet not detecting and 

accounting for interactions means that estimates are likely to be biased (Elwert and 

Winship, 2010).  Whilst there are methods to aid in the detection of interactions, such as 

the use of group-level variables, these are often not employed (Erceg-Hurn and 

Mirosevich, 2008).  

Dawson (2014) suggests that studies containing interactions are found in almost all 

journals containing quantitative research, yet, in general, researchers are not well 

equipped to either recognise or deal with them.  Many research papers do not even 

mention whether they have tested for, or considered, the presence of interactions 

(Vatcheva et al., 2016).  Elwert and Winship (2010:327) assert that despite the fact that 

most models will contain interactions of some kind, the ‘overwhelming majority’ of OLS 

regression models in the social sciences count all predictors as main effects; interactions 

are simply ignored.  It is likely that the suggestion it is the ‘overwhelming majority’ of 

models might be an overestimation (as the authors provide no evidence to back this up), 

but there is little doubt that many social science regression models do not (or simply 

cannot) adequately account for interactions.   

(Elwert and Winship, 2010) surmise that this may be because, although social scientists 

are aware of effect heterogeneity (i.e., they would acknowledge that causal effects may 
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vary from group to group, for example), they have an implicit belief that the main effects 

coefficients of a model provide an ‘average’ of causal effects.  That is, social scientists 

simply hope that their failure to identify interactions in their model will result in returning 

‘average’ causal effects without biasing the model.  This approach has been shown to be 

unreliable where effect heterogeneity exists; main effects only models can be effective in 

some cases, but not in others (Elwert and Winship, 2010).  This has implications for 

inference, as since heterogeneity in social phenomena is so prevalent, it is dangerous to 

extend results to the general population, as it cannot be clear whether results will 

generalise (Xie, 2013). 

Not satisfying regression assumptions such as Normality means that any resulting 

confidence intervals and effect sizes may be inaccurate, and whilst there are robust 

regression techniques that can deal more effectively with outliers, skewness and non-

Normality, they are rarely employed (Erceg-Hurn and Mirosevich, 2008).  Wilcox (1998) 

argues that psychology journals contain many nonsignificant results that would have been 

deemed significant had more modern (post 1960) robust techniques been used.  This 

view is reiterated by Erceg-Hurn and Mirosevich (2008) who surmise that many 

researchers are simply unaware that classical parametric tests such as regression have 

limitations, or that there exist more robust methods that might overcome this.  Robust 

methods suggested by Erceg-Hurn and Mirosevich (2008) and Wilcox (1998) include using 

trimmed means, Winsorized variances, rank-based methods and bootstrapping. 

Overall, there are likely a number of reasons for the problems with satisfying regression 

assumptions that are detailed in the literature: researchers might be unaware of the 

assumptions, or else simply do not have a clear understanding of them; researchers might 

understand but have difficulty in identifying problems or implementing a solution with 

complex models (Erceg-Hurn and Mirosevich, 2008); or researchers might simply ignore 

the assumptions (Berk, 2004).  Part of the difficulty in identifying assumptions may be 

because people are simply not taught those skills.  In general, there is a lack of analytic 

skills to deal with data (Peng, 2015), and many undergraduate courses teach only basic 

regression and do not cover more advanced methods (Eisenhauer, 2015).   

It may be that much of the critical literature is simply overlooked, and that perhaps 

without direct practical examples it is difficult for a researcher to appreciate how the 

reported issues might impact upon their research.  If a regression model is utilised simply 



20 
 

to describe a dataset and is not responsible for providing inference to a larger population, 

then perhaps much of the criticism seems overly negative, as much of the focus is on the 

consequences for inference.  Berk (2004) lists several examples of regression models that 

successfully identified trends or patterns in data, without the need for statistical 

inferences or causal statements. 

However, where regression models are responsible for inference and policy decisions, the 

consequences of their misuse can be more serious.  It is notable that much of the quoted 

literature, whilst providing technical detail, do not provide many practical examples of the 

specific consequences for a regression that has been misspecified; but they may feel that 

the mathematical detail should suffice.  One of the consequences of misspecified 

regression models is perhaps more broadly evident in inconsistent research results, that is 

research that produces conflicting conclusions, does not replicate (Open Science 

Collaboration, 2015) or is deemed unreliable (Berk, 2004; Ioannidis, 2005).  As McGregor 

(1993:802) notes there is often ‘no corpus of reinforcing findings’ from regression studies 

that cover the same factors - they can result in very varied regression coefficients and 

model fit values, but if the regression model was strong, then similar studies should lead 

to similar results, however, they do not (McGregor quotes particular examples of the 

covariates of democracy).  Ward et al. (2010) make a similar point about the predictors of 

civil conflict, arguing that despite various large studies being conducted, there is little 

accurate guidance in this area.  The National Research Council (2012:1) of the USA 

decided that since the various studies into the deterrent effect of capital punishment had 

reached ‘widely varying, even contradictory, conclusions’, (for example, concluding that 

executions save lives, or that they actually increase homicides, or that they have no 

effect) then research studies should not be used to inform policy judgement about capital 

punishment.  They made the point that the studies were ‘plagued by model uncertainty’ 

and the regression models used strong assumptions that lacked credibility (such as 

assuming homogeneity across states and years) (National Research Council, 2012:7). 

Another example is the critical response to Donohue and Levitt’s (2001) claim that the 

legalization of abortion in the USA in the 1970s resulted in a drop in crime rates nearly 

two decades later.  There were various conflicting responses to this: Lott and Whitley 

(2001) suggested that legalizing abortion actually increased murder rates; Joyce (2004) 

did not find any meaningful association between the legalization of abortion and the drop 
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in crime; Foote and Goetz (2008) also found no link and pointed out mistakes in the initial 

analysis; whilst Reyes (2007) suggested that the drop in crime rates was due to the 

removal of lead from gasoline (but suggested the legalization of abortion was also an 

important factor).  All the studies utilised regression analysis, and where practicable the 

same or similar data.  The conflicting results highlight how difficult it can be to model very 

complex problems, and make suitable assumptions, using regression analysis (Berk, 

2004). 

Aside from problems associated with identifying and satisfying regression assumptions, 

another area of concern in the literature surrounds the overall evaluation of regression 

models.  Breiman (2001b), Hill and Jones (2014) and Muchlinski et al. (2016) all make the 

point that the overall fit of the model appears to be of secondary importance in some 

research papers; as long as there are some significant p-values, and the model overall is 

deemed statistically significant, a high RSE or low 𝑅2 (or any other reported measure) is 

not necessarily seen as any cause for concern.  Indeed, many research papers simply 

ignore the fact that a model explained only a small amount of variance (Muchlinski et al., 

2016).  Yet regression models are often used to accept or reject hypotheses, and to 

determine the strength of relationships between the predictors and the target, therefore 

if the model fit overall is poor, it may indicate that some caution should be applied when 

evaluating how well the model really represents the data.  In the absence of cross-

validation, such weak results may be down to chance.  Cross-validation, or the use of a 

holdout test dataset can allow a more accurate evaluation of the usefulness of a model 

(Breiman, 2001b; Ward et al., 2010; Hill and Jones, 2014; Muchlinski et al., 2016; 

Woodside, 2016). 

Overall, despite the critical literature surrounding the use of regression, it seems that 

little has changed over the years; Berk et al (2014:423) make the point that much of the 

literature is unrebutted and ‘research practice proceeds in much the same manner’.  This 

may be because OLS regression is viewed as the standard accepted method of analysis in 

some fields, and this means that in some cases it is used regardless of any specification 

issues.  Yet it makes little sense to perform an inappropriate, misspecified regression 

analysis simply because that is what is expected, or because some results have to be 

produced (Achen, 2005). 
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The literature contains varied suggestions as to how to overcome some of the problems, 

and some of these solutions, such as the use of robust methods, were discussed in the 

previous paragraphs.  However, Armstrong (2012:693) points out that whilst solutions 

have been developed to deal with the various problems associated with regression 

analysis, these are ‘often ignored in practice’.  Perhaps the most obvious solution, where 

there are specification issues that cannot be overcome, is to use an alternative method to 

linear regression (McGregor, 1993; Breiman, 2001b; Achen, 2005). 

Breiman (2001b) suggests that far greater attention should be paid to data analysis, that 

the data and the problem should be considered before any decision of which method to 

utilise is made; following this analysis, it may be that a method such as linear regression is 

suitable, or it may be that an ‘algorithmic’ method might be more suitable.  Armstrong 

(2012) also advocates paying greater attention to data analysis, and suggests that more 

parsimonious models be utilised (using no more than three predictors) and that 

predictors should not be included unless they were specified in the a priori analysis.   

Achen (2005:338) also advocates careful data analysis, but suggests that adhering to 

‘strict mechanical rules and procedures’, (such as to only include three predictors, or 

conversely, include all attributes as predictors) is not useful.  Achen suggests splitting 

datasets into statistically meaningful subsets (either by theory or analysis), thereby 

removing the need for many dummy and control variables, and producing homogeneous 

groups upon which small, coherent regression analyses can be performed. 

Taking a different perspective to much of the literature, Berk et al. (2017:2) suggest that 

the solution is to acknowledge specification problems (i.e. that the model is wrong) 

where they exist and, rather than abandon regression, make the most of misspecified 

models; that researchers ‘can recognise and accept that requisite assumptions are not 

met and that the empirical results derive from a misspecified model’.  The authors 

suggest that the ‘wrong model’ perspective be adopted; that is all models are wrong, but 

some ‘will be more instructive, complete or interesting than others’ (Berk et al., 2017:21).  

The model can be used to describe the dataset at hand, but not in order to make wider 

causal inferences.  Since standard errors, and confidence intervals, etc. are then 

acknowledged to be wrong, methods such as the bootstrap and ‘sandwich’ estimator can 

be utilised to calculate new standard errors and confidence intervals, etc. which are more 

reliable. 
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In summary, whilst the focus of much of the critical literature appears to be aimed solely 

at social science research, this is most likely because social scientists generally work with 

very complex, inter-related data that may not always be very linear and it can therefore 

be particularly difficult to satisfy the regression assumptions in these circumstances.  

Where regression assumptions can be adequately satisfied, there is no reason why linear 

regression should not be utilised.  As has been pointed out in some of the literature, what 

is missing in some cases is an acknowledgement that regression assumptions 

(interactions, homogeneity, etc.) have even been considered.  And even where 

assumptions are not satisfied a model may still be useful for describing the particular 

dataset, as a form of exploratory data analysis.  It is likely that many researchers do 

realise that where regression assumptions are not satisfied their model may not be 

reliable (particularly for producing wider causal inferences), but for various reasons 

(unfamiliarity, unsuitability, etc.) do not use alternative methods.  The overall consensus 

is that, where the misuse of linear regression is concerned, deeper data analysis, greater 

awareness of assumptions, and consideration of alternative techniques may aid in 

producing more reliable research. 

2.7 CONCLUSION 

This chapter has explored the background and provided an explanation of OLS linear 

regression.  It has highlighted that, where regression assumptions are satisfied, linear 

regression can be a powerful tool for social science research, in that results are relatively 

easy to understand and relationships within the data may be identified and quantified. 

However, the use of linear regression in social science research has received sustained 

criticism over the years; much of this stems from misuse of the method, and the various 

misconceptions around its usage.  The method itself is not criticised.  Many of the 

problems associated with its usage centre upon the fact that to be effective, linear 

regression relies upon strict statistical assumptions.  However, these assumptions can be 

so difficult to satisfy that they are frequently not adhered to.  This is particularly a 

problem for social science research, since ‘real-life’ datasets can be very complex, and it 

may be difficult to identify problems, such as interactions or heterogeneity within data.  

Often, these difficulties are simply not acknowledged.   
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Little attention appears to be paid to the problem of misspecified regression models, yet, 

if a model is misspecified and initial regression assumptions are not satisfied then wider 

inferences made from them may not be accurate.  This can lead to Type I and Type II 

errors, resulting in inconsistent research and the production of flawed conclusions.  

Where regression models are correctly specified there is no reason they should not be 

utilised.  Equally, even when they are misspecified in some way, they can still be a useful 

tool to explore a particular dataset, without making wider inferences. 

To some degree, it would appear that since OLS linear regression is considered one of the 

standard methods of analysis in some fields, there may sometimes be a reluctance to 

consider alternative methods.  However, much of the literature agreed that a greater 

concentration on methods such as exploratory data analysis and data visualisation might 

aid in providing a better understanding of the data (and therefore in identifying any 

problems).  This may aid in determining: whether or not a particular dataset and problem 

is suitable for regression analysis; whether more robust regression methods might be 

utilised; or whether a different method altogether might be better employed. 

This chapter builds the groundwork for future chapters which consider the use of 

alternative methods to complement established social science methods. 
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3 STATISTICAL SIGNIFICANCE AND REPRODUCIBILITY 

3.1 INTRODUCTION 

Together with regression analysis, Null Hypothesis Significance Testing (NHST) is one of 

the most commonly utilised, and well-established methods in social science research.  It is 

popular because it is a relatively straight-forward process that enables a researcher to 

consider whether or not a hypothesis might be true given the available data.  

This chapter provides an overview of Null Hypothesis Significance Testing (NHST), 

together with a description of the critical literature surrounding its use.  It covers the 

positives of its usage, together with a description of the various misconceptions 

surrounding it, and what rejecting a hypothesis actually means.  A discussion on the 

underlying logic of NHST is provided, as well as consideration of the various suggestions in 

the literature about what might be done to combat the problems associated with the use 

of NHST.   

An exploration of the literature surrounding the reproducibility of social science research 

is provided.  This considers the factors that contribute to problems with reproducibility, 

such as misuse of various methods and practices such as p-hacking.  Suggestions from the 

literature of how more reliable research results might be produced are considered, 

together with an exploration of the various advantages and disadvantages of these 

methods.   

3.2 NULL HYPOTHESIS SIGNIFICANCE TESTING 

Hypothesis testing is fundamental to social science, and generally involves using statistical 

methods on a smaller data sample in order to infer something about a larger population.  

For instance, one might consider whether a regression coefficient has any effect, or 

whether two population means differ significantly.  Most commonly Null Hypothesis 

Significance Testing is utilised in an attempt to determine whether an effect is 

‘statistically significant’ or whether it might simply be due to chance.   

Null Hypothesis Significance Testing (NHST) involves stating two mutually exclusive 

hypotheses, the Null and the Alternative: 

 𝐻0: Null hypothesis.  For example, µ = 0 
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 𝐻𝐴: Alternative hypothesis.  For example, µ ≠ 0, or µ > 0 

Generally, it is the Alternative hypothesis that a researcher is interested in (or may 

believe to be true) and would like to investigate.  This is compared to the Null hypothesis, 

which the data is tested against.  Often, the Null hypothesis is actually a ‘Nil hypothesis’, 

that is, the hypothesis of zero effect or no difference (Lambdin, 2012; Wasserstein and 

Lazar, 2016).  For example, the hypothesis that a regression coefficient is zero, or that the 

difference between two means is zero.   

In order to determine whether or not to reject the null hypothesis, the null hypothesis is 

assumed to be true, and given this, statistical calculations are performed upon the data 

sample (for example, a t-test).  The p-value of the test statistic is used to make the 

decision.  If the p-value is less than a predetermined significance level (α), the null 

hypothesis is rejected; if it is greater, the null hypothesis is not rejected.  Generally, α is 

set at 0.05.  However, this is an arbitrary cut-off point (Nelder, 1999; Gelman and Stern, 

2006; Greenland et al., 2016), and any value may be used; lower values such as p < 0.01 

or p < 0.001 are sometimes used.  The p-value is the probability of obtaining this or more 

extreme data, given that the null hypothesis is true.  Therefore, if the null hypothesis is 

rejected (i.e. the p-value is below α), this implies that the results are ‘statistically 

significant’ at that level (α), and that they are probably not due to chance alone. 

However, obtaining a p-value less than the significance level does not necessarily confirm 

that the research hypothesis is false, it may simply mean that this particular data is 

unusual, assuming all test assumptions were correct.  The p-value may be small because 

there was error in the data, or because it was drawn from a non-representative sample.  

Equally, obtaining a p-value larger than the significance level does not necessarily mean 

that the research hypothesis is therefore proven true, it simply suggests that this 

particular data is not unusual if all the assumptions were correct.  Furthermore, a large p-

value does not necessarily indicate a lack of effect, it can also indicate that the data 

simply could not discriminate amongst many competing hypotheses (Greenland et al., 

2016) 

Two types of error can result from a hypothesis test: 

 Type I error: Rejecting the Null hypothesis when it is actually true.  That is, 

detecting an effect or relationship that is not actually present (false positive) 
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 Type II error: Failure to reject the Null hypothesis when it is actually false.  That is, 

failing to detect an effect or relationship that is present (false negative) 

The probability of committing a Type I error is the significance level, or α (Lambdin, 2012).  

Given that this is generally set at 0.05, this means there would be a 5% (or 1 in 20) chance 

of rejecting the Null hypothesis when it actually should not have been rejected.  The 

probability of committing a Type II error, β, is calculable if certain population parameters 

are known (n, µ, σ and α).  The power of a test is the probability of correctly rejecting the 

null hypothesis, i.e. it is the probability of avoiding a Type II error, and is denoted by 1 – β 

(Szucs, 2016).  A high-power test is therefore desirable. 

3.2.1 Critical Literature Surrounding the Usage of NHST 

Despite the prevalent usage of NHST in the social sciences, it has been the subject of 

much criticism over the years, with the literature going back many decades (for example: 

Berkson (1938), Rozeboom (1960), Bakan (1966), Lykken (1968), Morrison and Henkel 

(1970), Cohen (1994), Schmidt and Hunter(1997), Nickerson (2000), Armstrong (2007), 

Ziliak and McCloskey (2009), and Branch (2014)).  All make the point that NHST is often 

misused and misunderstood, and that it provides little useful information.  However, this 

prolonged criticism appears to have had little effect on researchers; NHST remains one of 

the most commonly applied methods in social science research (Lambdin, 2012; 

Perezgonzalez, 2015; Ortega and Navarrete, 2017).  And achieving statistically significant 

results is still generally seen as a pre-requisite for research publication (Lecoutre et al., 

2001; Branch, 2014; Vidgen and Yasseri, 2016). 

Surveying the literature, one of the main criticisms of the application of NHST is that it is 

frequently misunderstood.  This stems from widespread misunderstanding of what p-

values actually mean (Branch, 2014; Greenland et al., 2016).  The p-value provides the 

probability of obtaining this (or more extreme) data given that the null hypothesis is true 

(Wasserstein and Lazar, 2016), that is, P(Data|𝐻0).  But what is commonly 

(mis)understood is that a p-value is the probability that the null hypothesis is true given 

the data (Cohen, 1994; Falk and Greenbaum, 1995; Gigerenzer, 2004; Wasserstein and 

Lazar, 2016), that is, P(𝐻0|Data).  In almost all cases, this is wrong, P(Data|𝐻0) does not 

equal P(𝐻0|Data).  Only in rare circumstances might the two be equal (Falk, 1998).  The 

fact that P(Data|𝐻0) does not generally equal P(𝐻0|Data) is demonstrated by taking 

examples of conditional probabilities and reversing them.  To utilise Carver’s (1978) 
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example, the probability that a person was hanged given they are dead does not equal 

the probability that they are dead given they were hanged, that is P(Hanged|Dead) ≠ 

P(Dead|Hanged).  Carver (1978) suggests that the probability a dead person was hanged 

is likely to be very low (perhaps 0.1), whereas the probability that being hanged would kill 

someone is probably very high (perhaps 0.97) – to think the two could be equivalent 

makes no sense.  Engman (2013) also provides a hypothetical example utilising Bayes 

Theorem to illustrate that the probability of concluding that a child has reading 

inadequacy given they have reading adequacy (0.05) is not the same as the probability of 

a child having reading adequacy given a conclusion of reading inadequacy (0.22).  This 

mistaken belief is referred to as the inverse probability error (Cohen, 1994; Engman, 

2013; Ortega and Navarrete, 2017); and Engman (2013) suggests it is prevalent in 

sociology research.  Whilst basic, both examples highlight that confusing the two 

probabilities is likely to be misleading.  

Another focus of the critical literature is the arbitrary nature of the significance level, α.  It 

would seem that the most commonly utilised value, 0.05, is sometimes viewed as some 

magical level, yet there is no scientific method behind this choice.  It was chosen simply 

for convenience in the early 1900s when calculations were made by hand using statistical 

tables and therefore only a limited set of values were available (Boslaugh, 2013:65).  Now 

that calculations of this type are no longer necessary, one could choose any level.  The 

use of a fixed level, such as 0.05, ‘promotes the seemingly nonsensical distinction 

between a significant finding if p = 0.049 and a nonsignificant finding if p = 0.051’ 

(Johnson, 1999:765).  Gelman and Stern (2006) state that even a minor (statistically 

insignificant) change in data can have a large effect upon the p-value produced (despite 

there being no change in the underlying relationships in the data), and this means an 

insignificant change can have a profound effect upon whether a null hypothesis might be 

rejected or not.  This highlights that the use of any fixed significance level to make a 

decision can be damaging since ‘changes in statistical significance are often not 

themselves statistically significant’ (Gelman and Stern, 2006:328). 

Yet another focus of the critical literature is that NHST is sometimes misapplied.  NHST 

assumes that the data is taken from a random representative data sample, yet many 

studies do not meet this basic criterion (or fail to correct for it) and this renders any 

inference about the larger population meaningless (Cohen, 1994; Leahey, 2005).  There is 
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also a tendency to perform NHST on data that equals the population (i.e. data which is 

not a sample), which also renders NHST meaningless since in this case there is no larger 

population to infer to, and the sample statistics are therefore equivalent to the 

population statistics (Leahey, 2005; Engman, 2013).  Another important consideration is 

sample size; like many other statistical measures, NHST is sensitive to the size of the data 

sample.  A small sample size may lead to important effects going undetected, whereas a 

large sample size may lead to even trivial effects producing very low p-values (Levine et 

al., 2008)  

A further problem raised by the critical literature is that NHSTs are often rendered 

pointless because the Null hypothesis is known in advance to be false (Bakan, 1966), and 

given a big enough sample size virtually all null hypotheses will be rejected anyway 

(Rozeboom, 1960; Thompson, 1993).  In the case of the Nil Hypothesis (zero effect) there 

seems little point in even testing as the null will always be false (Berkson, 1938; Cohen, 

1994).  As Tukey (1991:100) stated, it is always possible to find some difference in effect: 

All we know about the world teaches us that the effects of A and B are always 
different – in some decimal place – for any A and B. Thus asking “Are the effects 
different?” is foolish.   
 

Therefore, there seems little to gain and nothing new to be learnt from rejecting a 

hypothesis which is known in advance to be false (Berkson, 1938; Armstrong, 2007).  

Another consideration is that, if the Null is known to be false, then the Type I error rate is 

actually zero, as it would be impossible to make a Type I error in this case.  This would 

mean that the Type II error rate (one minus the statistical power) becomes the overall 

error rate.  Given that various analyses of social science research publications have 

consistently found that they lack adequate statistical power (Sedlmeier and Gigerenzer, 

1989), this means that the error rate would be much higher than should be acceptable.  

Schmidt and Hunter (1997) suggest that as a rough average it would be about 50%, and in 

this case, such a low level of accuracy could be achieved simply by flipping a coin. 

These and other misunderstandings of what a p-value actually is have led to various 

misconceptions about NHST; they are covered extensively in Carver (1978), Cohen (1994), 

Schmidt and Hunter (1997), Nickerson (2000), Branch (2014), and Greenland et al. (2016).  

They include believing that:  

 the p-value is the probability of the Null hypothesis being true 
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 the p-value is the probability the results were due to chance 

 1-p is the probability the alternative hypothesis is true 

 1-p is the probability of replication 

 a small p-value indicates the results are replicable 

 the p-value indicates the importance or size of an effect  

 if an effect or relationship is not found to be ‘statistically significant’ then it is 

instead zero 

 the belief that statistical significance (or rejecting the null hypothesis) means 

practical or theoretical significance 

 the belief that not rejecting the null hypothesis is equivalent to demonstrating it 

to be true 

None of these beliefs are true, however taking this long list of misconceptions into 

consideration, it seems that the main problem with NHST is that it is sometimes viewed 

as a test that can answer so much, but in reality, tells a researcher very little. 

3.2.2 The Logic of NHST 

Berkson (1938), Cohen (1994), Falk and Greenbaum (1995), Schmidt and Hunter (1997), 

Hofmann (2002), Orlitzky (2012), and Szucs and Ioannidis (2017) argue that it is not just 

misconceptions that make NHST unreliable, but that there is a far greater problem in that 

the underlying logic of it is flawed.  Superficially, it appears to be based on the Modus 

Tollens logical form, which is denying the antecedent by denying the consequent: 

P1: If p (the null hypothesis is true), then q (these data cannot occur) 

P2: Not q (these data have occurred) 

C: Not p (Therefore, the null hypothesis is false) 

This logic is formally valid if the conclusion (C) must be true whenever it’s premises (P1 

and P2) are true (Hofmann, 2002).  However, the problem with NHST is that the reasoning 

is probabilistic rather than absolute, and by making it probabilistic it becomes invalid 

(Cohen, 1994; Hofmann, 2002).  To quote the example by Cohen (1994:998), in the 

absolute form, the following is valid logic (if one believes Martians exist): 

P1: If a person is a Martian, then he is not a member of Congress 

P2: The person is a member of Congress 
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C: Therefore, he is not a Martian 

However, to continue the Cohen (1994:998) example, if one of the premises (P1) is not 

true, this still leads to a formally correct Modus Tollens, but it is no longer logically sound: 

P1: If a person is an American, then he is not a member of Congress (WRONG!) 

P2: The person is a member of Congress 

C: therefore, he is not an American 

This example can be made sensible by making it probabilistic, but in doing so it then 

becomes formally incorrect and leads to a conclusion that is not sensible (Cohen, 

1994:998): 

P1: If a person is an American, then he is probably not a member of Congress (TRUE!) 

P2: The person is a member of Congress 

C: therefore, he is probably not an American 

Making the Modus Tollens probabilistic allows for the possibility of C being false even if P1 

and P2 are true, which therefore violates formal deductive logic, as this posits that C must 

be true when P1 and P2 are true (Orlitzky, 2012).  Hofmann (2002:70) suggests that the 

example shows that NHST is based on ‘a faulty conceptualisation of logic’, and whilst it 

might sometimes lead to sensible conclusions, it may also result in wrong conclusions.  

However, Cortina and Dunlap (1997:166) concluded that ‘the typical approach to 

hypothesis testing does not violate the relevant rule of syllogistic reasoning to any great 

degree’, and quoted different examples that did not cause the Modus Tollens to break 

down.  They suggested that whilst Cohen’s (1994) example was useful (in highlighting that 

the application of Modus Tollens to probabilistic statements can cause problems), that 

where sensible research questions were asked (such as the type used in psychology 

research) then the logic can hold and be useful.  Hagen (1997:22) also countered the 

criticism by stating that arguments can be reasonable even when they are not logically 

valid, suggesting that in real life most of the decisions we make are ‘based on probabilistic 

premises, not on logic that is valid in a formal sense’. 
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3.2.3 Suggestions from the Literature on How to Deal with Some of the 

Problems Associated with the Use of NHST 

Given the various misconceptions about NHST, it would seem that one solution might 

simply be to provide better training in how to use and interpret them correctly.  However, 

whilst it is likely that improved knowledge would be beneficial, it is not always the case 

that NHST are misapplied or misunderstood; NHST is often implemented correctly.  The 

more fundamental point is that, even when implemented correctly, on their own they do 

not reveal useful information (Schmidt and Hunter, 1997; Armstrong, 2007; Ziliak and 

McCloskey, 2009).  They should be accompanied by other statistics as in isolation they 

provide no information about the size of an effect, or the degree of uncertainty around a 

decision.   

Perhaps something that makes NHST so appealing to researchers despite its proven 

limitations and the steady stream of criticism over the years is its black and white nature 

– it appears to provide a clear, automatic decision on whether something is ‘statistically 

significant’ or not.  It provides the perception of a complicated mathematical procedure 

that results in a definitive answer (Carver, 1978).  And in doing so, it makes a researcher’s 

job much easier; simply click a few buttons, check a p-value and a decision is made 

(Lambdin, 2012).  To quote Bakan (1966:430) NHST has:  

removed the burden of responsibility, the chance of being wrong, the necessity 
for making inductive inferences, from the shoulders of the investigator and placed 
them on tests of significance 
 

Yet it is precisely this black and white certainty that is dangerous, the NHST is not 

designed to provide such a definitive answer (Tukey, 1991).  NHST should not be used to 

corroborate theories or hypotheses, to decide on publication, or to make conclusions, it 

should be the least important part of an analysis (Lykken, 1968).  Gigerenzer (2004) 

suggests that NHST impedes researcher’s intelligence and prevents proper statistical 

thinking.  Similarly (Gross, 2015) suggests that its use can result in distracting a researcher 

from what they are actually measuring and can encourage weak hypothesis testing, and a 

fixation upon p-values.  Kirk (2003) suggests that rather than focussing on p-values the 

real goal should be deciding whether the data support the scientific hypothesis, the 

magnitude of any effect and whether it is practically significant.  Another side effect of 

the concentration on ‘significance’ is that research may be disregarded just because a p-
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value is not below some arbitrary threshold; yet this does not mean that an effect is not 

relevant or may not be of interest to other researchers (Nelder, 1999).  

Ward et al. (2010) and Hill and Jones (2014) suggest that if more attention was paid to 

evaluating model fit, rather than finding ‘significant’ relationships this may improve 

theoretical explanations and policy decisions.  In particular, analysis of whether attributes 

identified as significant actually improve the overall fit (or predictive power) of a model 

could be informative, as insights from a model that fits the data better should be more 

useful.  Lo et al. (2015) state that regardless of the data or problem type, attributes that 

are identified as significant do not automatically make good predictors.  This point is 

illustrated by Hill and Jones (2014) who found that few of the predictors identified by the 

literature as important causes of repression were able to improve the predictive power of 

statistical models of repression; and their work, which utilised cross-validation and 

decision trees, identified other factors which had so far received little attention in the 

literature but which did improve predictive power (and therefore warranted further 

research).   

Ward et al. (2010:363) conducted a ‘side-by-side’ comparison of the statistical 

significance and predictive power of the different attributes used in two of the ‘most 

influential’ models of civil war.  They found that whilst the inclusion of some attributes 

that were considered statistically significant improved the predictive power of the 

models, others had very little impact, and some actually reduced the ability to make 

correct predictions.  Welch and Goyal (2007:1505) evaluated each attribute using the 

same methods (generally, linear regression models) and found that attributes identified 

as being significant (by the academic literature over thirty years) in terms of stock market 

fluctuations had little predictive power and that ‘the profession has yet to find some 

variable that has meaningful and robust empirical equity premium forecasting power’.  It 

seems counterintuitive to think that attributes which are considered statistically 

significant may not necessarily provide meaningful improvement in a model’s predictive 

power; however, reasons for this might include model misspecification (such as 

unidentified interactions) and failure to test models on out of sample data (Ward et al., 

2010).  However, the examples highlight that the consideration of statistical significance 

alone can be misleading and may not necessarily lead to developing models with useful 

predictive power (Ward et al., 2010; Hill and Jones, 2014).   



34 
 

Having ‘significant’ results is seen as necessary for research publication in many fields, 

and reliance upon significance testing is so strongly embedded in researcher’s minds and 

habits that alternatives are met with strong resistance (Schmidt and Hunter, 1997).  Many 

researchers use NHST simply because that is the method they have always used.  Cohen 

(1994), Falk and Greenbaum (1995) and Gigerenzer (2004) all refer to the ‘illusion’ of 

NHST, and suggest that the reason it is so deeply embedded in researcher’s minds is that 

there is a ritualistic nature to it that is perpetuated by social pressure and wishful 

thinking.  Researchers may know that some of their beliefs about NHST are not true, but 

they prefer to act as if they were true anyway; to quote Cohen (1994:997) ‘it does not tell 

us what we want to know, and we so much want to know what we want to know that, 

out of desperation, we nevertheless believe that it does!’ 

Ziliak and McCloskey (2009:2302) are particularly harsh in their criticism, suggesting that 

reducing scientific problems to an interpretation of ‘statistical significance’ is not scientific 

and has had a detrimental effect upon society as a whole: 

Statistical significance is, we argue, a diversion from the proper objects of 
scientific study. Significance, reduced to its narrow and statistical meaning only—
as in ‘low’ observed ‘standard error’ or ‘p < .05’—has little to do with a defensible 
notion of scientific inference, error analysis, or rational decision making. And yet 
in daily use it produces unchecked a large net loss for science and society. Its 
arbitrary, mechanical illogic, though currently sanctioned by science and its 
bureaucracies of reproduction, is causing a loss of jobs, justice, profit, and even 
life. 
 

They, along with Carver (1978), Cohen (1994), Schmidt and Hunter (1997), Gigerenzer 

(2004), Armstrong (2007) and Cumming (2014) suggest that researchers stop using NHST 

altogether, arguing that it is pointless.  Much of the other critical literature, whilst 

stopping short of suggesting a ban, argue that the use of a decisive accept or reject 

statement is wrong and discourage the use of NHST as the only method of evaluation.  

They suggest NHST might still be considered, albeit with a far less prominent role, 

alongside other statistical methods and that it should be accompanied by statistics such 

as confidence intervals and effect sizes (Kirk, 2003; Levine et al., 2008; Gross, 2015).  

These statistics might help convey information about the magnitude of an effect and 

whether it is relevant.  Szucs and Ioannidis (2017) suggest that NHST should no longer be 

the ‘cornerstone’, or automatic default method of research; it’s usage should be clearly 

justified (with alternative methods considered), and that researchers should pre-register 



35 
 

hypotheses and analysis parameters in order to focus more completely on the particular 

research question.  Van de Schoot et al. (2011) suggest using NHST in a more intelligent 

way and considering informative hypotheses (rather than nil hypotheses) that might 

actually be true.  The general consensus in the literature is that more intelligent data 

analysis is required.  And much more importance must be placed upon replicability of 

results (Falk, 1998; Schmidt, 2009; Cumming, 2014).  Lambdin (2012) and Branch (2014) 

suggest that once other statistical methods are used more frequently, NHST might 

eventually be seen as unnecessary and phased out.   

It is notable that the amount of literature critical of NHST far outweighs any positive 

literature; there seem to be few research articles actively supporting the usage of NHST.  

However, as already stated, there is substantive literature that overwhelmingly uses 

NHST and would therefore seem to tacitly support its use. There is a small core of 

literature that defends NHST from the methodological criticism, however, even they 

generally acknowledge the various limitations and do not recommend it be used in 

isolation (Abelson, 1997b; Hagen, 1997; Chow, 1998; Levin, 1998; Nickerson, 2000; 

Mogie, 2004).  Most argue the issues are around misconceptions and misuse by 

researchers, rather than flaws in the process.  Hagen (1997) asserts that critics have used 

extreme examples to argue their case and that NHST is ‘unfairly maligned’, whereas 

Abelson (1997b) suggests that misunderstandings happen with many statistical measures 

and are not unique to NHST. 

Abelson (1997a:117) believes the fact that NHST provides a categorical statement 

(accept/reject) actually stimulates further research, and that ‘Significance tests fill an 

important need in answering some key research questions, and if they did not exist they 

would have to be invented’.  Levin (1998) suggests that NHST might be used in a more 

intelligent way, with carefully developed hypotheses, control of Type I errors and effects 

sizes, and optimal sample sizes.  Whilst Mogie (2004) believes that NHST can provide a 

clear answer to well formulated questions, but that it should be complemented by other 

statistics.  Chow (1998) suggests that NHST should not be used to corroborate theory, but 

instead to exclude chance, and acknowledges that NHST says nothing about real-life 

importance. 

One reason for the overall lack of supportive literature may be that NHST is such an 

embedded technique that researchers feel it does not need to be defended – if it is 
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widely, and actively used, and in textbooks, then there is no need to defend it.  Another 

reason may be that there simply is no way to defend many of the criticisms.  Another 

possible reason may be what Nickerson (2000) touched briefly upon; the idea that the so 

called ‘significance controversy’ may be something that exists mostly within the group of 

authors who write about it, and that those outside this group may be unaware of the 

limitations.  Following this line of thought, the various statistical textbooks have over the 

years done little to warn students and researchers of the weaknesses and misconceptions 

surrounding NHST (Gigerenzer, 2004).   

Perhaps one reason why the usage of NHST is still commonplace despite the criticism is 

that it is often falsely perceived as the only objective approach to scientific inference and 

‘alternatives are simply not taught and/or understood’ (Szucs and Ioannidis, 2017:14).  As 

Wasserstein and Lazar (2016) point out, there is a circular logic to the continued use of 

NHST; it is taught because that is what the scientific community and journals use, and it is 

still used because that is what people were taught.  It is therefore difficult to break the 

cycle, and this difficulty is compounded by the fact that there is no obvious replacement – 

there is no test that can provide an automatic definitive answer.  As Cohen (1994:1001) 

stated: ‘First, don’t look for a magic alternative to NHST, some other objective mechanical 

ritual to replace it. It doesn’t exist.’  Given this, at least some of the literature (both 

critical and positive) agree that there might still be a place for NHST, but that hypotheses 

should be very clearly stated, exact p-values should be reported and not used to provide a 

decision, and that they should be accompanied by other statistics such as effect sizes and 

confidence intervals. 

3.3 REPRODUCIBILITY 

As has been discussed in previous sections, research practices such as failure to satisfy 

regression assumptions, improper evaluation of models and the misuse of methods such 

as NHST can lead to inconsistent research results.  This ultimately undermines overall 

research quality, as a lack of reproducibility can lead to problems such as blindly 

accepting results that are wrong, doubting results (that may be correct), and in general, 

the production of conflicting conclusions (Ioannidis, 2005; Cumming, 2014).  Overall, this 

‘wastes research funding, erodes credibility and slows down scientific progress’ (Szucs, 

2016:1).  Ioannidis (2005) claimed that most published research findings are actually 

false; reasons for this include the use of NHST, bias, studies with low power, data 
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dredging and selective reporting of results.  Whilst this might seem a dramatic claim, 

there is no doubt that there are many conclusions drawn from academic studies that later 

prove to be false (Nosek et al., 2012). 

Where multiple hypotheses are tested, satisfying assumptions and interpreting results 

correctly becomes even more difficult.  For instance, when examining large social survey 

datasets, hundreds or even thousands of attributes might be investigated, with people 

grouped in many different ways.  The likelihood of achieving a statistically significant 

result increases with every predictor added to a model (Smith et al., 2002), and given 

twenty predictors, one will be significant at the p <= 0.5 level through chance alone (1/20 

= 0.05).  The probability of at least one Type I error rises rapidly with the addition of more 

hypotheses (Shaffer, 1995).  Benjamini (2010) highlights the problem of multiplicity, and 

the lack of adjustments for it, leading to false results. There are adjustments, such as the 

Bonferroni correction, the False Discovery Rate and the Familywise Error Rate that can 

help.  However, a problem with perhaps the most frequently utilised measure, Bonferroni 

correction (divide α by the number of tests being performed) is that it is too conservative 

(Perezgonzalez, 2015); and in minimising the risk of Type I errors, the power is reduced, 

which consequently makes Type II errors more likely (Smith et al., 2002). 

3.3.1 P-hacking 

Something that is particularly damaging to the reliability of research is P-hacking.  This is 

the process of repeating an experiment until a statistically significant result is obtained.  

Over the years it has also gone by names such as bias, significance chasing or searching, 

data snooping, and data fiddling (Simonsohn et al., 2014).  Historically it has also been 

referred to it as ‘data mining’ (Lovell, 1983).  P-hacking can happen (either deliberately or 

accidentally) when decisions about data are not made in advance.  For example, during 

the analysis process extra data might be collected, or different attributes excluded or 

included in experiments.  As these decisions are being made with prior knowledge of 

results this may then make the study more likely to have a significant result; the previous 

experiments are simply filed-away and not mentioned in the final analysis (Simonsohn et 

al., 2014).  The effects of P-hacking mean that the Type I error rate is inflated and studies 

could reveal significant relationships where there is actually none (Simmons et al., 2011; 

Szucs, 2016).  Simmons et al (2011) suggest that in many cases it is more likely that a 
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researcher will find false evidence of the existence of an effect, than that they will 

correctly find evidence that it does not exist. 

Simonsohn et al. (2014) suggest creating ‘p-curves’ in an attempt to identify p-hacking.  

This involves selecting multiple research studies (perhaps by journal, subject, or a 

particular finding or hypothesis), then extracting the important p-values and plotting 

them.  Sets of studies with only true effects should generate right-skewed curves (i.e. 

they contain many low p-values, e.g. 0.01), whereas those where no effect exists should 

be uniform.  Those that have been intensely p-hacked should produce left-skewed curves.  

The theory is that studies which have been p-hacked are likely to contain p-values that 

are just below 0.05, i.e. they are just statistically significant, whereas studies with very 

small p-values are more difficult to obtain and therefore are more likely to contain true 

effects (Simonsohn et al., 2014).   

However, Bruns and Ioannidis (2016) question the reliability of the p-curve when used for 

observational research (as opposed to randomised studies); stating that biases in the 

model (misspecification of regression models, measurement errors) can also lead to right-

skewed p-curves; therefore, p-curves are unreliable in distinguishing between true effects 

and null effects with p-hacking.  Overall, while p-curves might possibly provide some 

information about whether there is a particular effect, it is not clear that it would reduce 

p-hacking or whether it could be trusted.  If less focus was placed upon obtaining 

‘significant’ results, it is likely they would not be needed.   

Problems with misunderstandings and misuse of p-values seem to pervade social science 

research; to counter these problems some journals have discouraged their use (Lang et 

al., 1998).  The American Psychological Association considered banning significance tests 

altogether in 1999, although later produced a set of guidelines instead (Wilkinson and the 

Taskforce on Statistical Inference, 1999).  The journal Psychological Science is now 

actively screening for studies that may be questionable in terms of replicability, i.e. those 

that have low statistical power, p-values just less than 0.05 and report surprising results 

(Lindsay, 2015).  The journal of Basic and Applied Social Psychology recently banned the 

use of NHST (and any inferential statistics) altogether in the hope that requiring strong 

descriptive statistics would increase the quality of submitted research (Trafimow and 

Marks, 2015).  The discussions surrounding this ban led the American Statistical 

Association to issue a statement on p-values in which they provided six principles to help 
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improve understanding of what a p-value is and how it should be interpreted.  In brief, 

they stated that p-values do not measure the probability that a hypothesis is true, that 

conclusions or decisions should not be based upon whether a p-value passes a specific 

threshold, and that a p-value alone cannot provide a good measure (Wasserstein and 

Lazar, 2016).  Greenland et al. (2016) in response also highlighted the ‘rampant’ 

misinterpretation and abuse of statistical tests, and in particular the harmful usage of p-

values to determine ‘significance’. 

3.3.2 Replication 

In other scientific fields, replication is common (and often required) in order to verify 

research.  Replication is seen as the ‘cornerstone of science’ (Carver, 1978:392; Simons, 

2014:76), and is generally required to give credibility to a theory or hypothesis.  Yet in 

many social science research areas findings are rarely replicated and so false conclusions 

persist (Freedman, 2009; Schmidt, 2009; Nosek et al., 2012; Cumming, 2014).  This is 

likely due to many factors, such as publication bias, selective research, or a lack of time, 

money or interest.  Academics are encouraged to produce novel research, therefore there 

is little incentive to reproduce research already done (Open Science Collaboration, 2015).  

And journals publish statistically significant results far more frequently than statistically 

insignificant (or null) results; there is little interest in negative results (Lehrer et al., 2007; 

Nosek et al., 2012; Couzin-Frankel, 2013; Franco et al., 2014).   

Negative results are becoming less frequent in published research.  Fanelli (2012) found 

that between 1990 and 2007 there was an overall increase of over 22% in the proportion 

of papers reporting a statistically significant effect; this was even higher for the social 

sciences.  Franco et al. (2014) suggest that significant results are 40% more likely to be 

published than null results in social science research, and because of this authors often do 

not even write up findings that were null.  The selective publication of results is often 

referred to as the ‘file drawer problem’.  Research seen as unproductive is simply filed 

away (Rosenthal, 1979).  The problem with this system is that published results may 

reflect an increased likelihood of Type I error (false positive), and hidden null results 

mean that the research community as a whole is excluded from expanding its knowledge 

of a research area (Fanelli, 2012; Franco et al., 2014).  

An example of the overall lack of reproducibility in social science research was highlighted 

by the Open Science Collaboration (2015) which replicated 100 experimental and 
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correlational studies taken from three top Psychology journals.  Original data was used 

where possible and the authors were contacted to clarify methods.  97% of the original 

studies had significant results (p < 0.05), whereas only 35% of the replicated studies did.  

However, none of the original studies were contradicted, but the replicated results were 

statistically weaker.  With such a project, it is important to consider that even where the 

ideal replication is performed, even an ideal study may fail to replicate sometimes; and 

conversely, that a failure to replicate does not necessarily indicate flaws in the original 

study (Lindsay, 2015).  However, even accounting for this, the Open Science Collaboration 

results highlight not only the difficulty of replicating research, but the fact that many 

studies produce results that simply do not stand up to further scrutiny.   

It is possible that errors in research might be reduced by moving towards a framework of 

reproducible research, i.e. by requiring researchers to provide the data, methods and 

code used to produce results (Fomel and Claerbout, 2009); at the very least, a more open 

research community would likely increase discussion and improve overall standards 

(Nosek, 2015).  Researchers should be encouraged to find flaws in their work, and Alberts 

et al. (2015) suggest that in order to improve the quality of academic work there should 

be incentives for publishing good quality work rather than for the amount of work 

produced (citations, etc.).   

It is also suggested (Schmidt, 2009; Nosek et al., 2012; Cumming, 2014; Franco et al., 

2014; Vidgen and Yasseri, 2016; Szucs and Ioannidis, 2017) that pre-registration of studies 

may help to improve overall research quality.  Information such as the research questions 

and objectives, methods to be utilised and sample sizes might be registered in advance; 

deviation from these would need to be justified.  (Nosek et al., 2012:625) make the point 

that a registry could help distinguish between chance discoveries (which may be less 

reliable) and prior predictions which were confirmed by the study (and likely to be more 

reliable), stating that ‘the point of making a registry available is not to have a priori 

hypotheses for all projects and findings; it is to clarify when there was one and when 

there was not. When it is a discovery, acknowledge it as a discovery’.  Another advantage 

of pre-registration could be that a researcher might know in advance where a particular 

hypothesis has failed previously and therefore may consider whether to spend their time 

researching it; previously such null results may have been hidden.  However, a concern 

with pre-registration would be that it could stifle more exploratory work, Gelman and 
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Loken (2014:464) suggest that ‘the most valuable statistical analyses often arise only after 

an iterative process involving the data’ and that pre-registration may be practical in some 

fields and for some problems, but that it cannot be a general solution.  Another concern 

with this method could be that researchers may not want to disclose their hypotheses (if 

for instance, they feel their idea may be copied), however, both Cumming (2014) and 

Szucs and Ioannidis (2017) makes the point that pre-registration need not be public. 

Sharing data and code is also suggested, and in theory, the idea of requiring researchers 

to provide their data, and code, etc. appears very useful, but it might not always be 

feasible: data may not be shareable for ethical or legal reasons; it may be impractical (or 

expensive) to store, or in an unusual format; the cost of producing accompanying 

documentation could be prohibitive; researchers or institutions who have put great effort 

(and money) into building a dataset may not be inclined to share it; and in a competitive 

research community, researchers may not want to allow access to their data in case 

someone else beats them to a useful discovery.  Abbott (2007) also makes the point that 

making data more freely available may lead to less respondents to surveys etc., since they 

may be put off by the thought of their information being more freely available.  Given any 

of these reasons, it therefore may not always be realistic to share data; however, Freese 

(2007) suggests that at the time of publication researchers should state everything that 

would make replication easier, and if they cannot provide data this should be 

transparently explained. 

Another method that would improve reliability of results, and which is underused in the 

social sciences, is the utilisation of cross-validation when building models (Freedman, 

2009; Hindman, 2015; Woodside, 2016).  Since most social science researchers use all of 

their data to fit a model, it is then difficult to tell whether their results are useful or simply 

a peculiarity of the particular dataset (Hill and Jones, 2014; Hindman, 2015).  Testing how 

a model will perform on previously unseen data can provide insight into the 

generalisability of a model and is common practice in other scientific fields.  If a model 

has captured the underlying relationships within a dataset, then it should perform well on 

new data; if it has simply captured relationships within this particular dataset (overfitting) 

it will not perform well on new data (Ward et al., 2010; Hill and Jones, 2014).  It would be 

unthinkable in the field of machine learning, for example, for a model not to have some 

form of cross-validation applied to it.  Greater utilisation of cross-validation could be a 
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simple way of automatically helping to validate models, and therefore providing more 

research credibility.  Freedman (2009:75) suggests that whilst cross-validation is not as 

good as real replication, it is still much better than nothing.  One argument is that cross-

validation may be impractical where extremely small datasets are concerned, however, 

methods such as Leave-One-Out-Cross-Validation, which require only one record to be 

excluded as a test case, or bootstrapping, which samples with replacement, are methods 

that would not ‘waste’ potentially expensive data.  Cross-validation is considered further 

in section 4.5 

Overall, it seems that there can be a tendency in social science research to use the more 

established methods (regression, NHST), even where their use may not be suitable; or 

conversely, it may be that their use is suitable, but often the expectations around their 

usage are misguided.  The literature has highlighted that when regression models are 

misspecified, or where too much emphasis is placed upon obtaining significant results, it 

can lead to unreliable, or inconsistent research.  Taagepera (2008) suggests that this 

limitation in social science methods, means that much research is often never used again 

once published and therefore may have little impact upon the real world. 

Much of the critical literature suggests that, where feasible, moving towards a system 

where social scientists are asked to pre-register, or provide the basic tools for replication, 

might produce more reliable results and improve overall standards.  However, this may 

not always be practical, therefore the focus should also be on ensuring that less 

importance is placed upon significance testing, and that other methods and measures are 

also considered.   

3.4 CONCLUSION 

Along with linear regression, NHST is one of the most commonly utilised methods in social 

science research.  This chapter explored the usage of NHST in the social sciences, and 

considered the literature surrounding the various criticisms and the problems associated 

with its use.  It highlighted that NHST is often misunderstood and misapplied, and that 

placing too much importance upon the results of NHST can distract from providing 

statistically sound analysis.  The dichotomous nature of the NHST, so often reduced to an 

accept or reject decision, and based upon an arbitrary significance level can encourage 

complacency in research. 



43 
 

In some fields, achieving a statistically significant result is still generally considered a pre-

requisite for research publication, and so the use of these tests may still be necessary.  

Whilst there are suggested alternatives to NHST, such as providing other descriptive 

statistics, the literature highlighted that there is no equivalent alternative test.  Or at 

least, no alternative that fulfils the incorrect perception of NHST.  That is, there is no 

reliable replacement test that can provide a definitive yes or no answer about a 

hypothesis.   

Overall, this and the previous chapter have highlighted that there are some disadvantages 

to the current, more established, social science methods.  Where methods are misused, 

regression assumptions are not satisfied, or too much emphasis is placed upon p-values 

and obtaining significant results, this can lead to research that is unreliable.  This can 

mean that research results as a whole are less trusted and undermines research quality.  

This lack of reproducibility can mean that research results may be wrongly accepted, or 

(perhaps wrongly) doubted, or simply lead to conflicting results.  Suggestions in the 

literature to combat these problems include the pre-registration of studies and making 

efforts to provide the data and code used.  More reliable research might also be achieved 

by considering alternative methods more commonly utilised in data mining, and this is 

considered in the following chapters. 
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4 DATA MINING 

Far better an approximate answer to the right question, which is often vague, than 
an exact answer to the wrong question, which can always be made precise (Tukey, 
1962)  

4.1 INTRODUCTION 

Data Mining is the process of discovering hidden patterns or previously unknown 

relationships in data sets – it can be used to cluster, classify, derive rules and associations, 

make predictions, detect anomalies, and summarise and visualise data.  It combines 

traditional statistical and database techniques with methods from the fields of machine 

learning and artificial intelligence to produce (sometimes) sophisticated algorithms and 

methods.  Data mining is often referred to as Business or Predictive Analytics in the 

business world, and more recently the terms Machine Learning, Data Science and Big 

Data have been increasingly used to describe data mining – but whatever the name, or 

goal, all methods are essentially trying to make some sense out of data. 

In the social sciences, the term Data Mining has generally had negative connotations over 

the years.  Historically it was viewed as the process of repeating experiments and/or 

fiddling data until a statistically significant effect was found (also known as p-hacking, 

data dredging, etc.).  However, it does not have this meaning outside the field of social 

science, in other fields it is synonymous with machine learning, and data science, etc.  In 

this thesis, the term Data Mining is used to refer to the whole process involved in a 

project (data exploration, cleansing, visualisation, etc.), whereas Machine Learning refers 

specifically to the methods used (such as decision tree learning, or clustering).  That is, 

whilst the two terms may sometimes be used interchangeably, in this case machine 

learning is considered one part of the overall data mining process. 

This chapter gives a brief explanation of data mining, how it developed and why there is a 

need for it.  An explanation of the general processes is provided; of supervised and 

unsupervised learning, model evaluation, and the use of cross-validation to more 

rigorously evaluate models.  There is a description of clustering methods and decision 

tree learning, random forests and boosted models, as these are methods that are utilised 

in the Case Study chapters.  They are also considered because they are methods that are 

more interpretable and so perhaps more useful to social scientists.  As with regression 
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methods, there are negative aspects associated with the use of data mining and these are 

considered.  This chapter provides the background for the following chapter which 

considers the use of data mining in social science research. 

4.2 BACKGROUND 

Humans have long attempted to identify patterns and make sense from data: organising 

objects into logical groupings is fundamental to human understanding (e.g. biological 

classification); and looking for relationships within data and ways to gain insight and 

predict future behaviour is nothing new (e.g. linear regression).  Data mining has origins 

in statistics and mathematics, and many of its methods were derived long before the 

term ‘data mining’ was coined – for example, linear regression (early 1800s), k-means 

clustering (1960s), and artificial neural network methods (1940s).  In essence, the term 

data mining is simply used to draw together many techniques, both old and new.  

In 1962 John Tukey (1915-2000) considered the future of data analysis, stating that 

although there had been great advances in statistics over the last century this had not 

had a corresponding effect upon data analysis.  He felt that data analysis should be 

considered a science in itself, and that to make advances it would be necessary to tackle 

more realistic problems and move away from using rigid statistical assumptions.  He 

believed that it was not always possible to derive an exact solution to a problem, as real-

world data often does not fall into neat mathematical distributions.  Rather real-world 

data might require a solution to be more approximate, but that this was surely better 

than an exact result based upon false statistical assumptions (Tukey, 1962).  Much like the 

data mining methods used today, Tukey felt that data analysis should be a flexible and 

iterative process, and that it made sense to study what worked and what did not within 

data analysis and then adapt accordingly.  He saw the need to improve methods for the 

treatment of incomplete and spotty data (i.e. data containing outliers, errors, and non-

Normal distributions) and that better graph plotting techniques were required (Tukey 

subsequently invented the box-plot (Tukey, 1977)). 

In 1977 Tukey published Exploratory Data Analysis (EDA), a guide to exploring data, with 

particular emphasis placed upon graphical methods.  He felt that statistics placed too 

much importance upon hypothesis testing, which he called confirmatory data analysis 

(CDA), and that EDA should always be the first step in model building.  He believed that 
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greater emphasis should be placed upon using EDA to suggest hypotheses to test, and 

that it could also be used to assess which statistical techniques might be appropriate for 

the data, and to decide whether further data should be collected (Tukey, 1977).  Although 

written before the age of widespread computer usage, many of Tukey’s EDA techniques 

are still used by data scientists today. 

Aside from its initial pejorative usage (Lovell, 1983), the term ‘data mining’ began to be 

used within the academic research community in the late 1980s (Coenen, 2011).  Around 

this time, relational databases had come into use, meaning data could be stored in 

greater amounts, and was more easily accessible, than ever before.  In 1989 the first 

Knowledge Discovery in Databases (KDD) workshop was held, and in 1995 it became an 

annual conference (the ACM SIGKDD Conference on Knowledge Discovery in Databases 

and Data Mining).  In 1997 the Data Mining and Knowledge Discovery journal was 

launched, highlighting the increasing usage of data mining.  Many more journals followed 

suit, and over the last 20 years, articles related to data mining have been published in 

over 2000 different academic journals (Web of Science, 2017). 

Concurrently, in the business world in the 1980s, the field of Database Marketing, which 

is utilised to analyse customer databases and examine customer preference, had also 

begun to employ data mining methods.  Large companies (such as GM, AT&T and Kraft) 

were beginning to gather data and utilise their massive databases to make predictions at 

an individual-level, rather than, as previously, for aggregated groups of people (or market 

segments) (Database Marketing - Businessweek, 1994).  This allowed them to consider 

how likely customers were to buy their products and then market items specifically at the 

individual.  Over the intervening years, these methods have become commonplace and 

businesses routinely use data mining techniques to look for a competitive edge over their 

rivals. 

Over the last two decades, our ability to store data has risen at an exponential rate, 

driven by technological improvements and coupled with a reduction in the cost of data 

storage.  In 2012 it was estimated that 2.5 exabytes (2.5 billion GB) of data are created 

each day, and that this number will double every 40 months or so (McAfee and 

Brynjolfsson, 2012).  Between 2013 and 2020 the ‘digital universe’, which is all the data 

created in a single year, is predicted to grow by a factor of 10 - from 4.4 zettabytes to 44 

zettabytes (44 trillion GB); and every two years it more than doubles in size (IDC, 2014).   
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Data is being stored from every imaginable source - for example, customer databases, 

social media, sensor data, financial data, governmental data, and biomedical and 

scientific data.  Many traditional statistical techniques are simply not equipped to cope 

with the size, type and dimensionality of these large quantities of data.  The development 

of data mining was driven by the need for new techniques, and fuelled by ever increasing 

computational power.  It would be impossible for humans to manually analyse this 

increasing volume of complex data, much of it would remain untouched (much of it still 

does).  It is likely that without the development of data mining techniques, hidden 

patterns in data and valuable insights would remain undiscovered in these large datasets. 

4.3 THE DATA MINING PROCESS 

There have been attempts to formalise the process of data mining, perhaps the two most 

notable are Knowledge Discovery in Databases (KDD) and The Cross Industry Standard 

Process for Data Mining (CRISP-DM).  KDD, in Figure 2, was developed from an academic 

viewpoint and the steps in the process are: understanding the problem; acquiring and 

selecting data; cleaning, pre-processing and transforming the data; data mining; and 

finally, interpretation and evaluation of the results (Fayyad et al., 1996).   

 

Figure 2: The Knowledge Discovery in Databases (KDD) Process as defined by Fayyad et al. (1996) 

CRISP-DM, in Figure 3, was developed by three large companies (DaimlerChrysler, SPSS 

and NCR) and presents a more business oriented approach, adding a Business 

Understanding element to the process (Chapman et al., 2000).  Two others 

methodologies exist: SEMMA (Sample, Explore, Modify, Model and Assess) which was 

developed by the statistical software company SAS for their software (Azevedo and 
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Santos, 2008); and more recently the Big Data Analysis Pipeline which was published in 

the Computing Community Consortium Big Data Whitepaper (Jagadish et al., 2012). 

 

Figure 3: The CRISP-DM Process, as defined by Chapman et al. (2000) 

Despite their development by entirely different groups of people, years apart and with 

differing goals (business, academic, etc.), these processes are all strikingly similar.  They 

are iterative and the data mining, or modelling step, is simply one part of a larger process.  

The different methodologies all highlight that data mining (or the modelling, or machine 

learning step) cannot be performed in isolation; even in the simplest situation there 

would usually be a need for an understanding of the problem, and some form of data 

preparation and exploration before deciding upon a suitable algorithm.  The 

methodologies also highlight that the term ‘data mining’ is used interchangeably to mean 

both the whole process and the modelling step.  For the purposes of this thesis, the 

modelling step is generally referred to as ‘machine learning’ and the whole process is 

referred to as ‘data mining’. 

4.4 SUPERVISED AND UNSUPERVISED LEARNING 

Broadly, there are two types of machine learning methods: supervised and unsupervised 

learning (Witten et al., 2011; James et al., 2013).  Supervised methods typically involve 

predicting or estimating a target attribute based upon certain predictor attributes. They 
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are ‘supervised’ because the algorithm learns by example, i.e. when training the model, 

the correct answer is already known.  The model may then be deployed on new 

(unknown) data.  Decision trees, artificial neural networks and linear regression are all 

examples of supervised learning.  In the case of unsupervised learning, there are inputs or 

predictor attributes, but no target attribute, i.e. the data is unlabelled, there is no 

‘answer’.  Unsupervised learning is used to discover relationships and hidden structure in 

data, for example in cluster analysis. 

Choice of algorithm depends very much on the problem, but can also be dictated by the 

type of data and the software and hardware that is employed.  Some algorithms only 

work with specific types of data (such as numerical), some are unsuited to mixed data, 

and some cannot handle missing values.  Whilst it is possible to transform data, it may 

sometimes make sense to choose an algorithm that matches the data.  The software or 

programming environment employed can also heavily dictate which algorithms might be 

used.  Whilst popular statistical programs such as SPSS provide (relatively) simple to use 

interfaces, they usually contain only a basic selection of data mining algorithms and can 

often take many years to integrate newer algorithms into their software (if at all).  Open 

source environments such as R or Python generally contain a wider choice of algorithms; 

new and experimental algorithms are freely available since anyone may create them.  

However, there may be a steeper learning curve associated with their use, and they tend 

to have interfaces that are less user-friendly. 

4.5 MODEL EVALUATION AND CROSS-VALIDATION 

There are many methods for assessing the validity of a data mining model, for example: 

classification accuracy; total cost or benefit (different errors might incur different costs); 

error; lift; ROC curves; or 𝑅2.  However, the overriding theme for supervised learning is 

that the final model should always be tested on new, previously unseen (or out of 

sample), data.  This new data should be data that was not used anywhere else in the 

model building process.  How a model performs on previously unseen data provides an 

unbiased view of the quality of the model (Breiman, 2001b; James et al., 2013).  Any 

estimate of a model that is judged by the same data it was trained upon is likely to be 

optimistic - using new data checks that the model will generalise well to other, previously 

unseen, data (Domingos, 2012).   
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It is therefore important to perform some sort of model validation when performing 

supervised learning.  Overfitting occurs when a model has learnt the training data so well 

that it cannot generalise for new data (Breiman, 2001b; Witten et al., 2011; Domingos, 

2012; James et al., 2013).  If a model is overfitted it may be excessively complex, and 

rather than identifying patterns in the data, it may simply be describing random error or 

noise contained in the data.  That is, it may have learnt that particular training data set so 

well, including any unusual features (which may just be a random part of that dataset), 

that the model does not represent a meaningful, generalizable relationship between the 

predictors and target attributes (James et al., 2013; Kuhn and Johnson, 2013; Hill and 

Jones, 2014).  This is also often referred to as a model having high variance.  Underfitting 

occurs when a model has been unable to capture the underlying patterns in the data and 

misses important relationships; this is also referred to as having high bias (Domingos, 

2012).  Both underfitted and overfitted models do not perform well on new data.   

Ideally, a model should have low variance and low bias; that is, it should generalise well 

on new data and also have accurately captured the underlying patterns in the training 

data.  The problem of minimising both of these factors is often referred to as the ‘bias-

variance trade-off’ (Domingos, 2012; James et al., 2013).  Striking a balance can often be 

difficult to achieve; for instance, it is much easier to achieve a low-variance, high-bias 

model, or vice versa (James et al., 2013:36). 

Perhaps the most important step in building any supervised machine learning model is 

that the model must be validated on previously unseen, or out of sample, data.  In fields 

where machine learning methods are more readily utilised it would be unthinkable not to 

validate a model in this way.  Yet, in contrast, much social science research does not 

utilise any model validation on out of sample data (Berk and Bleich, 2013; Hill and Jones, 

2014; Woodside, 2016).  This means that it is difficult to determine whether patterns or 

relationships discovered in the data could apply more generally or whether they are 

simply a feature of the particular dataset (i.e. the model is over-fitted).   

Perhaps the simplest way to validate a model is to randomly split the data into a training 

and testing dataset; the model is built using the training dataset, and then the test data is 

run through the final model in order to evaluate model performance on new data.  An 

alternative is to use a training, validation and testing dataset; the validation set might be 

utilised for evaluating differing parameters or settings etc., then the final test of the 
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model is again performed using the test dataset.  A disadvantage of using this ‘holdout’ 

method is that it wastes data; if there is a small amount of data then there may not be 

enough to split into two or three subsets, and the test set might therefore be biased as it 

is so small (Kuhn and Johnson, 2013). 

An alternative is K-fold cross validation which randomly partitions the data into k equally 

sized subsets.  One of the subsets is retained for testing and the model is trained upon 

the remaining k-1 subsets; this is then repeated k times with each of the k subsets used 

once as the testing data (Domingos, 2012; James et al., 2013).  The k prediction errors are 

then averaged (or some other metric may be used) to produce an overall estimation of 

the error (Hastie et al., 2009).  Often 10-fold cross-validation is utilised; it appears to be 

the default setting in many machine learning programmes.  However, any number of folds 

might be utilised; Leave-One-Out Cross-Validation (LOOCV) uses only one record as the 

test set and the rest of the data for the training set each time, and this is particularly 

useful for very small datasets.  However, a disadvantage of LOOCV is that it has higher 

variance than k-fold cross-validation (where k is less than the size of the dataset, n) due to 

each training set consisting of almost the entire dataset; this means that the estimates 

from each fold can be highly correlated and therefore their average can have high 

variance (James et al., 2013:183).  Overall, the advantages of k-fold cross validation are 

that it matters less how the data is divided, as all the data is used for both training and 

testing; and it can be useful when a dataset is small.  A disadvantage, particularly when 

dealing with a large dataset, is that it takes k times as much computational time.  

Domingos (2012:81) also points out that if it is used ‘to make too many parameter choices 

it can itself start to overfit’.   

An alternative to k-fold cross-validation is the bootstrap.  Data is selected, with 

replacement, from the dataset to form the training set.  This training set is the same size 

as the dataset, but some records will be present multiple times, whereas others not at all.  

The records not selected form the ‘out-of-bag’ samples.  A bootstrap is usually performed 

multiple times, and for each iteration the model is built on the training set, and the error 

rate calculated on the out-of-bag samples (Hastie et al., 2009; Kuhn and Johnson, 2013).  

Bagging, or bootstrap aggregation, is further discussed in section 4.8.1.  Where comparing 

the performance of k-fold cross-validation to the bootstrap, in general, k-fold cross-

validation may be prone to large variance (particularly with small datasets), whereas 
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bootstrapping can reduce the variance but is likely to be more biased (Efron, 1983).  

However, where large datasets are utilised, issues with variance and bias become less of a 

problem (Kuhn, 2013:70). 

In the case of unsupervised learning, it can be difficult to evaluate model performance as 

there is generally no ‘answer’ to compare the results to.  The evaluation method may be 

determined by considering what the goal was, and whether the solution fits that, or 

perhaps a more general feeling that the model describes whatever it should correctly.  

Certain techniques do have more concrete evaluation methods; in clustering, for 

example, there are methods to examine the quality of a clustering (these are covered in 

section 4.9.3).  A clustering might also be judged simply by whether the data falls into 

what appear to be reasonable groupings, i.e. using prior expert knowledge.  Evaluation 

with previously unseen data can be useful in some situations - if the same method is 

performed on new data and provides similar results, then this may go some way towards 

validating the results.  However, this uncertainty around the evaluation of unsupervised 

learning can make its use challenging (James et al., 2013).  Hastie et al (2009:487) state 

that one ‘must resort to heuristic arguments not only for motivating the algorithms, as is 

often the case in supervised learning as well, but also for judgments as to the quality of 

the results. This uncomfortable situation has led to heavy proliferation of proposed 

methods, since effectiveness is a matter of opinion and cannot be verified directly.’  There 

is often no ‘right’ way to evaluate an unsupervised model.  However, a particular use for 

unsupervised methods is in exploratory data analysis – that is, to look for patterns or 

identify research questions that can then be further explored or validated by other 

methods. 

The importance of validating models cannot be overstated, and these validation methods 

(k-fold cross-validation, etc.) generally work with any kind of supervised learning model.  

There is no obvious technical reason why linear regression, which is arguably the most 

commonly utilised social science method, could not be evaluated in this way more 

frequently in social science research (Hill and Jones, 2014).  It would seem that if 

validation methods were utilised more frequently in the social sciences, it would at least 

provide an extra layer of assurance that the results produced are reliable. 
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4.6 VISUALISATION 

With the increasing availability of ‘big’ data and the ever-complex models being 

produced, data visualisation has become increasingly important and is in itself a growing 

field (Liu et al., 2017).  Visualisation methods can provide useful ways of presenting the 

findings of a complex model in a manner that is understandable; for instance, a decision 

tree is generally much more understandable when presented as a visualisation, rather 

than a list of rules.  Visualisation methods also provide ways of exploring and 

understanding data sets, which can be crucial in identifying problems within data (such as 

interactions or outliers), as discussed in section 2.5.1.  This section explains t-Distributed 

Stochastic Neighbor Embedding, as it is a method utilised in the case study chapters. 

4.6.1 t-Distributed Stochastic Neighbor Embedding 

Newer techniques, such as t-Distributed Stochastic Neighbor Embedding (t-SNE) provide 

methods of visualising large, high-dimensional datasets on a two-dimensional map 

(generally, a scatter plot).  t-SNE is a nonlinear dimensionality reduction technique and is 

well-suited for visualising high-dimensional data (Pezzotti et al., 2017).  The t-SNE 

algorithm aims to capture the lower-dimensional relationships within a dataset whilst still 

preserving the larger global structure of the data; it adapts to the data and can identify 

different regions and perform different transformations accordingly (Wattenberg et al., 

2016).  The algorithm has two stages: it constructs a probability distribution such that 

pairs of similar high-dimensional objects have a high probability of being picked together, 

whereas dissimilar objects have an extremely low probability of being picked together; 

and a similar probability distribution is constructed for the low-dimensional objects in the 

data (Van Der Maaten and Hinton, 2008).  The algorithm minimises the Kullback-Leibler 

divergence between the two distributions in order to create the map.  It is essentially a 

gradient descent problem, and therefore can require many iterations to produce a stable 

solution, and will produce a slightly different map each time (unless the random seed is 

assigned a fixed value). 

The algorithm has a parameter, called the ‘perplexity’, which is tuneable and essentially 

provides a balance between the higher-dimensional and lower-dimensional aspects of the 

data; it is similar to considering the number of nearest neighbours a data object has 

(Wattenberg et al., 2016).  Another parameter, referred to as ‘eta’ or ‘epsilon’ controls 
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the learning rate.  Generally, the algorithm might require many runs to identify the ideal 

parameters. 

A downside of t-SNE is that the plots produced can be difficult to interpret.  Wattenberg 

et al. (2016) points out that where utilised to visualise clusters in the data, it may even-

out cluster sizes, so that the actual size of a cluster of objects may be difficult to 

determine, and the distance between different clusters may not be representative of the 

actual data.  However, Van Der Maaten and Hinton (2008) found t-SNE to outperform 

seven other non-parametric visualization techniques (such as Sammon mapping and 

Isomap) when utilised to display data with known clusters (the cluster assignment was 

used only to analyse the results).  Similarly, Platzer (2013) compared t-SNE to Principal 

Component Analysis (again, using data with known clusters) and found that t-SNE more 

accurately displayed the structure in the data.  Therefore, it would seem that t-SNE may 

be a useful tool to display clusters in a dataset, however it should be used with caution, 

and not to make decisions about data. 

4.7 DECISION TREE LEARNING 

Decision tree learning is a non-parametric, systematic method of predicting a target 

attribute based upon given predictor attributes.  It is a supervised method, as past data is 

used (i.e. a training data set) to produce a model that may then be used to classify new 

data.  It can be a useful data mining tool as it generally requires little data preparation, 

produces easy to understand visualisations of the rules produced (if the tree is not too 

large), and as well as classifying and predicting data it can also be helpful in exploring the 

structure of a dataset (Rokach and Maimon, 2015).  It may also be used as a form of 

feature selection, by selecting only the useful attributes from high-dimensional datasets 

(Guyon and Elisseeff, 2003). 

Decision tree algorithms generally employ a top-down divide and conquer approach - 

they start with the whole dataset and then recursively partition the data into smaller and 

smaller subsets.  At each step, the attribute is chosen that best splits the data (this can be 

a binary or multiple split depending upon the algorithm) with respect to the target.  There 

are various measures of what the ‘best’ split would be, such as Gini impurity, entropy or 

information gain, but generally it is the attribute that provides the most homogeneity in 

the resulting subsets.  This process continues (and is applied separately to each subgroup) 
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until some stopping criterion is reached or it is not possible to split the data any further 

(Therneau and Atkinson, 2015). 

Decision trees are quite flexible and depending upon the algorithm used they can 

effectively deal with high-dimensional and mixed data (numerical and categorical), 

missing values, and can be used to predict both categorical (classification tree) and 

numerical (regression tree) targets (Kuhn, 2013:174; Rokach and Maimon, 2015).  They 

are also considered a ‘white box’ algorithm, meaning that, in comparison to many other 

machine learning algorithms where it is not clear how the answer was derived (i.e. ‘black 

box’ algorithms, such as neural networks), their rules can be easier to understand and 

visualise (Kotsiantis, 2013).  In order to avoid over-fitting, trees are grown overly large 

and then pruned down to a more manageable (or understandable) size, or else they are 

grown to a certain point and then stopped (Loh, 2014). 

The non-parametric nature of decision trees means they are particularly suitable for use 

with complex social science data, which may often contain interactions, non-linearity, 

non-Normal distributions, and heteroscedasticity (Ritschard, 2014).  As discussed in the 

previous chapters, regression techniques can be sensitive to such data issues and not 

accounting for them may lead to flawed results.  Decision trees, in contrast, do not share 

the same limitations and can particularly help to identify problems such as interactions.  

They do, however, have different limitations, which are considered in section 4.7.4. 

4.7.1 Decision Tree Example 

Decision trees may be plotted horizontally or vertically, and there are various methods of 

visualising trees in order to make them informative and readable.  At the top of a tree is 

the root node, i.e. the first split, and this produces two (or more, depending upon the 

particular algorithm) child nodes.  Each child node can produce their own children.  At 

some point, the path through the tree ends in a terminal or leaf node, which is where the 

classification is applied (in the case of a classification tree), or a numerical range or value 

may be applied, or else the probabilities of having certain values (Rokach and Maimon, 

2015:13). 

Figure 4 shows an example decision tree plot which predicts the likelihood of passenger 

survival on the Titanic given various traits (passenger age, sex, class of travel, the number 

of spouse or siblings aboard, the number of children or parents aboard).  The data was 

provided by the ‘rpart’ R package (Therneau and Atkinson, 2015) and plotted using the 
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‘rpart.plot’ package (Milborrow, 2013).  In this case, the root node, is the question of 

whether the passenger was male; each data record that is male falls to the left branch, 

and each female record falls to the right branch.  At each further split, the data record 

falls down the left branch if the answer is yes, or down the right if the answer is no.  The 

leaf nodes display the prediction of ‘died’ or ‘survived’.  Underneath each class label on 

the leaf nodes is the accuracy at that node (decimal) and the amount of data that reached 

the node (percentage).  In this example, the accuracy at the ‘died’ branches is very low. 

 

Figure 4: Example decision tree of passenger survival on the Titanic, with accuracy at each leaf (in decimal), and the 
percentage of data reaching that leaf (percentage). Data obtained from the ‘rpart’ R package (Therneau and Atkinson, 
2015) 

 

4.7.2 History and Development 

Trees, as well as many other powerful data analytic tools (factor analysis, 

nonmetric scaling, and so forth) were originated by social scientists motivated by 

the need to cope with actual problems and data (Breiman et al., 1984:viii–ix). 

The early development of decision trees grew out of a desire to improve the analysis of 

social survey data; existing statistical methods were viewed as simply not good enough.  

Prediction, although useful, was not the primary goal – early research was more broadly 

aimed at discovering the structure of the data and determining how explanatory 

attributes were linked to target attributes (Breiman et al., 1984; Ritschard, 2014).   

Perhaps the earliest published work was by Belson (1959) who explored the task of 

choosing relevant predictors and proposed a ‘biological classification’.  That is, a repeated 



57 
 

(binary) division of a dataset upon different attributes for the purpose of matching two 

groups for comparison.  Belson described his method as a ‘… movement towards a more 

empirical way of doing things… [and] a movement away from a sophistication [statistical 

methods] which is too often either baffling or misleading’ (Belson, 1959). 

Morgan and Sonquist (1963) published their thoughts on the various problems of 

handling multivariate survey data, and stated that current methods of analysis were often 

inadequate in dealing with increasingly complex survey data.  Like Belson, they felt that 

existing statistical methods, and the assumptions they impose in advance upon the data 

(of linearity, Normality etc.) were too restrictive.  Of particular concern was the problem 

of interaction effects, and the additive assumption commonly used in data analysis, 

stating ‘... it is our belief that in human behaviour there are so many interaction effects 

that we must change our approach to the problem of analysis’ (Morgan and Sonquist, 

1963).   

Sonquist and Morgan (1964) described the first regression tree algorithm, Automatic 

Interaction Detector (AID), which produced a tree of binary splits that predicted a 

numeric target, given categorical predictors.  It imposed no statistical assumptions upon 

the data and selected only predictors that were useful to the model.  The AID algorithm 

was then extended to deal with binary categorical targets in THAID (Morgan and 

Messenger, 1973), and then for multivariate categorical targets in MAID-M (Gillo and 

Shelly, 1974). 

In 1980 a further extension of AID was introduced: the CHAID (Chi-Square Automatic 

Interaction Detection) algorithm (Kass, 1980), which is still in use today.  It used a 

categorical target and predictors, and employed significance testing (p-values with a 

Bonferroni correction of the Chi-squared test) to choose the most significant predictor, 

and could perform multiway (as opposed to binary) splits.  In the late 1970s, ID3 

(Interactive Dichotomiser) was developed by Quinlan (1986) which utilised information 

gain as a splitting criterion.  An improved version, C4.5, followed this and implemented 

the ability to deal with missing values, continuous values, and pruning the trees (Quinlan, 

1993). 

Perhaps the most well-known decision tree algorithm, CART (Classification and Regression 

Trees) was developed in 1980.  Much like the earlier decision tree work, the authors aims 

were to solve classification and data analysis problems that they felt could not be 
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adequately solved by existing statistical methods (Breiman et al., 1984).  CART added 

several new features to decision trees: it grew overly large trees and then pruned them 

back, helping to alleviate previous problems of over and under-fitting the data; it could 

predict both categorical and numerical targets; and it could handle missing values 

effectively, by using ‘surrogate’ splits.  CART and C4.5 remain two of the most popular 

data mining algorithms (Wu et al., 2007). 

It should be noted that the focus of much of the work developing decision trees was on 

providing a non-parametric alternative to methods such as linear regression.  The trees 

were developed to describe interactions and find links between attributes – prediction 

was generally not the purpose.  Their early applications often used survey data and were 

almost all employed in the social sciences realm.  It is striking that their development was 

prompted by many of the same concerns (about the strict statistical assumptions of the 

more traditional methods) that still persist today. 

4.7.3 CART 

An explanation of Classification and Regression Tree (CART) algorithm (Breiman et al., 

1984) follows.  CART itself is a commercial product not freely available, therefore the 

‘rpart’ R package (Therneau and Atkinson, 2015), which is an implementation of the CART 

algorithm in the R programming language, was used to build trees for this thesis.  It 

follows the CART algorithm very closely, which is: 

1. Start at the root node 
2. Search through each attribute to find the one that gives the best split in the data 

with respect to the target, i.e. it minimises the sum of the two child node 
impurities 

3. Apply step 2 to each child node until some stopping criteria is reached, or else no 
data remains 

4. Prune the tree using cross-validation 
 
Rpart recursively splits the data based on only one attribute, using a binary split at each 

step, and utilises the Gini splitting criterion for classification trees.  The single attribute 

which ‘best’ splits the data into two groups is chosen.  The data is split and this process is 

applied separately to each sub-group, recursively, until the subgroups reach a minimum 

size or else no further improvement can be made (Therneau and Atkinson, 2015).  In 

terms of choosing the ‘best’ split, Gini attempts to separate data so that each node is 

‘pure’.  The impurity of a node is zero if the node is all one class, and at a maximum if it is 
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equally divided between the classes.  At each step, when selecting where to split, the 

algorithm selects the split that most decreases the Gini index. 

The impurity at each node, A, is defined as: 

𝐼(𝐴) =  ∑ 𝑓(𝑝𝑖𝐴)

𝐶

𝑖=1

(4.1) 

Where 𝑝𝑖𝐴 is the proportion of records in node A that belong to class 𝑖 for future records, 

𝐶 is the number of classes, and 𝑓 is the impurity function (Therneau and Atkinson, 2015).  

The Gini index is generally utilised as the impurity function, and this is defined as (James 

et al., 2013:312):  

𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥 = ∑ 𝑝(1 − 𝑝)

𝐶

𝑖=1

(4.2) 

Where 𝑝 is the proportion of records that belong to class 𝑖.  Using the Gini index 

equation, if all records in a node were of the same class (𝑝 = 1) then the Gini index would 

be equal to zero, i.e. the node would be pure.  The attribute that offers the greatest 

reduction in node impurity is chosen as the split point (Therneau and Atkinson, 2015). 

For regression trees, the Gini splitting criterion is not utilised, instead the split that results 

in the greatest change in deviance is chosen.  The splitting criteria is 𝑆𝑆𝑇 – (𝑆𝑆𝐿 + 𝑆𝑆𝑅), 

where 𝑆𝑆𝑇 is the sum of squares at that node (the sum of the expected minus the 

predicted values squared) and 𝑆𝑆𝐿 and 𝑆𝑆𝑅 are the sum of squares for the prospective left 

and right children of that node.  This is equivalent to choosing the split that would 

maximise the between group sum of squares (or minimise the sum of squared error) 

(Therneau and Atkinson, 2015). 

For classification and regression trees, the data ordering is unimportant – all possible 

splits and all possible attributes to split on are considered at each step (Wu et al., 2007).  

Whilst, this is a very thorough approach, when dealing with very large, high-dimensional 

datasets it may lead to performance issues. 

4.7.3.1 Pruning 

The CART algorithm (Breiman et al., 1984) originated the idea of pruning.  That is, to grow 

an overly large tree, and then prune it to the size that has the lowest cross-validated 

error; this removes branches of the tree that do not add anything to the model, and 
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minimises the risk of over or underfitting the data (Loh, 2014).  Another reason for 

pruning a tree is the concept of ‘trading accuracy for simplicity’ (Bohanec and Bratko, 

1994).  That is, whilst a larger tree may be more accurate it may be too complex to 

understand, whereas a smaller tree may be less accurate but easier to understand; 

therefore, depending upon the purpose, it may be useful to accept a reduction in 

accuracy in order to produce a smaller, more understandable, decision tree. 

The Rpart algorithm defines the risk for each tree as: 

𝑅𝛼(𝑇) = 𝑅(𝑇) +  𝛼|𝑇| (4.3) 

Where 𝑅(𝑇) is the training sample cost of the tree, |𝑇| is the number of terminal nodes, 

and α is a penalty imposed upon each node (Wu et al., 2007; Therneau and Atkinson, 

2015).  α measures the ‘cost’ of adding another variable to the model, and is also referred 

to as the complexity parameter (CP).  An α or CP value of 0 builds a complete tree, and a 

CP of 1 would build a tree with no splits.  α (or CP) is progressively increased from 0 to the 

value where all splits are pruned away.  This is because as α increases the cost-

complexity, the tree becomes smaller as the splits at the bottom of the tree that reduce 

𝑅(𝑇) the least are cut away (Wu et al., 2007).  Cross-validation (usually 10-fold) is utilised 

to find the best value for α; the optimal pruned tree is the one that achieves the smallest 

risk.  In practice the ‘1-SE’ rule is often utilised; Rpart calculates the risk and its standard 

error during cross-validation and any risk within one standard error of the minimum 

achieved is considered equivalent to the minimum (Therneau and Atkinson, 2015).  This is 

because, when plotted, the risk tends to display a sharp drop followed by a plateau; 

therefore the simplest model amongst those ‘tied’ on the plateau should be chosen 

(Therneau and Atkinson, 2015). 

4.7.3.2 Surrogates Attributes 

A key feature of the CART algorithm is that it can handle missing values – many machine 

learning algorithms either discard records with missing values or would be required to use 

a method of imputation to deal with them.  With CART, records that contain missing 

values for predictor attributes are retained, and if necessary, surrogate values may be 

used to account for the missing attribute instead.  However, any records with missing 

target attributes are removed during training, as it is impossible to evaluate a prediction 

for a record that has no ‘answer’; and any record that has all of its predictor attributes 

missing would also be removed. 
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At each node, once the primary splitting attribute and split point have been decided, 

other ‘surrogate’ attributes are also identified, and these can be utilised should a data 

record contain a missing value for that split (Therneau and Atkinson, 2015).  Surrogate 

splits are identified even where the data contains no missing values; this means they can 

be utilised should new data be applied that does contain missing values (Wu et al., 2007).  

Ideally, a surrogate will split the data identically (or very closely) to how the primary 

splitter would have split it.  Once the primary split has been chosen, the surrogates are 

identified by re-applying the partitioning algorithm at each split to predict the split using 

the other remaining predictor attributes (Therneau and Atkinson, 2015).  For example, if a 

split was age < 50 or age >=50, the algorithm searches for any other attributes that might 

provide a similar split in the data.  Surrogates are ranked in terms of performance and up 

to five are identified by default; only those whose utility is greater than the blind rule of 

simply selecting the majority class are selected.  On the occasion that a record might be 

missing the primary splitting attribute, and all five surrogate attribute values, then the 

blind rule is used and the majority class is selected at that node (Therneau and Atkinson, 

2015).   

Surrogates can also be useful in detecting masking – that is, when two (or more) 

attributes may be highly correlated in a data set, and so one attribute may obscure the 

importance of the other/s (Loh, 2014).  For instance, consider the two attributes mother’s 

age and father’s age – in general, they are likely to be similar and therefore only one 

might be selected as a primary splitter, but this does not mean that the other is 

unimportant.  To counter this, a Variable Importance score is calculated for all attributes 

by calculating the sum of the goodness of split for each attribute in its role as either a 

primary or a surrogate splitter (Therneau and Atkinson, 2015).  The inclusion of 

surrogates can help to reveal any masking, as an attribute which was not a primary 

splitter in the tree may still have a high importance score (Wu et al., 2007).  The rpart 

algorithm scales the variable importance scores to sum to 100, with the highest score 

indicating the most important attribute/s. 

Aside from the CP value, there are various parameters that may be set to control the tree 

building process using Rpart – for example, it is possible to specify the minimum number 

of records at any terminal node, the minimum number at any node for a split to be 
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attempted, the number of surrogate splits, the maximum depth of the tree, and to weight 

outcomes using prior probabilities (Therneau and Atkinson, 2015).   

4.7.4 Advantages and Disadvantages of CART Decision Trees 

As with all machine learning methods, there are both positive and negative aspects 

associated with the use of decision trees, and this section summarises these aspects.  

Firstly, the more positive aspects: 

Feature Selection: Decision trees can deal with high-dimensional data and perform 

feature selection automatically.  Where a dataset has many attributes only those most 

important to the target will be chosen for modelling.  The variable importance score lists 

how important every attribute is to the model.  This is particularly useful where it is not 

clear which attributes are important.  However, Strobl et al. (2007) make the point that 

attribute selection can be biased in favour of those attributes with a greater number of 

unique values, as they offer more potential split-points; this is a general problem affecting 

methods that utilise impurity reduction measures, such as the Gini Index or Information 

gain.  Therefore, caution should be applied where using data that has attributes with 

many values; it may make sense to avoid using categorical attributes with many values as 

their usage can also lead to overfitting (Hastie et al., 2009:310). 

Data Preparation: Very little data preparation is required (King and Resick, 2014): there is 

no need to scale/normalise data (as it will still be split in exactly the same way); missing 

values are accepted (surrogates may be used); trees are not sensitive to outliers (since 

data is split within a range rather than on specific values); and trees can handle mixed 

datasets well, i.e. they can deal with numeric and categorical data together 

Interpretability: Compared to other ‘black box’ machine learning algorithms, the rules of 

a decision tree are much easier to understand (Kotsiantis, 2013).  However, this does not 

mean that all decision trees are easily understandable.  In general, they are intuitively 

easy to understand and do not require much explanation; it is simple to visualise a tree 

and its rules.  However, where a tree is very large and complex it may be difficult to 

visualise or understand the rules. 

Non-parametric method: Decision trees are non-parametric and many data distributions 

may be modelled (Rokach and Maimon, 2015:81).  In contrast to traditional regression 

analysis, data that is non-linear, that has interactions or that is correlated may be used.  
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Decision trees allow users to identify interactions between predictors without the need to 

anticipate and specify them in advance (King and Resick, 2014). 

The more negative aspects associated with the use of decision trees are: 

Instability: Trees can be non-robust, and even a small change in the data can lead to big 

changes in the tree (Li and Belford, 2002; Domingos, 2012; King and Resick, 2014).  This is 

because even a minor change to the training data may cause a split that was initially 

inferior to the selected split to become superior; and once a different split is selected, the 

subtree derived from that node may be very different to the original one (Li and Belford, 

2002).  This may be of less concern where only predictive performance is considered, 

however where a tree is used to describe data, it should be considered.  Methods such as 

cross-validation and pruning can help to ensure that a tree is not over-fitted, however 

Hastie et al (2009:312) make the point that instability is ‘the price to be paid for 

estimating a simple, tree-based structure from the data’. 

Time: Since (generally) all possible attributes are considered for each split, with a very 

large/wide dataset this can lead to computationally long running times. 

Binary Splits: Many decision tree algorithms utilise a binary split, and this may mean that 

where a dataset has a particularly complex structure it may be difficult to capture.  

However, whilst it is possible, and sometimes useful, to utilise multiway splits (for 

example, the CHAID algorithm can split the data into more than two groups), it is not 

always practical; multiway splits can fragment the data too quickly meaning there is 

insufficient data at the next level down (Hastie et al., 2009:311).  Multiway splits can also 

lead to very complex decision trees; whilst a binary split is fairly easy to understand, splits 

that have more than two leaves may quickly become very complex. 

Rare Values: Decision trees are poor at predicting target attributes that contain rare 

values (Kotsiantis, 2013; King and Resick, 2014).  For example, if a target attribute 

contains the values ‘yes’ or ‘no’, and 99% of the data contain ‘yes’ values whereas only 

1% contain ‘no’, a decision tree may struggle to pick out the ‘no’ values, as trees tend to 

go with the majority of the data and therefore would predict ‘yes’ (with 99% accuracy).  

However, a method to overcome the problem of imbalanced datasets is to attach weights 

to the classes (Kotsiantis, 2013). 
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Predictive Ability: When compared to ensemble methods (such as random forests), single 

decision trees generally have worse predictive ability, on average about 10% less 

predictive accuracy than tree ensembles (Loh, 2014).  Therefore, if seeking predictive 

performance alone, there may be more accurate alternative methods.  However, a single 

tree model has a particular advantage over a model built using ensemble methods; it is 

generally easy to interpret, whereas an ensemble model may be very difficult to 

understand (Kotsiantis, 2013; Loh, 2014). 

In summary, whilst there are advantages and disadvantages to the use of decision trees, it 

ultimately depends upon the goal as to whether they might be useful.  They can, at the 

very least, aid in understanding the structure of a dataset.  They can provide insight into 

any interactions that might exist in the data and generally highlight relationships between 

attributes and indicate important predictors.  Where predictive power is required, they 

may not generally be as accurate as ensemble methods, however a decision tree provides 

an intuitive visualisation that may aid understanding of a problem.  In general, it appears 

that decision trees do not feature very frequently in social science research, and this may 

be because regression analysis is seen as a more standard method.  However, one way 

that decision trees might be used more frequently is as a complement to regression 

methods (Thomas and Galambos, 2004; Weerts and Ronca, 2009).  Each method can 

provide a different perspective and utilising the two methods together may provide 

deeper insight than either method could alone. 

4.8 RANDOM FORESTS, BAGGING AND BOOSTING 

4.8.1 Bagging 

One way of improving the predictive performance of decision trees is via bagging, or 

bootstrap aggregation (Breiman, 1996).  As considered previously, decision trees can be 

prone to instability (that is, have high variance) and bagging can reduce the variance and 

produce models that are less prone to over-fitting.  Although bagging is often used with 

decision tree methods it can be utilised with any algorithm.  Bagging works by taking 

repeated samples (all of the same size) from the training data set to create n new training 

sets; this is done with replacement, meaning that observations are repeated in each 

training set.  Then n models are built using each of the n bootstrapped training sets.  The 

results are combined and the average of all the predictions (or the most frequent class, in 
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the case of classification) is the prediction of the model.  In general, averaging reduces 

the variance (Hastie et al., 2009:285). 

Bagged models can be evaluated without the need for cross-validation or a separate test 

dataset.  This is because each bagged training set utilises around two-thirds of the 

available data, leaving the other third of data, which was not utilised in the model 

building process to be used as a test dataset (James et al., 2013).  This data is called the 

‘out-of-bag’ (OOB) data and can be used to calculate the OOB error.  For each of the n 

models built, the OOB error is computed, and this is averaged for the whole model to 

produce an unbiased error estimation.  Calculating the OOB error can be useful when 

datasets are very large and so performing cross-validation may be computationally 

expensive. 

Bagged models can be difficult to interpret (Breiman, 1996), as, in the case of decision 

tree bagging, there is no individual tree to plot (and the interpretability of the single tree 

plot is one of the key advantages of decision tree learning).  However, like a single 

decision tree, they can provide information about the importance of each predictor to the 

model.  Variable importance for bagged regression trees is calculated by averaging the 

total reduction of the residual sum of squares due to splitting on a given predictor over all 

trees; for classification trees the total amount that the Gini index (or other measure) is 

decreased due to splitting on a given predictor is averaged over all trees (James et al., 

2013). 

Whilst, in general, bagging might be utilised with any predictive algorithm, Breiman 

(1996) makes the point that it performs best in terms of predictive accuracy on methods 

that are unstable (such as decision trees and neural networks), but it can slightly degrade 

the performance of more stable methods (such as k-nearest neighbours). 

4.8.2 Random Forests 

Random forests (Breiman, 2001a) are an ensemble learning method.  As with bagging, n 

decision trees are built using n bootstrapped training samples, but the random forest 

method differs substantially in that it builds a collection of de-correlated trees (Hastie et 

al., 2009:587).  Where the algorithm deviates from bagging is that at each split in every 

tree only a random sample of predictors is considered.  Where there are 𝑝 predictors, 

typically √𝑝 are considered at each split for a classification tree and 𝑝/3 for a regression 

tree (Hastie et al., 2009:592).  For example, in the classification case, if there were 25 
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predictors, only 5 randomly chosen predictors could be considered at each split (and 

these would be a new 5 predictors at each split); the best of these 5 predictors is chosen 

to be the splitter.  This means that the algorithm is forced to consider all predictors and as 

such the ensemble of trees produced are less correlated than they would be with bagging 

alone (James et al., 2013).  This is because, for example, if there was one strong predictor 

in a dataset, then each tree built would utilise that as the main splitter, and all the 

resulting bagged trees would be very similar; in this case the model performance may not 

be much better than simply using a single tree.  However, if the model is forced to 

consider other splitters, it should produce trees that are less correlated and so reduce the 

variance in the model, producing more reliable results. 

As with bagging, random forests are evaluated by calculating the OOB error, and also 

produce an overall variable importance score in the same way.  This variable importance 

score is useful for determining the most important predictors in a dataset.  The two 

tuning parameters that must be specified are the number of predictors considered at 

each split (as above, whilst there are typical values, these can be changed), and the 

number of trees in the forest.  Breiman (2001a) proved that random forests do not 

overfit, however utilising too many (perhaps many thousand) trees may be 

computationally expensive.  Compared to bagging, random forests are generally more 

computationally efficient, because the algorithm evaluates only a fraction of the 

predictors at each split, however many trees may be required for the optimal model 

(Kuhn and Johnson, 2013:200).  In general, the ideal number of trees is chosen by 

considering a plot of the OOB error rate as the number of trees increases.  Random 

forests generally perform better than bagged trees (in terms of accuracy), however 

similar to bagging, a downside is that they can be difficult to interpret. 

4.8.3 Boosting 

Boosting (Freund and Schapire, 1997; Friedman, 2001), like bootstrapping can be utilised 

with any algorithm, although in this context it is discussed with reference to decision 

trees.  The AdaBoost (Freund and Schapire, 1997) algorithm is perhaps the most well-

known bosting algorithm.  Boosting works by combining many weak models to produce a 

very accurate prediction overall (Freund and Schapire, 1997).  Boosting does not use a 

bootstrapped sample, and grows trees sequentially, rather than all at once (James et al., 

2013:321).  Boosting applies weights to the data; one tree is built initially with each 
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record weighted equally.  The records are then re-weighted so that those that were 

misclassified have their weights increased and those that were correctly classified have 

their weights decreased, and a new tree is built.  This continues with each iteration.  

Therefore each iteration concentrates on those records that were misclassified 

previously, and slowly improves the model (Hastie et al., 2009:339). 

There are generally three tuning parameters: the number of trees; the shrinkage 

parameter which controls the rate at which the model learns; and the depth or number of 

splits in a tree.  Boosting generally utilises small trees, this is because each tree takes into 

account the previous trees built, and so smaller trees are usually adequate (James et al., 

2013).  Boosted models can overfit the data, so cross-validation is generally utilised to 

determine how many iterations the model should perform, and experimentation is 

sometimes required to determine the ideal parameters.  Boosting can lead to dramatic 

improvements in accuracy over single trees (Yang and Wu, 2006; Hastie et al., 2009). 

However, as with bagging and random forests they are difficult to interpret but do 

provide a variable importance ranking.   

In summary, ensemble methods such as bagging, random forests and boosting all provide 

interesting alternatives to the use of a single decision tree.  If prediction, or discovery of 

important predictors is the goal then these methods should be chosen over a single tree, 

as they generally provide higher predictive accuracy.  However, if it is important to 

understand the resulting model (as might be the case for many social scientists) then a 

single decision tree may be preferred. 

4.9 CLUSTERING 

Clustering is the art of grouping data items in such a way that items in the same group (or 

cluster) are more similar to each other than to items in other groups (James et al., 2013).  

Cluster analysis is an unsupervised machine learning method, and is often performed as a 

form of exploratory data analysis in order to discover structure within a dataset (Jain, 

2010).  Cluster analysis is utilised in many fields, such as astronomy, medicine, physics, 

marketing, biology, genetics, psychology, archaeology (Kriegel et al., 2009; Everitt et al., 

2011).  The identification of different groups in data allows for separate analyses upon 

each of the discovered groups.  This may mean that any models fitted to these groups 

may perform better than an overall ‘global’ model might have done, because a ‘global’ 
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analysis may have missed the various contexts within the groups and be prone to an 

averaging effect. 

What constitutes a cluster, and how similar or dissimilar the clusters are depend upon the 

clustering objective and the data.  There is often no over-riding framework of how to 

perform cluster analysis, and there are many different clustering algorithms available, this 

means it can be difficult to know which method is optimal (Jain, 2010).  Clustering can be 

an iterative, or experimental, process.  The various algorithms mean it is possible to 

assign all data points into clusters, or to leave out those that do not fit, or to have 

overlapping (fuzzy) clusters.  And the various methods can have very different definitions 

as to what constitutes a cluster; methods may consider distance, density or statistical 

distributions to determine cluster assignment.  

Clustering algorithms are generally either partitional or hierarchical.  Hierarchical 

methods recursively find nested clusters, whereas partitional methods find the clusters 

simultaneously as the data is partitioned (Jain, 2010).  Perhaps the two most frequently 

utilised clustering methods are k-means and hierarchical clustering, which are discussed 

in the following sections. 

4.9.1 K-means Clustering 

K-means clustering is a method of partitioning a dataset into a user-specified number (k) 

of different and non-overlapping clusters.  The term ‘k-means’ was first used by 

Macqueen (1967), but the method was developed by several different researchers dating 

from 1957 (Wu et al., 2007). 

The k-means algorithm requires the number of clusters to be known beforehand – this 

may be determined either through expert knowledge and/or analysis of the data.  The 

first step in the algorithm is to pick the initial k ‘centroids’ or cluster representatives; this 

may be performed by random sampling from the dataset, or other methods such as 

random partition, or pre-clustering on a subset of data.  The algorithm then proceeds by 

alternating between the assignment step and the update step: 

 Assignment step: each record within the dataset is assigned to its ‘nearest’ 

centroid; usually Euclidean distance is used as a measure of distance 

 Update step: once all records are assigned to a cluster, the centre of the cluster is 

recalculated by taking the mean of all records contained in it 



69 
 

The algorithm alternates between the two steps, until the cluster assignments no longer 

change (Wu et al., 2007).  At each step, every data record is assigned to one (and only 

one) cluster. 

The K-means clustering algorithm has limitations: it can be difficult to choose the optimal 

value for k (Jain, 2010); and the algorithm can be sensitive to the initial choice of centroid 

locations, meaning that an optimal solution may not always be found (Wu et al., 2007).  

However, this problem may be alleviated by performing multiple runs with different 

starting centroids.  It also forces every data point into a cluster which may not always be 

desirable, and where the data does not fall into well separated spherical patterns K-

means may not perform as well as other methods (Jain, 2010).  However, despite its 

limitations, it is the most widely utilised clustering algorithm and it can provide a quick, 

efficient and interpretable method for clustering numerical data (Wu et al., 2007). 

4.9.2 Hierarchical Clustering 

An advantage of hierarchical clustering over k-means is that it does not require the 

number of clusters to be known in advance.  Hierarchical clustering attempts to build a 

hierarchy of clusters, and there are generally two methods (Everitt et al., 2011): 

 Agglomerative: Each record starts in its own cluster and the most similar pairs of 

clusters are merged at each step until one large cluster remains.  This is a ‘bottom 

up’ method 

 Divisive: All records start in one cluster and are split at each step until each record 

is in its own cluster.  This is a ‘top down’ method 

In order to decide which clusters should be combined (or divided) at each step, a measure 

of dissimilarity is calculated.  The Euclidean distance between points is most commonly 

calculated where the data is numeric, but generally any suitable distance measure may be 

used.  Where the data is mixed (that is, contains both numeric and categorical attributes) 

Gower’s general coefficient of similarity (J. C. Gower, 1971) may be utilised.  The chosen 

distance measure is then used to calculate a matrix of dissimilarity, with the ‘distance’ 

between each pair of data points calculated by using a linkage criterion.  The linkage 

criterion is used to determine the dissimilarity between all possible pairs of 

clusters/records at each step.  Commonly utilised methods are (Everitt et al., 2011):  
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 Complete Linkage: where clusters consists of a set of points, the distance between 

groups is calculated as the distance between the most distant pair of points 

 Single Linkage: the distance between groups is calculated as the distance between 

the closest pair of points 

 Average Linkage: distance between groups is calculated as the average of 

distances between all pairs of points 

 Median Linkage: distance between groups is calculated as the distance between 

their centroids 

 Ward’s criterion: the two clusters are joined whose combination results in the 

minimum increase in sum of squares 

The hierarchical clustering algorithm, in the agglomerative case, is (James et al., 

2013:395): 

1. Begin with n data objects (which are each considered as a single cluster), and the 

pairwise dissimilarities between all data objects 

2. For 𝑖 = 𝑛, 𝑛 − 1, 𝑛 − 2, … , 2: 

2.1. Consider all pairwise dissimilarities between clusters, choose the two that are 

least dissimilar (i.e. most similar) and fuse them together 

2.2. Calculate the new pairwise dissimilarities for the remaining clusters 

The algorithm generally runs until there is one large cluster (agglomerative), or else each 

cluster contains only one data point (divisive).  This sequence of clustering assignments 

may then be visualised by plotting a dendrogram (Figure 5).  A dendrogram is a visual and 

mathematical representation of the complete clustering procedure (Everitt et al., 2011).  

It plots each merge (or division) in the data, with the root node containing the group of all 

data points, and each leaf node containing a single data point.  Internal nodes each have 

two child nodes representing the groups that were merged/divided to form it.  The height 

of a node is drawn proportional to the dissimilarity of its two child nodes (Everitt et al., 

2011).   

The dendrogram can be utilised to determine any patterns in the data and to decide upon 

the number of clusters.  Whilst there are various methods to determine the optimal 

number of clusters, in practice this may often be decided by considering the dendrogram 

(James et al., 2013:393).  A cut is generally applied horizontally, where the biggest change 

in height occurs (where the dissimilarity was greatest), to partition the data into clusters.  
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In Figure 5, for example, a cut could be made horizontally at a height of 11 to create two 

clusters.  Or where there is prior knowledge of, for example, the existence of three 

clusters in the data, then the cut might be made at a height of 8 to create three clusters. 

 

Figure 5: Example dendrogram, plotted using the R base package ‘mtcars’ sample data 

However, whilst useful to describe the structure of the data clustering, dendrograms can 

be deceptive (Hastie et al., 2009).  There are more formal ways of deciding the optimal 

number of clusters, and as covered in the following section, measures such as the 

Silhouette value, Calinski and Harabasz index, and Goodman and Kruskal’s Gamma 

coefficient provide alternative methods of determining the optimal number of clusters in 

a dataset. 

A disadvantage of hierarchical clustering is that it does not scale well for large datasets 

(Everitt et al., 2011:97).  For example, a dataset with 100,000 records, would have a 

100,000 x 100,000 dissimilarity matrix, which would contain 10 billion data points.  Where 

memory and computing power are an issue, this can make it almost impossible to use for 

very large datasets.  Another disadvantage is that it may impose structure upon a dataset 

where no structure exists (Everitt et al., 2011; James et al., 2013).  The linkage methods 

have various downsides (Everitt et al., 2011:79): single linkage clusters can be too spread 

out as they only need one pair of points to be close (resulting in chaining); complete 

linkage clusters can be too close together, and points within a particular cluster may be 
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closer to points in other clusters than to points in its own.  The average linkage and 

Ward’s method attempt to strike a balance between the single and complete linkage 

methods.  A downside of median-linkage is that it can produce inversions, where a join 

occurs at a level of similarity that is lower than in the previous step (resulting in 

dendrograms that cannot be interpreted). 

However, perhaps the main advantage of hierarchical clustering is that it does not require 

the number of clusters to be known in advance (unlike k-means).  Another advantage is 

that any suitable measure of distance may be used; and as a matrix of dissimilarities or 

distances is computed, the original data is not even required.  Also, mixed data might be 

used; categorical, numerical or binary data would all be suitable provided there was a 

suitable distance metric. 

4.9.3 Evaluation 

Given that clustering is often utilised as an unsupervised learning algorithm, there is often 

no definitive ‘answer’ as to whether a clustering solution is correct.  It is also very difficult 

to formally define what constitutes a cluster (Jain, 2010; Everitt et al., 2011:7).  In general, 

a cluster might be defined in terms of internal cohesion (homogeneity) and external 

isolation (separation); however, as Everitt et al. (2011:7) note, whilst there are various 

definitions ‘no single definition is likely to be sufficient for all situations’.  Jain (2010:652) 

states that ‘a cluster is a subjective entity that is in the eye of the beholder and whose 

significance and interpretation requires domain knowledge’. 

However, there are various metrics that may help to determine the validity of any 

clustering.  Perhaps the simplest method is examining the clusters and the data in order 

to determine if they make sense; this may be aided by a domain expert where necessary.  

If external labels do exist, then the clusters can be compared to those, but this is not 

usually the case.  Clusters obtained by employing different methods may also be 

compared; similar results might indicate robustness (Everitt et al., 2011:257).  Clustering 

upon subsets of the same dataset and then comparing the results can also indicate 

whether genuine patterns have been found (Jain, 2010). 

To compare two sets of data clusterings (or a data clustering to external labels) the Rand 

Index may be used (Rand, 1971).  This is particularly useful since it can be employed 

where the number of clusters differ between the two clusterings.  It calculates the 

proportion of data objects that agree; i.e. the proportion that are in the same cluster in 
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both clusterings, or the proportion that are in different clusters in both clusterings.  It 

takes a value between 0 and 1, where 0 indicates no agreement, and 1 indicates that both 

clusterings are exactly the same.  However, the Rand Index can give large values even 

where the clusters disagree substantially, therefore the Adjusted Rand Index (Hubert and 

Arabie, 1985) corrects the Rand Index in order to account for chance.  It takes a value 

between -1 and +1 and provides a more reliable measure of agreement. 

One can also measure internal cluster quality or cohesion, and many of these measures 

can also be used to determine the optimal number of clusters.  Milligan and Cooper 

(1985) performed a detailed comparison of various procedures for determining the 

number of clusters in a data set, whilst Dimitriadou and Dolnicar (2002) provided a similar 

comparative study for binary data sets.  Milligan and Cooper (1985) found the Calinski 

and Harabasz index (Calinski and Harabasz, 1974) and the criterion proposed by Duda 

(1973) to be the most effective for use with continuous data.   

The Silhouette Coefficient (Rousseeuw, 1987) is another measure to determine how many 

clusters are optimal.  It is particularly useful in that it can be used for data that is not 

continuous (many methods are suitable only for continuous data).  The silhouette plot 

provides a useful visualisation and can indicate the quality of a cluster solution; that is, 

which clusters are well-defined, and which are less clear-cut (Everitt et al., 2011:129).  It 

also provides insight into which individual data objects are well suited to their cluster and 

which are not.  It utilises the dissimilarity matrix and for each data object, 𝑖, a value is 

calculated, 𝑠(𝑖), such that −1 ≤  𝑠(𝑖) ≤ 1, where 𝑠(𝑖) is the silhouette value (Rousseeuw, 

1987). 

The silhouette value, 𝑠(𝑖), compares the separation of each data object, 𝑖, to the 

heterogeneity of the cluster.  Where 𝑠(𝑖) is close to 1 it indicates that the data object is 

well matched to its cluster; that the dissimilarity within 𝑖’s cluster is much smaller than 

the smallest between dissimilarity for 𝑖’s nearest neighbour cluster.  An 𝑠(𝑖) value close 

to -1 indicates the opposite; that 𝑖 is in the wrong cluster and therefore not well matched.  

An 𝑠(𝑖) value close to 0 indicates that it is not clear whether 𝑖 should be in that cluster or 

a neighbour cluster.  The individual 𝑠(𝑖) values may be averaged across the whole cluster 

to provide a value for the cluster; and across the whole data set to provide an overall 

measure of the clustering quality.  This average silhouette width together with silhouette 

plots may then be used to determine the optimal number of clusters (Rousseeuw, 1987).   
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Figure 6 contains the silhouette plot for the hierarchical clustering example that was 

illustrated in Figure 5.  The plot shows the three-cluster solution, as it had the highest 

overall silhouette value.  When viewing the dendrogram alone (Figure 5), two clusters 

may have been chosen over three; however, the overall silhouette value for the three-

cluster solution was higher (0.38 compared to 0.37).  Figure 6 shows the three clusters 

and their individual silhouette values.  Cluster 3 is the most cohesive, with a silhouette 

value of 0.53.  The plot indicates that cluster 2 contains two records that may not be 

ideally suited to it; these are the grey bars that are plotted on the negative side.   

In general, silhouette plots of all cluster solutions, and the silhouette values (individually, 

over each cluster, and over the whole dataset) can be studied in order to decide what the 

optimal clustering is, and to understand how the clusters fit the data. 

 

Figure 6: Example silhouette plot, showing the silhouette values for the 3-cluster solution of the example clustering 
contained in Figure 5, which utilised the R base package ‘mtcars’ sample data 
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Another metric which can also be utilised for categorical data is Goodman and Kruskal’s 

Gamma coefficient (Milligan and Cooper, 1985).  Like the silhouette coefficient, it utilises 

the dissimilarity matrix, and compares within group dissimilarity to each between group 

dissimilarity.  It can take values from -1 to +1, and closer to +1 indicates better cluster 

cohesion.   

4.9.4 Limitations 

Something which may be considered both negative and positive is that there are so many 

clustering algorithms and methods available.  This means that it may be difficult to 

determine which method is the most suitable (Jain, 2010).  However, clustering is often 

considered a part of exploratory data analysis, and in this sense, it is normal to consider 

different methods.  Whilst there is no overall framework to follow in terms of choosing 

which method to use, each method does have its own particular specifications or 

characteristics, and this can aid in decision making.  For instance, k-means is generally 

suitable only for numerical data (that can be represented in Euclidean space), whereas 

hierarchical methods can handle numeric, mixed or binary data.  However, both of these 

methods assign all data into clusters, therefore fuzzy clustering methods might be 

considered if overlapping clusters are required.  Often the data and objective of the 

clustering may dictate the method used.   

Perhaps the biggest downside of many clustering algorithms is that they may impose a 

clustering structure regardless of whether it exists (Jain, 2010; Everitt et al., 2011).  This is 

why, where applicable, visualisation, suitable evaluation metrics and domain knowledge 

must be considered when evaluating the results of any cluster analysis. 

In general, clustering is most effective in lower dimensions; in higher dimensions, many 

clustering algorithms and traditional distance measurements can become less meaningful 

(Gan and Wu, 2004; Moise and Sander, 2008; Kriegel et al., 2009; Sembiring et al., 2010).  

However, it is true that many classical statistical techniques cannot be directly applied to 

high-dimensional data without modification (Everitt et al., 2011:13).  In higher dimensions 

(i.e. data with many attributes) the volume of the data space increases rapidly, meaning 

that data points become increasingly sparse which leads to notions of distance and 

similarity becoming distorted – this is known as ‘the curse of dimensionality’ (a term 

accredited to mathematician Richard E. Bellman (Steinbach et al., 2004)).  One option to 

deal with this problem would be to employ feature selection, or dimensionality reduction 
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techniques, however, clusters generated this way may not fully reflect the original data 

(Gan and Wu, 2004; Bai et al., 2011).  In order to deal with high-dimensional data, 

traditional clustering methods must be adapted; methods such as subspace clustering, 

pattern-based clustering, projected clustering and correlation clustering have been 

developed and this area is an active research field (Kriegel et al., 2009). 

In general, numerical data is well suited to clustering; however, clustering categorical 

data can present problems.  This is because, for categorical data there is often no logical 

measure of distance between points (Gibson et al., 1998; Guha et al., 2000).  In smaller 

data sets with lower dimensions, a similarity or dissimilarity matrix may be computed to 

compare data points, however this may be computationally expensive in higher 

dimensions.  There are algorithms that attempt to deal with these issues, for example: 

the k-modes algorithm replaces means of clusters with modes (Huang, 1997); and ROCK 

which is a hierarchical method that employs links (Guha et al., 2000).  However, as with 

numerical data, clustering high-dimensional categorical data can be a challenge; much of 

the research into high-dimensional clustering focusses only on numerical data (Bai et al., 

2011).  Social science research may be affected by this, since social survey data can often 

be predominantly categorical in nature.  However, algorithms are being developed to deal 

with high-dimensional categorical data (Gan et al., 2006; Bai et al., 2011). 

4.9.5 Summary 

In summary, this section has highlighted that cluster analysis is an exploratory data 

analysis technique that aims to discover unique groups in data.  The exploratory nature 

means that there are many different methods, and no one over-riding technique.  This 

means that clustering results should be evaluated by suitable metrics, domain experts or 

data analysis (such as visualisation), where appropriate.  At its most basic level, the 

discovery of clusters in data can simply provide insight into the data that might otherwise 

have been undiscovered, and it may generate hypotheses for further investigation.  

Another possible use for clusters discovered in data is to aid in regression analysis.  As 

considered in Chapter 2, one cause of regression methods not satisfying assumptions is 

that there may be hidden groups contained in the data; identifying these groups might 

lead to better performing models on subsets of the data (Achen, 2005). 
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4.10 LIMITATIONS OF DATA MINING 

This section considers the more negative aspects broadly associated with the use of data 

mining overall.  The following chapter considers more closely the practical use of data 

mining in the literature and the associated concerns, such as privacy. 

Much like with the more established social science methods, such as regression and 

NHST, where poorly implemented, the results of data mining experiments can be 

unreliable.  Perhaps the biggest mistake that can be made when building models is not 

utilising cross-validation, or a final test (or out of sample) dataset to check a model’s 

performance upon (Domingos, 2012).  Many data mining algorithms have the potential to 

over-fit, therefore results gained only from a training dataset can be vastly different to 

those where new data is used (Kuhn and Johnson, 2013:62).  As datasets get larger and 

larger, the potential for identifying spurious relationships and noise in data increases.  

Utilising some form of model validation on previously unseen data is absolutely 

paramount. 

Another way that data mining can be misused is by the equivalent of p-hacking, that is, 

repeating an experiment until a useful result is achieved, as considered in section 3.3.1.  A 

researcher might change the data and include or exclude attributes until useful results are 

obtained.  Whilst there is not necessarily a problem with this if all experiments are 

documented, it can be a problem where previous results are not mentioned.  This could 

be unintentional and can be quite easy to do without even realising when using modern 

statistical software.  However, this in itself is not a problem unique to data mining. 

Although there are, as previously mentioned in section 4.3, data mining frameworks (such 

as KDD and CRISP-DM), there is still no common overall framework or methodology 

(Fayyad et al., 2003; Yang and Wu, 2006; Džeroski, 2007).  Yang and Wu (2006) make the 

point that data mining research can be seen as too ‘ad hoc’.  This may stem from the fact 

that data mining is a very broad area, integrating a diverse range of techniques from 

many different fields and with differing goals (Wu et al., 2007).  Domingos (2012) points 

out that there are a bewildering variety of algorithms available, with hundreds more 

published each year.  It seems therefore that the field is so large and diverse that one 

overriding framework may be difficult to achieve; this may also be made more difficult by 

the competing interests involved (for example, academics may have very different goals, 

and ethical concerns than businesses might).   
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Another concern is that whilst data mining methods can produce very high accuracy, the 

results are not always understandable (Burrell, 2016; Hofman et al., 2017).  Ensemble 

methods and black box algorithms can be very difficult to interpret, and Ribeiro et al 

(2016) make the point that if a researcher cannot understand the reasons behind a 

prediction, then they may find it difficult to trust (and therefore use) the model.  If high 

predictive accuracy is the main goal, then a lack of interpretability may not be a problem.  

However, since much social science research is about understanding complex 

relationships and mechanisms, a lack of interpretability may be worrying.  Hofman et al. 

(2017) note that predictive accuracy and understanding are not necessarily mutually 

exclusive; it is possible to achieve close to optimal accuracy whilst still gaining insight.  

Hindman (2015) and Hofman et al. (2017) suggest that machine learning models might be 

utilised as a benchmark; to compare against more parsimonious models and indicate 

what is possible (or not).  If a machine learning ensemble achieves a particular benchmark 

accuracy, and, for example, a regression model cannot get close to that benchmark, it 

may indicate that there is a problem with the regression model.  Equally if the machine 

learning model cannot achieve any acceptable level of accuracy, this may indicate that 

the particular problem may not be describable with the available data. 

As considered in previous sections, it is not always clear which methods are better, or 

which algorithm to implement when.  Domingos (2012:86) suggests that there is ‘a lot of 

“folk wisdom” that can be hard to come by, but is crucial for success’.  This may be 

considered true of most disciplines, but it is perhaps compounded in data mining since 

the field is so broad.  The fact that there are so many options could also be considered 

positive, since a researcher may have to actively consider which method is best for the 

particular problem and the data, rather than always using the same method.  There are 

many different software packages available and this may limit the choice of algorithms to 

some extent.  Large commercial packages (such as SPSS) may not always have the most 

recent algorithms, but the ease of use is an advantage, whereas open source software 

environments (such as R or Python) can provide more choice and flexibility but offer a 

steeper learning curve and may be intimidating for those without a programming 

background. 
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4.11 CONCLUSION 

This chapter discussed the history and development of data mining and provided an 

overview of some of the methods that are available.  It explained the methods that are 

utilised in the Case Study chapters, and provides the background for the following 

chapter, which explores the usage of data mining in social science research.  In particular, 

cluster analysis and decision tree methods were explored.  Both may be utilised to 

provide insight into the structure of a dataset; cluster analysis may indicate groups in the 

data, whereas decision tree learning may identify important predictors and interactions.   

Decision tree methods were originally developed by social scientists as they felt that 

more established regression methods were not suitable for the types of problems and the 

complex, inter-related data that social scientists often dealt with.  As considered in 

Chapter 2, the problems of satisfying the strict statistical assumptions of regression still 

exist, and both cluster analysis and decision tree learning may be able to provide a useful 

complement to regression methods – by identifying hidden groups, interactions and 

important predictors in data.   

The importance of cross-validation, or testing models on unseen (out of sample) data, 

was considered.  This avoids overfitting and may increase the reliability of models; it is 

one of the most important aspects of any data mining project.  Yet, as considered in 

section 3.3.2, model validation in this way is utilised infrequently in social science 

research; if it were utilised more frequently it may help to identify problems and could 

provide an extra layer of credibility to research. 

The more negative aspects of data mining were considered; in particular, the fact that 

there are so many algorithms, and no over-riding framework of how to do things may 

mean that it is difficult to know which method is best.  And where implemented poorly, 

as with any method, the results may not be reliable.  Another concern is that whilst some 

data mining methods can produce very high predictive accuracy, the results are not 

always understandable.  However, in general, the results of single decision trees and 

cluster analysis can be easier to interpret and therefore these methods may be more 

useful to social scientists.  Overall, where implemented correctly, data mining methods 

may be able to provide useful explanatory and predictive power.    
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5 DATA MINING IN SOCIAL SCIENCE RESEARCH 

5.1 INTRODUCTION 

Building upon the previous chapter which introduced the data mining process and 

covered some of the basic methods and algorithms employed in data mining, this chapter 

describes the literature surrounding the existing uses of data mining in social science 

research.  The growing field of Computational Social Science is considered, and also how 

Big Data in general might affect social science research.  Given the available literature, 

and considering the previous chapters, this chapter concludes with a list of the different 

ways that machine learning methods might be utilised to enhance social science research. 

5.2 COMPUTATIONAL SOCIAL SCIENCE 

Data mining methods do not appear to have been widely adopted by the social sciences; 

there is little evidence of its use in many subject areas (Scime and Murray, 2013; Veltri, 

2017; Yarkoni and Westfall, 2017).  However, there are some examples of the use of data 

mining, and perhaps the most obvious is the growing field of Computation Social Science 

(CSS).  CSS is an interdisciplinary field that aims to harness computational techniques to 

investigate social science problems.  It utilises methods such as modelling, simulation, 

social network analysis, social geographic information systems (GIS) and largescale 

analysis of social ‘big data’.  Cioffi-Revilla (2010) cites its beginnings in the 1960s when 

social scientists began using computers to analyse their data, however the field has really 

only come into prominence within the past decade. 

In 2009 a group of social and computer scientists published a paper which highlighted 

that the data-driven field of CSS had been slow to emerge (Lazer et al., 2009).  They made 

the point that other fields such as biology and physics had benefitted massively from 

modern techniques of collecting and analysing massive amounts of data, but that the 

social sciences so far had not.  They also warned that although CSS was already occurring, 

it was being performed almost exclusively by governmental agencies such as the USA’s 

National Security Agency and large companies such as Google and Facebook – and if 

academics did not act soon there was a real danger that CSS might become the exclusive 

domain of private companies.  Similarly, Savage and Burrows (2007) also suggested that 

where once social scientists had been the champion of innovative methods such as 
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sample surveys and interviews, such methods were becoming dated and unlikely to 

sustain future research; to remain relevant social scientists must explore this new social 

data and the methods required to deal with it. 

One way to encourage greater data and analytical skills is by building inter-disciplinary 

research groups (Lazer et al., 2009; Watts, 2013).  In the past few years, far more groups 

of this kind have been formed (Borge-Holthoefer et al., 2016).  Social scientists may 

generally have little experience with large datasets but they do have deep subject 

knowledge, whereas data scientists have technical capabilities but may have little training 

in inferring causal effects, therefore there should be an integral role for social scientists in 

such collaborations (Watts, 2013; Grimmer, 2015).  However, despite the rising interest in 

CSS, Giles (2012) noted in 2012 that there was still a general lack of awareness of the 

potential of data; little data-driven work was being published in the top social science 

journals, and computer science conferences that focussed on social issues did not attract 

many social scientists.  Similarly, Watts (Watts, 2013) noted that whilst thousands of CSS 

papers have been published (on a variety of topics, such as, social networks and financial 

crises), relatively few are published in the traditional social science journals; the result of 

this is that CSS has ‘effectively evolved in isolation from the rest of social science, largely 

ignoring much of what social scientists have to say about the same topics, and largely 

being ignored by them in return’.  Watts (2013) makes the point that one of the main 

challenges for CSS is to ensure engagement between the communities, so that CSS does 

not simply become a subfield of Computer (or Data) Science but plays a part in asking 

important social science questions. 

The field of CSS is developing rapidly (Borge-Holthoefer et al., 2016), and the publication 

of articles is increasing, although Heiberger and Riebling (2016) make the point that 

compared to overall social science research endeavour, these still seem very few.  Whilst 

the development of CSS was perhaps precipitated by the increasing amount of data 

available, it is not solely about the data (King, 2016), it is about developing methods that 

will gain new insight from this data.  Conte et al (2012:327) state that the ‘traditional 

tools of social sciences would at most scratch the surface … whereas new tools can shed 

light onto social behaviour from totally different angles’.  Similarly, Veltri (2017:5) 

suggests that this new data allows the introduction of algorithmic and machine learning 

methods which bear ‘considerable potential for the social scientist’. 
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One example of the utilisation of CSS is in the integration of case-based modelling with 

complex systems research.  Case-based modelling, which traditionally was not 

computational, is an established social science technique that conducts in-depth, 

idiographic, comparative analyses of cases and their configurations (Rihoux and Ragin, 

2009; Castellani and Rajaram, 2012).  More recently, it has been utilised as a 

computational technique to model complex systems (Castellani and Rajaram, 2012).  This 

stemmed from Byrne’s (2009) suggestion that complex systems should be treated as 

cases since they have similar characteristics.  The Sociology and Complexity Science 

(SACS) Toolkit (Castellani and Hafferty, 2009) is an example of a case-based model that 

was designed for studying complex systems.  It models a complex system as a set of n-

dimensional vectors (or cases), which researchers may compare and contrast; these are 

then condensed and clustered to create a low-dimensional model of a complex system’s 

structure and dynamics over time and/or space (Castellani and Rajaram, 2012).  An 

important aspect of the toolkit is that it clusters the cases; Uprichard (2009) suggests that 

cluster analysis is itself a case-based method, in that, in general each case (or record) is 

assigned to a cluster on a case-by-case basis (according to whether the particular case 

possesses some level of similarity) and that cluster analysis can be a useful method to 

better understand cases.  

5.3 BIG DATA 

Big Data is a term that appears to have many meanings and no set definition (Gray et al., 

2015; Kitchin and McArdle, 2016), but generally it is data which satisfies the ‘3Vs’, which 

are: Volume, Velocity and Variety (McAfee and Brynjolfsson, 2012).  Big data is generally 

large and rapidly growing, it may be unstructured and can take many forms (for example, 

images, signals, emails, logs, etc.).  Much like the usage of the term ‘data mining’, the 

term ‘big data’ is often used as a catch-all, and may indicate the data as well as the 

methods used on it. 

Whilst this thesis is focussed more closely on the use of ‘smaller’ data in social science 

research, this section is included as many of the methods utilised on ‘big’ data may also 

be utilised on ‘small’ data, therefore many of the challenges and problems associated 

with bigger data may still be relevant for small data.  Also, researchers may work on both 

‘big’ and ‘small’ data; there may be much overlap of the two.  It is possible to combine 

many small datasets to make ‘big’ datasets (Gray et al., 2015), and it may often be 
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desirable to work on small subsets of ‘big’ data (Welles, 2014; King, 2016).  Hindman 

(2015) suggests that machine learning methods developed for big data may actually 

provide the biggest gains (in terms of quantifying uncertainty and predictions) when 

utilised on smaller datasets. 

In 2008, Anderson (2008) suggested that ‘big data’ was changing the way analysis was 

performed, and that faced with massive data, theory was no longer important.  He argued 

that researchers would no longer need models or hypotheses because such large data 

could simply be analysed for patterns.  This was perhaps a deliberately provocative article 

which has prompted much discussion (Chang et al., 2014; Cowls and Schroeder, 2015; 

Mazzocchi, 2015).  Chang et al. (2014) state that no matter the amount of data available 

theory should still be central to research; they suggest an iterative approach where big 

data might be utilised to suggest new theory which can then be examined.  Mazzocchi 

(2015) suggests that analysis of big data might inform us of an effect, but that the aim of 

most researchers is still to explore why that effect occurs.  In this sense, big data might be 

seen as an informational tool, rather than explanatory.  However, Shah et al (2015) 

suggest that big data cannot replace or make more traditional methods (such as surveys, 

lab experiments, content analysis and clinical trials) irrelevant. 

Cowls and Schroeder (2015) suggest it would be almost impossible to analyse data 

without some kind of hypothesis, or theory; that is, whilst one could trawl big data 

looking for correlations, it would still need to be placed into some kind of context, and 

this requires theory.  Without even the most basic theory how would we know when 

something is interesting (it may only be interesting in light of previous research, for 

instance).  However, Chang et al (2014) suggest that Anderson (2008) did have a valid 

point on some level; they use the example of Google Adwords (it matches users to 

advertisements) which utilises only data and algorithms, and is extremely profitable yet 

does not require understanding of the underlying theory.  It would seem that it may 

depend upon the goal of big data research as to the degree of importance placed upon 

theory.  Academics, and in particular social scientists, are interested in causality and 

understanding the underlying mechanisms, therefore theory is particularly important.  

Whereas, from a commercial perspective, if profitable insights or decisions can be gained 

from big data then perhaps this may not always necessitate deeper understanding.   
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One issue to consider when analysing ‘big data’ is that it is ‘found’ data; it often was not 

collected for the specific purpose it is used for and therefore data collection did not 

follow the strict rules of a statistically designed experiment (McFarland and McFarland, 

2015).  This means it may contain many biases, and the sheer size of ‘big data’ can lead 

researchers to believe it represents the population when it is actually a very biased 

sample (McFarland and McFarland, 2015).  As ‘big’ as it is, there will still be 

subpopulations missing from the data, and conversely, sections of the population that are 

over-represented.  For instance, there may be proportionally less data collected from the 

elderly, the homeless, or those living in poverty throughout the world (without mobile 

phones or bank accounts, for example), and those individuals who may who choose to 

deliberately stay offline (e.g. terrorists or criminals).  There is also likely to be 

proportionally more data collected from the younger, internet connected generation.  

However, this argument could also be applied to smaller survey data, which is itself often 

biased.  But in this case researchers arguably have more experience and awareness of 

dealing with neglected groups; they know the data is biased.  Giles (2012) suggests that 

since social networks such as Facebook are increasingly obtaining more users, then there 

is an argument that they are gradually reducing the bias; also, if biases are understood, 

then results can be adjusted to account for this in the same way as with survey data.  

Shah et al. (2015) make the point that even though social media data may not represent 

the entire population it does not mean that the data is without research value in 

understanding that population. 

Another issue to consider is that researchers still need to learn the limits of big data.  For 

instance, how individuals behave online might not be a true reflection of how they think 

or feel offline – they might lie online (for example, by clicking ‘I voted’, when they did not) 

which will complicate any results (Mann, 2016).  One could argue that this is also an issue 

for social surveys, but this is not a direct comparison, since when an individual completes 

a survey they know it might be used for research, but when an individual, for example, 

‘likes’ something online they do not necessarily consider that their data may be analysed 

in future.  Analysis could also be biased by online ‘bots’ that, for example, tweet on mass 

levels; it may be difficult in some cases to distinguish humans from bots (Shah et al., 

2015). 
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The danger of using traditional statistical methods on such large datasets that easily meet 

traditional sample size requirements, is that they may lead to ‘precisely inaccurate results 

that hide biases in the data but are easily overlooked due to the enhanced significance of 

the results created by the data size’ (McFarland and McFarland, 2015:1).  That is, such 

large data can produce many extremely significant results, but they may simply be a 

reflection of the sample size and biases in the data.  These problems will persist where 

researchers continue to focus on using traditional statistical methods on big data.  

McFarland and McFarland (2015) suggest that data mining methods such as clustering 

may control for some of the biases (by identifying homogeneous groups to perform 

analysis on) and help improve accuracy of results. 

A consideration for academic researchers is that, in terms of ethics, the individuals who 

the data pertains to are unlikely to be aware of how their data is used.  Privacy and 

ethical concerns may limit what researchers can do, and it is likely that agreements will 

need to be made between industry and academia to safeguard privacy (Lazer et al., 

2009).  There have been various breaches of data privacy over the last few years, and 

researchers have shown it to be possible to identify individuals out of anonymised data; 

the sheer quantity of data being collected makes identification more likely (Barbaro and 

Zeller Jr, 2006; Lazer et al., 2009; Gymrek et al., 2013).  Kosinski et al (2013) showed it 

was possible to accurately identify specific traits about people (ethnicity, religious views, 

sexuality, intelligence) directly from their Facebook likes. 

In terms of replication, the use of big data could present problems.  Where largescale 

datasets are analysed it may be impractical for a researcher to download the data and 

store it locally; analysis is likely to be performed remotely (i.e. on data stored in the 

cloud).  If this data is rapidly changing and growing, then it later may not be possible to 

link back to specific data used at a specific point in time (Crosas et al., 2015).  It is likely 

therefore, that there will be a need to develop methods to universally identify and 

archive data, and also techniques for academics to cite specific sections of data. 

An advantage of the collection of so much data is that it may be used to prove or disprove 

theories for where before there was simply not enough data available (Giles, 2012).  Big 

data might be particularly useful in terms of identifying and studying minority groups.  A 

researcher can now focus on very narrow groups of people who otherwise might not have 

been included in data in the past (but are now because the data sample is so big), or who 
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would simply have been lost in the noise.  Welles (2014:2) suggests that ‘by choosing to 

make Big Data small, we can rectify historical admissions and biases in social science 

research and build better, more comprehensive, bigger understandings of human 

behaviour’. 

Another consideration in terms of data, is that it is not just new data that can be utilised 

by data mining techniques.  There are various projects to digitise historical data, such as, 

Google’s book digitization project, the proceedings of the Old Bailey (dating from 1674), 

and records of the Atlantic slave trade.  Bearman (2015) suggests that, if directed towards 

answering important questions and used in context such old ‘big data’ might revolutionise 

historical social science.  Although he cautions that since many social science historians 

‘accounts rest on narrative sentences’, the usefulness for them may still be limited 

(Bearman, 2015:1). 

Data collection used to be expensive and limited (for example, sample surveys and 

interviews), but newer methods allow the possibility of largescale data collection that 

may be refined over time depending upon trends and patterns, and the inclusion of data 

that might add more context, such as location, time, movement, etc. (Giles, 2012; Chang 

et al., 2014).  And all for much less time and expense.  Yet, social survey data should still 

play an integral role in social science research; Gray et al. (2015) argue that where 

considering long-term attitudinal trends or patterns, the most reliable data is generally 

derived from national surveys, as big data cannot usually be created retrospectively.  

Surveys can provide a greater level of detail not necessarily available from big data; in 

particular, around how people think.  The traditional longitudinal datasets can still 

provide useful information about trends over time and historical processes, and in terms 

of refining their data, large surveys manage to refine their questions every year and still 

remain relevant (Gray et al., 2015).  For example, surveys such as Understanding Society, 

the Crime Survey for England and Wales, and The British Social Attitudes Survey are 

updated regularly. 

It is possible to join many smaller datasets to make ‘bigger’ datasets; Gray et al. (2015) 

joined longitudinal survey datasets to aggregate statistics (such as, unemployment and 

inflation rates, and crime data).  The data may be linked via time periods and categories 

of respondent (such as age, ethnicity, income, location, etc.).  Whilst data such as this still 

may not be ‘big’ in terms of the number of records, it is ‘big’ in that it is wide (that is, it 
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may have many, potentially hundreds or thousands of, attributes).  It is also possible to 

deploy more conventional social surveys online, meaning there is (theoretically) no limit 

to the amount, or type, of respondents (Burrows and Savage, 2014).  This may mean that 

the data is biased in terms of respondents, which would need to be considered, but it also 

allows for extra detail such as timestamps and location, and potential for further research 

such as considering how the survey was shared on social media (for example, via the 

analysis of tweets) (Burrows and Savage, 2014).  

Cave (2016) argues that more data is not always better.  The nature of big data means 

that it may contain a lot of noise and redundancy.  Therefore, there is still a need for the 

‘smaller’ datasets there were once synonymous with social science.  These datasets, 

where much thought, time and research were devoted to their content, may well still 

contain more complex and valuable information, depending upon the research question.  

And many of the methods applied to big data may also be applied to smaller data.  Scime 

and Murray (2013) argue that data mining techniques are well suited to analysing social 

science data such as surveys, which over the years may have become broader, more 

complex and with more missing values.  Data mining techniques are particularly useful in 

identifying relationships and reducing dimensionality.  Given the amount of money spent 

on social science surveys and research, social scientists are ‘ethically obligated to conduct 

comprehensive analysis of their data’ and data mining is an ideal tool for this (Scime and 

Murray, 2013:1). 

Given the various advantages and disadvantages of ‘big’ and ‘small’ data, it would seem 

that utilising both may well be useful in some cases.  Generating patterns and models on 

one set and using another for context.  Most of all, if social scientists do not participate in 

the world of big data, there is a danger that their voice will no longer be heard; data 

scientists rather than social scientists will be the ones generating social theory (Watts, 

2013; Burrows and Savage, 2014). 

5.3.1 Data Brokers 

One example of the use of large-scale commercial social data mining and analysis is found 

in database marketing companies, such as Acxiom and Experian, who have collated 

massive collections of consumer information.  They are often referred to as Data Brokers, 

and they capture, gather and combine data from multiple sources in order to repackage it 

and then rent or sell it (Kitchin, 2014).  They collect data such as surveys, consumer 
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purchase information, financial information (such as credit records), voter registration, 

court records, mobile phone locational data, property data, web browsing records and 

social media information (Singer, 2012b; Federal Trade Commission, 2014; Kitchin, 2014).  

This combination of individual sources of data is used to compile detailed profiles of an 

individual’s life.  Data is generally repackaged and sold to commercial companies for 

purposes such as targeted marketing, identity verification, or fraud detection (Federal 

Trade Commission, 2014).  It is also sold between the various data brokering companies.  

Since this data is not collected directly from the individual, most people are unaware that 

it is being collected and used by data brokers (Federal Trade Commission, 2014); in 

general, most people are unaware of the existence of data brokers (Singer, 2012b). 

Data brokerage companies are storing and utilising massive collections of information to 

build ever more complete profiles of individuals.  Acxiom claims to have information on 

approximately 700 million individuals worldwide, and ‘over 3000 propensities for nearly 

every U.S. consumer’ (Acxiom Corporation, 2014:8).  This data can be used for predictive 

modelling, or to derive groupings (Federal Trade Commission, 2014; Kitchin, 2014).  In the 

UK, Acxiom assigns individuals to 55 different clusters, combining details such as life-

stage, affluence, age and digital activity (Acxiom, 2017).  Examples of particular cluster 

names include ‘thrifty pensioners’, ‘parents under pressure’, and ‘going places’.  

However, in terms of clustering techniques, it is not clear how scientific their methods are 

as there is little technical detail of how the clusters were derived. 

There are concerns that decisions made using this data might be utilised in such a way 

that individuals could be disadvantaged, or discriminated against (Singer, 2012a; Federal 

Trade Commission, 2014; Steel, 2014).  Data held by data brokers is used to provide 

information for companies who, for example, score credit applications, or evaluate 

insurance applications.  If data brokers make incorrect inferences from their data about 

sensitive subjects such as an individuals’ ethnicity, age, income or likely health conditions, 

this could potentially have negative consequences.  Based on these inferences insurance 

premiums might be higher, credit could be denied, or a job application refused, for 

example.  Given this, the quality of the data held by data brokerage companies is very 

important; inaccurate data could have a profound effect upon an individual.  Given the 

overall lack of transparency around data brokers, an individual may not be aware that 

incorrect information is held about them, and even if they are, there is no clear 
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instruction on how it might be corrected (Federal Trade Commission, 2014).  Data brokers 

are also largely unregulated (Singer, 2012a).  In terms of security, there have been 

breaches and hacks over the years (Bambauer, 2013; Thielman, 2015), but there is little 

information on the effect of these.  Any breach is worrying given the amount of 

information held by these companies.   

Such large collections of information should be of major interest to social scientists, yet 

little academic research appears to have focussed on data brokers (Kitchin, 2014).  Given 

the massive amount of diverse information they possess, and the fact that they are 

classifying, targeting and predicting individuals’ behaviour, it is surprising that there has 

been so little academic interest in their methods.  Both from the point of view of 

providing a critical assessment (for example: are their methods ethical? Is the data stored 

securely?), to a discussion on the methods used and the possibility of academics 

accessing this kind of data for their own research.  However, it is likely that the main 

reason for the lack of research is the overall dearth of available information.   

Given the lack of information, it is not clear whether it would be possible for academics to 

access this data, but there would likely be ethical concerns if access was granted: for an 

academic study, informed consent must generally be provided, and in the case of this 

type of data, consent is vague (if provided at all).  Private companies that hold data for 

commercial gain may have no motivation to share, and will also have very different 

ethical concerns to academia.  Whatever the reason for the lack of academic research, 

the danger is that the insights gained from mining this type of data may remain solely in 

the commercial sector.   

5.4 DATA MINING IN SOCIAL SCIENCE RESEARCH LITERATURE 

Whilst there is not a large body of work, there are examples of the use of data mining 

within social science research.  The following section highlights that there are small 

pockets of work in certain areas, other less connected examples, and a small field called 

Educational Data Mining which appears to be growing. 

5.4.1 Educational Data Mining 

There are a few subject areas where data mining has been embraced, and the small but 

emerging field of Educational Data Mining (EDM) is one such example.  Universities and 

educational institutions have the opportunity to collect massive amounts of data.  
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Examples include, logging student (and teacher) progress and grades, records of how 

students interact with online learning environments and social networks, as well as the 

collection of data pertaining to the management of institutions, such as the allocation of 

resources and scheduling of classes.  This is largescale data and the potential to use data 

mining techniques to optimise and explore it is huge.  EDM aims to explore educational 

data and to develop methods to better understand students and the environments that 

they learn in (Romero and Ventura, 2007; Peña-Ayala, 2014).   

Weerts and Ronca (2009) used classification trees (CART) to help predict donations from 

alumni, providing an exploration of the use of trees for this purpose, and concluding that, 

whilst there were limitations, the trees provided an informative description of alumni 

donors and non-donors.  It utilised historical data on donations; how much was donated 

(if anything), coupled with demographic data and information about the alums 

experience at the university.  The study suggested that levels of donation were related to 

factors such as household income, religious background, the particular degree that was 

obtained and how the alum kept in touch with the university.  Most importantly, the 

characteristic which most distinguished between those who were likely to give and those 

who were not, was the perception of whether the university needed their help.  The 

practical consequence of this was advising the university that any future communication 

with alumni should clearly articulate why their help was needed.  A limitation of the study 

was that it did not perform well for large donors; the authors noted that they did not 

utilise a cost matrix as it was outside the scope of the study.  However, large donors were 

rare (accounting for less than 1% of donors overall) and, as considered previously, 

decision trees can struggle with rare values.  A cost matrix may have helped, however the 

authors also considered that it may have made sense to analyse large donors separately.  

Overall, the decision trees were viewed as much more intuitive and easier to understand 

than logistic regression, particularly for non-technical users, and the study provided new 

insight into the motives for donations.   

Thomas and Galambos (2004) also explored the use of decision trees (CHAID) to 

determine factors of student satisfaction, comparing the method to regression (both 

forward and backward stepwise regression was utilised).  Understanding what 

contributes to student satisfaction is important as it is used to assess the effectiveness of 

an institution and informs decision making.  The data consisted of a student satisfaction 
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survey that had been administered to a representative sample of undergraduate 

students.  The regression models identified 17 attributes (out of 140) that were strong 

predictors of satisfaction, and the decision tree broadly identified similar attributes.  The 

authors note that where the decision tree was particularly useful was in identifying 

different predictors for different groups of students (for instance, students with high 

intellectual growth had different predictors than those with no growth).  However, whilst 

the CHAID tree illustrated the heterogeneity of the students, the authors note that the 

results were complex and might be difficult to present to a non-technical audience.  

Whilst both methods produced broadly similar results, the authors highlighted that each 

method provided a different perspective, and that using both methods together led to 

much greater insight than regression alone would have provided.   

Further examples of the different uses of EDM include: explorations of the use of decision 

trees and clustering to explain student success and failure (Salazar et al., 2004); using 

association rules to identify weaker students for remedial classes (Ma et al., 2000); and 

comparing different algorithms in order to identify students in danger of dropping out of 

education (Er, 2012; Manhães et al., 2015).  Salazar et al (2004) used a large data sample 

(over 20000 records) to identify various rules that might indicate good academic 

performance, and whether a university will retain students.  However, some of the 

methods were vague; the authors mention identifying homogeneous subsets but do not 

detail how this was performed, and there is also little detail of the clustering which was 

then performed on those subsets.  Ma et al. (2000), state only the size of their test 

dataset (153 records), therefore it was unclear how large their overall sample was; but 

the study demonstrated that association rule mining performed better than the current 

method (a simple threshold) of identifying students likely to fail their A-levels.  Identifying 

these students was important (so that they could receive extra tutoring), however it was 

costly to identify too many students (who might not all need help), yet important to 

identify those who genuinely needed help.  Both Er (2012) and Manhães et al. (2015) 

utilised relatively small datasets (respectvely, consisting of 625 and 402 records) that 

consisted of only time-varying data (such as grades and attendance) in an attempt to 

identify students who were likely to fail academically.  Both studies compared various 

machine learning methods: Manhães et al. (2015) noted that the less interpretable 

methods (random forests, neural networks, etc.) had the highest accuracy, but found 
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Naïve Bayes to be particularly useful because it was interpretable yet still had high 

accuracy; Er (2012) found the instance-based algorithm K-Star to be most accurate. 

Overall, it appears that there is a lack of quality research in some of the EDM literature to 

date; Johnson (2012) states that there are major methodological flaws in some studies, 

such as not using test data sets for validation, and reporting vague accuracy rates.  

Johnson (2012) also notes that some studies are quick to attribute causation, for example 

Delavari et al. (2008) suggest that a lecturer’s marital status had an effect upon their 

students’ performance; this may well be spurious.  However, whilst cautioning against the 

risks of EDM, such as ethical issues and uncritically adopting data mining results, Johnson 

(2012) acknowledges that there may be overall advantages when performed properly. 

Whilst there is a small core of EDM literature, what is striking is that many articles seem 

to focus solely on the machine learning element.  That is, they approach the problems 

from what might be seen as the technical angle, for example, by considering which 

algorithm is more accurate, or which method might perform better, see (Kotsiantis et al., 

2004; Agarwal et al., 2012; Er, 2012; Acharya and Sinha, 2014; Manhães et al., 2015).  The 

data-driven nature of these studies means that there is little focus on any underlying 

social mechanisms.  However, Peña-Ayala (2014) make the point that many EDM 

researchers are data miners, and it would seem that much of the EDM literature to date is 

performed by data miners who are exploring new educational data, rather than social 

scientists who have adopted data mining methods in order to help explain educational 

social phenomena.  As considered in the previous section, it is possible that deeper 

insight might be gained from this data if social scientists, who may have more experience 

of causal effects, were also involved in analysis.  

5.4.2 Other Research Literature 

There is not a coherent or large body of social science research that utilises data mining 

methods, but there are examples of their usage.  In particular, the use of decision trees 

and random forests, both for exploratory data analysis and prediction, have proven 

valuable.   

Gutierrez and Leroy (2009), Murray et al. (2009), and Chen et al. (2010) employed 

decision tree learning to identify important predictors and provide an alternative to 

regression methods.  Gutierrez and Leroy (2009) used data from the USA’s National Crime 

Victimization Survey (38494 records) to identify predictors that influence whether or not 
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a crime is reported.  They argued that traditional statistical techniques (such as 

regression) result in a limited view of data, and that decision trees which can deal with 

interactions and complex data, allow the inclusion of a wider variety of predictors, and 

can therefore provide new insight.  Their decision trees were more accurate than baseline 

accuracy (by 10%) and more accurate than a tree built utilising only those predictors 

recommended in the literature (by 3%).  Their research identified several factors in 

reporting crime (pertaining to time lost and medical care) that had not previously been 

investigated and therefore warranted further research.  However, they noted that a 

shortcoming of their approach was that utilising many attributes meant that the decision 

trees could quickly become complex and difficult to interpret. 

Chen et al. (2010) utilised decision trees (C5.0) on a longitudinal dataset (206 records, 

which followed children from birth and measured development and behaviour) in order 

to identify the risk factors of parenting stress.  The study identified different groups of 

parents and different predictors for the varying levels of stress.  For instance, the main 

risk factor identified for parents in the high stress group was child development, whereas 

for those with lower stress levels the main risk factor was child behaviour.  The authors 

also performed analysis using regression, but found the decision tree analysis more 

informative.  However, the study did not mention any model validation, and the dataset 

was very small, so it may be interesting to know how well these results would generalise 

to other data.  Murray et al. (2009) utilised data from the American National Election 

Studies (5757 records) survey, and CHAID decision trees to determine survey questions 

that indicate those likely to vote in presidential elections.  The study utilised domain 

experts to identify appropriate predictors for the model.  Whilst the results were 

somewhat obvious (the top predictor was a survey question on whether an individual 

intended to vote), the model also indicated that demographic attributes were not useful 

predictors, which was in contrast to other research literature. 

Ruger et al. (2004) utilised decision trees to provide insight into the conceptualization of 

Supreme Court decision making.  Prior to every case argued during the 2002 term the 

authors obtained independent predictions from legal specialists and used a decision tree 

model to also make predictions of the outcomes.  The decision tree model was trained on 

data from all 628 cases decided by the court prior to the October 2002 term (there was 

no overlap with the test data).  The study compared the performance of the decision 
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trees with those of the legal experts in predicting US Supreme Court decisions.  The 

authors expected the legal experts to be more successful and did not believe that a model 

which did not take into account legal text or doctrine could outperform legal experts.  

However, overall the model predicted 75% of the cases correctly, whereas the experts 

collectively predicted 59% correctly.  Despite disregarding specific law and the facts of 

each case, the model was more accurate; it successfully identified patterns that humans 

did not recognise.  The legal experts were more successful than the model in predicting 

specific areas of law, and also in predicting certain individual justice’s votes.  The authors 

found that by comparing predictive performances, overall insight was provided into both 

the data and the differing processes of human and machine decision making. 

Berk and Bleich (2013) and Muchlinski et al. (2016) compare random forests to logistic 

regression and found random forests to outperform the regression models in terms of 

forecasting.  Muchlinski et al. (2016) argue that, compared to logistic regression, random 

forests are more able to accurately predict rare events (in this case, civil wars).  The study 

utilised data (7141 records) dating from 1945 to 2000 which measured annually for each 

country whether a civil war onset occurred, together with various attributes pertaining to 

subjects such as economic performance, demographics, geography and political situation.  

The predictive performance of three different types of logistic regression model (classic, 

Firth rare events and L1-regularized) and random forests were compared.  All three 

logistic regression models failed to predict any civil war onset in the out of sample data; 

the random forest model correctly predicted 9 out of 20.  Interestingly, some of the 

attributes considered in the literature to strongly influence civil war onset (for example, 

anocracy and democracy) had little predictive power, when considering the variable 

importance scores of the random forest.  The authors note that the unbalanced, non-

linear nature of the data meant that random forests performed better than the 

regression models.  Berk and Bleich (2013) also re-iterate this point – given a complex, 

perhaps unbalanced, and non-linear decision boundary random forests generally have 

superior predictive performance; however, where the true decision boundary is simple, 

methods such as logistic regression compare favourably. 

Berk et al. (2016) utilised random forests in order to predict whether or not to release 

domestic violence offenders awaiting court appearances.  The dataset consisted of 28646 

records detailing arraignment cases (from a large metropolitan area in the USA for the 
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years 2007-2011) where an offender faced domestic violence charges.  If the individuals 

were not incarcerated, post-arraignment, one of three outcomes were possible within 

two years: a domestic violence arrest associated with a physical injury; a domestic 

violence arrest not associated with a physical injury; or no arrests for domestic violence.  

Under current practice around 20% of those released after an arraignment for domestic 

violence were arrested for a new domestic violence offense within two years.  The 

authors suggest their model would cut failure rates (i.e. releasing offenders that go on to 

re-offend) by half, that is down to 10% (and this was shown on out of sample data).  The 

model incorporated asymmetric costs to ensure that, where the model forecasted an 

offender to be a good risk, this was based on strong statistical evidence.  One issue with 

any model such as this, is that not all crimes are reported, however one can only work 

with the available data.  The authors also note that an area worth exploring is whether 

the model might generalise for individuals who were detained until the next court 

appearance, or who were incarcerated after arraignment; they were not included in the 

study as they had no opportunity to reoffend.  It might be interesting to know if a model 

could identify individuals who were less likely to re-offend, and therefore for whom 

alternatives to incarceration might be considered (in order to save money without 

compromising safety). 

Keely and Tan (2008), Kuroki (2015) and Piscopo et al. (2015) utilised random forests to 

identify important predictors.  Kuroki (2015) determined important risk factors for 

suicidal behaviour among Filipino Americans, using data from the Filipino American 

Community Epidemiological Study (624 records) conducted in 1998-1999.  87 individuals 

were suicide ideators, and 39% of these had attempted suicide.  Where predicting suicide 

ideation the model found the most important predictors to be the presence of depressive 

disorders and substance use disorders.  However, these had little predictive power for 

predicting suicide attempts; the most important predictors in this case were number of 

family members and family conflict.  The authors note that they chose the random forest 

method in order to examine relationships in the data without the need for formulating 

hypotheses a priori.  Piscopo et al. (2015) used UK census 2011 and governmental data to 

predict sense of community and participation in English local authorities, and identified 

predictors which had not previously been considered in the literature, suggesting further 

research.   
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Keely and Tan (2008) utilised data from the General Social Survey for the years 1978-2000 

to predict various attributes related to income distribution (such as, whether respondents 

think the government should reduce the income differences between the rich and poor).  

The study used tree-based methods (CART and random forests) in order to identify 

preferences across different identity groups.  It found that, in general, views on income 

redistribution were heterogeneous according to race and other socioeconomic factors; 

views on welfare were heterogeneous primarily according to race.  The authors note that 

the results raised theoretical challenges, as existing theory did not completely explain 

them; this implied important areas for future research.  The study made little mention of 

error rates, although it stated they were above 60% for the random forests (and even 

higher for the CART models); this seems quite high and may itself warrant future research 

into the generalisability of the results. 

Artificial Neural Networks (ANNs) do not appear to have been frequently utilised in social 

science research; this may be because they are generally more difficult to understand 

than tree-based methods.  However, Grossi et al. (2012) used ANNs to analyse factors 

associated with well-being.  The study utilised data from a representative sample of 1500 

Italian citizens who completed surveys on psychological well-being and participation in 

cultural activities.  The particular ANN method that was utilised (AutoCM) allowed a 

mapping of the associations and strength of connections between attributes.  The study 

found presence of disease and cultural access to be the most important predictors of 

psychological well-being.  The authors argue that the ability of data mining methods to 

capture non-linear interactions and discover hidden effects (that would otherwise be 

overlooked by more traditional techniques), provides value. 

Stambuk et al. (2007) utilised Kohonen Self-Organising Maps (SOM), Principal Component 

Analysis (PCA) and hierarchical clustering to analyse religious motivation in Croatia.  The 

study utilised a survey on religious beliefs taken by 473 Croatian citizens, and identified 

three clusters; the different methods confirmed the existence of the three clusters.  Ang 

and Goh (2013) compared logistic regression to data mining methods (decision trees, 

ANNs and Support Vector Machines) for predicting juvenile offending.  The study data 

sample consisted of 2899 records, pertaining to Singaporean adolescents, containing 

biographic data and an attribute detailing whether or not they had previously been 

charged with a criminal offence (5.8% had).  All four methods performed well, with high 
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accuracy rates (greater than 94%) on test data, although the ANN (97.2%) and decision 

tree (96.6%) were most accurate.  The methods identified risk factors for juvenile 

offending that were consistent with the theoretical and empirical literature, although 

there was some disagreement between methods, which would warrant further research.  

The authors suggest that data mining methods are a useful tool to complement existing 

statistical methods and are viable for use in forensic psychology. 

Census data is widely utilised in social science research, and employing data mining 

methods on this complex data may have the potential to uncover interesting patterns, yet 

there appears to be little research in this area.  Chang and Shyue (2009), and Chertov and 

Aleksandrova (2013) perform data mining upon Census data, with each suggesting it is a 

useful technique.  Chang and Shyue (2009) utilised association rule mining, k-means 

clustering and decision tree learning on Taiwan’s 2000 Census data, focusing on three 

groups (single parent families, elderly people over 65, and aboriginal groups).  The 

authors noted that they were not equipped to interpret the results (as they were not 

sociologists), and that the data mining methods had been used to identify many 

associations and patterns, but that domain experts should be utilised in order to interpret 

the results.  Chertov and Aleksandrova (2013) utilised cluster analysis on Californian 

census 2000 data (610369 records) to identify different groups and the factors which 

influence the decision to have a baby.  However, whilst providing some insight into the 

data, both studies did not particularly conclude anything that seemed useful.  As 

considered in previous sections, and by Chang and Shyue (2009), it is possible that 

research such as this might benefit from the inclusion of a social scientist to examine the 

data and results from a different perspective. 

Assi et al. (2012) utilise clustering (the BIRCH algorithm) to determine nine different 

groupings of people, in terms of well-being and quality of life in Europe.  The study 

employed data from the European Social Survey (Waves 1-4), utilising a sub-sample (of 

approximately 2436 individuals) for each of the 24 European countries, and clustered on 

11 attributes.  The nine clusters where characterised by different levels of well-being and 

quality of life, and when compared across countries the proportion of individuals in 

particular clusters had much variation (for instance, individuals from Nordic countries had 

a higher chance of belonging to clusters characterised by high well-being than Eastern 

European ones did).  The authors suggested that where previous studies have been 
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limited in terms of the dimensionality of data, clustering allowed them to preserve as 

much information as possible.  Jiang et al. (2012) clustered daily patterns of human 

activities (in the Chicago metropolitan area), identifying different groups of people and 

reinforcing previous research in the field.  The data consisted of 30000 individuals who 

completed a travel survey detailing their activities by time of day.  K-means clustering and 

principal component analysis was utilised; 8 clusters of people were identified using 

weekday data (such as ‘early-bird workers’, and the ‘stay-at-home’) and 7 clusters of 

people were identified using weekend data (such as ‘afternoon adventurers’, and the 

‘afternoon stay-at-home’).  Many of these groups had different demographic 

breakdowns, and the authors suggest that understanding daily travel patterns may have 

practical uses such as managing congestion. 

More generally, cluster analysis may be applied to aid in the detection of interactions; if 

there are interactions among attributes, the data may naturally cluster into separate 

groups around these (Melamed et al., 2013).  If clustering is performed, the cluster 

identification can be added to the overall model as a dummy variable and this can be 

used in order to identify the interaction effects (Melamed et al., 2013).  As considered in 

Chapter 2, when satisfying regression assumptions, it can be difficult to identify 

interactions and hidden groups in data.  Achen (2005) suggests that first identifying 

meaningful groups in data may lead to more coherent regression analyses on the 

individual groups; and McFarland and McFarland (2015:3) also suggest that clustering 

datasets into homogeneous groups can lead to less skewed analysis on those individual 

groups, because analysis of an entire dataset can produce results that are swayed by 

whichever ‘mixture of populations is predominant at the time’. 

Duncan et al. (2008) and Lalayants et al. (2011) advocate the use of data mining to inform 

child welfare and child protection.  They compiled databases of child welfare information 

which were utilised for exploratory data analysis purposes (rather than predictive 

purposes).  Lalayants et al. (2011) advocate clinical data mining, which incorporates not 

only individual clinical records, but also available agency information (such as routinely 

collected data for monitoring and administration).  The authors state that child welfare 

practitioners found the combined data useful, and they suggest an advantage of a 

multidisciplinary data mining project such as this is that it allows closer collaboration 

between researchers and practitioners, and a greater concentration on keeping 
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consistent and complete data records.  Duncan et al. (2008) suggest the advantages of 

compiling and sharing their data on a public website, was the ability to view patterns and 

extract valuable knowledge, which may lead to improvements in policy and practice in 

child welfare services. 

More generally, Breiman (2001b), Shmueli (2010), Ward et al. (2010), Hill and Jones 

(2014) and Hofman (2017) suggest that using predictive methods can enhance social 

science research, although they caution against focussing solely on prediction; predictive 

methods should be used together with existing explanatory methods.  Indeed, much of 

the reviewed literature in this section has suggested that data mining methods should be 

considered alongside the more traditional explanatory methods, not as a direct 

replacement.  Breiman (2001b:204) suggests that the best available solution should be 

utilised for the particular problem, whether that be predictive or explanatory; considering 

only traditional social science explanatory methods ‘imposes an a priori straight jacket 

that restricts the ability of statisticians to deal with a wide range of statistical problems’.   

One reason that predictive methods are not widely utilised in social science research is 

that prediction is often considered unscientific (Shmueli, 2010).  Yet prediction is standard 

and uncontroversial in the physical sciences (Hofman et al., 2017).  As identified by 

Shmueli (2010:292), predictive methods have various scientific functions: they can help 

uncover ‘new causal mechanisms and lead to the generation of new hypotheses’ (perhaps 

where employed on large, complex datasets that are difficult to hypothesise); suggest 

improvements to existing explanatory models (by capturing underlying complex patterns 

in data); provide a ‘reality check’ by assessing the distance between theory and practice; 

provide a simple way to compare competing theories by examining the predictive power 

of the explanatory model of each; and provide a benchmark level of accuracy.  More 

simply, assessing the predictive accuracy of a model provides a way of quantifying its 

uncertainty (Hindman, 2015). 

As considered in section 3.2.3, attributes identified as statistically significant do not 

necessarily make good predictors; and explanatory power can also be wrongly conflated 

with predictive power (Shmueli, 2010; Ward et al., 2010).  For instance, Shmueli 

(2010:304) lists examples of research studies that considered the 𝑅2 value to represent 

predictive power, when it does not.  Greater understanding of predictive methods, and a 

consideration of both types of methods may lead to better understanding.  Whilst 
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explanatory power does not necessarily imply good predictive power there should be 

some correlation between the two (Shmueli, 2010; Hindman, 2015).  Shmueli (2010:305–

6) suggests that, even where prediction is not the goal, studies should report the 

predictive power of a model alongside its explanatory power; similarly, whilst a predictive 

model may not require causal explanation to be effective, reporting its relation to theory 

is important for theory building.  Providing this extra information about models, where 

possible, would allow comparison between differing models and theories, and potentially 

provide more insight into the modelling process.  Hofman et al. (2017:488) make the 

point that ‘prediction and explanation should be viewed as complements, not substitutes, 

in the pursuit of social scientific knowledge’. 

Hindman (2015) suggests that, what is even more fundamental for social scientists than 

consideration of the various algorithms available, is machine learning’s focus on model 

checking.  That is, assessing the performance of a model by cross-validation or a holdout 

dataset; not just on the data that the model was built on.  This focus means that machine 

learning methods are more robust and thus more likely to replicate than traditional 

methods (Hindman, 2015).   

This section has highlighted that machine learning methods appear to be utilised most 

frequently in two ways: either as an exploratory method (for example, via clustering or 

utilising decision trees to identify predictors); or for prediction.  A mixture of both may 

also be applied.  In terms of exploratory data analysis, the literature illustrated that 

cluster analysis can be utilised to identify groups in data, and that decision trees and 

random forests can also identify groups as well as important (or not) predictors and 

interactions.  This exploratory analysis may aid in informing current models, or in 

generating new hypotheses or areas of research.  Tree-based methods are flexible in that 

they may be utilised for both explanatory and predictive purposes.  In particular decision 

trees can provide an intuitive model that may be simple to understand for non-technical 

users; however, decision trees can also be very complex and may not always be easy to 

interpret.  Equally, random forests were shown to outperform (in terms of predictive 

accuracy) other methods such as logistic regression, particularly for complex, non-linear, 

or unbalanced data; but can also be difficult to interpret (although variable importance 

scores provide information).  
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5.5 WAYS THAT MACHINE LEARNING METHODS MIGHT BE UTILISED 

IN SOCIAL SCIENCE RESEARCH 

Considering the previous sections, overall, there are many reasons that social scientists 

might seek to utilise machine learning methods: 

 Data clustering: The clusters themselves might be of interest, or models may 

perform better on the separate clusters rather than as one overall model 

 Decisions trees and random forests can be used to identify important predictors, 

interactions, and explore the structure of the data.  Decision trees, in particular, 

are generally easy to interpret, however random forests and ensemble methods 

are less interpretable 

 Dealing with categorical data: much social science data is categorical (particularly 

social surveys), and attributes that are not numeric can sometimes be difficult to 

deal with.  Variable selection, in particular, can be difficult.  However, many 

machine learning methods can efficiently deal with categorical, high-dimensional 

data 

 Prediction: although prediction is not often the focus of social science research, 

sometimes predictions are desirable.  Predictive models can also be useful in 

providing insight into data and can provide a benchmark of what is possible.  

There are many suitable machine learning methods, such as ensemble methods, 

or Artificial Neural Networks and Random Forests. 

 Validation of models: one of the most important elements of machine learning is 

the absolute necessity of validating models (either by cross-validation or the use 

of a test data set), and there would appear to be no reason that these methods 

cannot be adopted by social scientists in order to develop more robust models 

 Data mining allows the use of a wide variety of data.  There is less need to be 

concerned with sample sizes and weights etc., and many algorithms are non-

parametric, so satisfying strict statistical assumptions is often not required 

5.6 CONCLUSION 

This chapter considered the usage of data mining (or machine learning) methods in the 

social sciences.  Whilst machine learning methods have been utilised for social science 

research, the literature reveals that this usage is not widespread, and there are gaps in 
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the literature.  Whilst it is difficult to prove an absence of research, the fact that it was 

possible to identify only two defined subject areas (computational social science and 

educational data mining) that utilise these methods would indicate this absence of 

research. 

The literature underlined that by not exploring machine learning and more data-driven 

methods, social scientists are in danger of producing research that is less relevant to the 

wider research community.  In the future, those responsible for generating social theory 

and interesting research may be those who are proficient in machine learning techniques 

(such as computer or data scientists), as they are more equipped to take advantage of 

new ‘big’ datasets and utilise the full range of methods that can be applied to them.  Yet 

they may lack the expert knowledge that social scientists have in terms of understanding 

findings, or in generating relevant research questions; that is why it is vital that social 

scientists be involved.   

However, where machine learning methods have been utilised in social science research, 

the general consensus was that these methods provided a useful complement to existing, 

more established, methods such as regression.  The non-parametric, flexible nature of 

machine learning methods means that problems can be considered from a different 

perspective, without the need to satisfy strict statistical assumptions.  
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6 CASE STUDY PART A: CLUSTERING TROUBLED 

FAMILIES 

6.1 INTRODUCTION 

This chapter focuses on exploring social data that is messy and incomplete, as opposed to 

social survey data which is generally complete and well coded.  In particular, it explores 

what can be accomplished where some prior domain knowledge is provided.  A large 

database of messy, but somewhat interlinked data, was obtained from an English City 

Council (ECC) who wished to remain anonymous.  The data pertained to families in the 

City’s Troubled Families Programme and covered a wide range of events, such as social 

services records, details of criminal offences, school records and more.  In many cases the 

scope of the data was the whole city, however some records covered only families or 

individuals specifically in the Troubled Families Programme.  ECC felt that there were 

specific groups or clusters of families within the data, and that a method of identifying 

them was required.  They also felt that where a family lived might be a factor in the type 

of problems, or the potential outcome of any treatment received.  Identifying these 

clusters of families might provide a greater understanding of the types of families that 

exist, and also enable more targeted treatment. 

This chapter provides a brief description of the Troubled Families Programme, and the 

various issues surrounding it; also provided is a description of the database, data 

preparation and the other sources of data that were utilised.  The clustering process is 

described together with a description of the clusters discovered.  Visualisations are 

provided to highlight various aspects of the clusters and also to provide a geographical 

picture of where the Troubled Families (TF) lived.  Decision tree learning was utilised to 

provide an understandable description of the cluster rules and place them into a more 

usable context.  Machine learning methods were also utilised in order to determine 

whether the data pertaining to a family’s location was a relevant factor in a family’s 

cluster assignment. 

In addition to analysing the data, identifying the different groups of TF that exist within it, 

and considering the geographical location of the families, this chapter builds the 

groundwork for the chapter following this.  Chapter 7 (Part 2) analyses the outcome for 



104 
 

the families and considers the events that occurred in the year following their 

introduction to the TF programme in order to determine the possible effect of 

intervention upon the families. 

6.1.1 The Troubled Families Programme 

The data for this case study was obtained from an English City Council (ECC) as part of a 

project to explore the use of data mining techniques on their complex database.  In 

particular, the data focused on the Troubled Families scheme introduced by the UK 

Government in 2011.  Then Prime Minister David Cameron made a speech in December 

2011 citing that in the previous year an estimated £9 billion had been spent on just 

120,000 families through welfare and state intervention (Cameron, 2011).  These families 

had multiple problems, such as crime, unemployment, anti-social behaviour and school 

truancy.  The Government promised to invest £448 million to turn around the lives of 

those 120,000 families by the end of Parliament (2015), and therefore reduce the amount 

of public money spent on them. 

One of the core aims of the programme was the desire to shift public expenditure from a 

reactive model based around responding to acute needs, towards a system of earlier 

intervention whereby problems might be addressed before they escalate (Day et al., 

2016).  Rather than families dealing with multiple agencies as previously, under the new 

scheme each Troubled Family (TF) would be assigned a dedicated key worker who would 

get to know them personally and coordinate any treatment.  Each family’s needs would 

be considered as a whole (as opposed to a group of individuals), and practical support 

provided using a ‘persistent, assertive and challenging approach’ (Department for 

Communities and Local Government, 2012:6).  Families would therefore receive specific 

targeted intervention aimed at their specific problems.   

Phase One ran from 2012-2015 and claimed to have ‘turned around’ 99% of families; 

Phase Two was launched in 2015, with an extra £920 million allocated to the budget, and 

aimed to help an additional 400,000 families (Bate, 2016). 

The TF programme runs only in England, with each local authority assuming control over 

their own programme.  Some Local Authorities refer to it by names other than the TF 

Programme.  Local authorities were responsible for recruiting their own families, and 

were initially provided with an indicative number of how many TF were likely to be in 
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their area (Communities and Local Government, 2012).  To be identified as TF, the 

following criteria were considered: 

 Have members involved in crime or anti-social behaviour 

 Have children not in school (i.e. persistent unauthorised absence above 15%, or 

exclusions, or in a Pupil Referral Unit) 

 Have an adult on out of work benefits 

 Cause high costs to the public purse (i.e. local discretion) 

All families who met the first three criteria should automatically have been included.  

Local discretion was used to filter families who might meet two of the criteria but were 

still a cause for concern.  Local discretion could include families with children on a Child 

Protection Plan, or members with mental health problems, drug and alcohol misuse, 

domestic abuse, long-term ill health, persistent police call-outs, or under-18 pregnancies 

(Communities and Local Government, 2012). 

The programme operated on a payment by results system, whereby Local authorities 

could receive up to £4000 for each family.  Local authorities received an initial payment 

for each family recruited, followed by a further payment once a family had been ‘turned 

around’.  Each local authority self-declared their results, with payments issued on the 

basis of this, although it was stated that there may be a small number of ‘spot checks’ 

(Communities and Local Government, 2012). 

A family was considered to be turned around where: 

 each child had fewer than 3 exclusions, and less than 15% absence; there was a 

60% reduction in anti-social behaviour for the whole family in the last 6 months; 

and the offending rate for all minors was reduced by at least 33% in the last 6 

months 

or 

 At least one adult had moved off out-of-work benefits and into continuous 

employment in the last 6 months 

Phase Two of the programme relaxed and expanded the criteria for a TF; each family had 

to meet two of the following (Department for Communities and Local Government, 

2015): 

 Parents or children involved in crime or anti-social behaviour 
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 Children who have not been attending school regularly 

 Children who need help (i.e. subject to a Child Protection Plan or who are 

identified as in need) 

 Adults out of work or at risk of financial exclusion, or young people at risk of 

worklessness 

 Affected by domestic violence and abuse 

 Parents or children with a range of health problems 

And the criteria for success was also relaxed; a family was turned around where they had 

either: 

 Achieved significant and sustained progress, compared with all their problems at 

the point of engagement 

Or 

 An adult in the family had moved into continuous employment and off benefits 

6.1.2 Intervention Treatment 

In the case of ECC, families could be referred for treatment by multiple services.  For 

instance, a referral might come from a social worker, or perhaps a police officer or 

teacher who came into contact with the family and thought that they might qualify.  

Sometimes this initial referral might result in no further action, as the family may not 

meet the criteria (or they may not want to participate in the programme).  Where a 

family did meet the criteria, there were five main intervention treatment types for TF 

([Author withheld], 2017): 

 Assertive Outreach (AO): works with families whose needs are at risk of becoming 

complex, attempting to look at the root cause of issues and challenge behavioural 

patterns.  Usually a six-month sequenced programme of support 

 Complex Families Parenting Team (CFPT): delivers parenting interventions to 

families with a range of complex needs, usually via weekly classes and lasting 

between 8 and 20 weeks.  Caters for families with children aged between 2 and 16 

 Family Intervention Project (FIP): aimed at the most challenging families, key 

workers work intensively with families (visiting them three to four times a week) 

and implement a bespoke method of multi-agency interventions 
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 Families First (FF): works with families whose children are on the edge of care and 

attempt to keep them together where safe 

 Family in Need Intervention Service (FINIS): specifically targets families with 

Children In Need  

Families may be referred for, and receive, more than one type of intervention depending 

upon their needs, and these might run concurrently or over different time periods.  

Interventions that were completed were classified as ‘Planned Endings’, those where 

interventions did not succeed were classed as ‘Unplanned Endings’. 

6.1.3 Questions Raised About the TF Programme 

Since its inception, there have been various criticisms and questions asked of the TF 

programme nationally.  The overall number of TF identified initially (120,000) was likely to 

be inaccurate, given that the estimate was based on out of date information and used 

different metrics to those used for the TF criteria (Levitas, 2012).  Indeed, it may have 

underestimated the actual amount of TF (Full Fact, 2012).   

The use of the terminology ‘Troubled Family’ may also be questionable, given that for 

example, under Phase Two of the programme a family could qualify simply because an 

adult with long-term health problems was on out of work benefits.  This indicates that 

some families may not be ‘Troubled’ at all, or at least not in the way that the Government 

first implied (Anti-social and criminal behaviour, school absence, etc.).  Crossley (2018) 

notes that many families participating in the programme were not aware that they were 

labelled as ‘Troubled’, or that they had been ‘turned around’.  It is not possible to know 

therefore if these families perceived that their lives had been ‘turned around’ (Wills et al., 

2017).  Another consideration is that labelling the families as ‘Troubled’ stigmatises them 

(Shildrick et al., 2016).  Hayden and Jenkins (2014) make the point that different 

terminology is used by other countries in the UK running similar programmes, with their 

focus concentrating on reducing poverty and supporting complex families, rather than the 

‘troubled’ nature of the families. 

The initial estimated cost of £9 billion to the taxpayer has also come under scrutiny with 

suggestions it may be inaccurate, although with little detail as to how the government 

exactly calculated the number this is difficult to confirm (Full Fact, 2012; Crossley, 2015).  

The Government’s claim of having ‘turned around’ 99% of TF in Phase One was viewed 

with some disbelief.  The majority of local authorities reported 100% success levels, yet 
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social policies rarely have almost perfect results, especially when dealing with people who 

have such complex needs (Bawden, 2015; Crossley, 2015).  Such a high figure may simply 

be due to setting the threshold for success too low; the practice of letting Local 

Authorities judge and reward their own performance may also play a part. The use of the 

terminology ‘turned around’ may have added to the disbelief around the success rates; it 

has been criticised as misleading as it implies that a family’s long-term social problems 

have been solved, whereas in reality the phrase was indicative of short-term 

improvements (House of Commons Committee of Public Accounts, 2016). 

In August 2016, there was much press interest around a news story that the final 

evaluation report into the TF programme, written by independent analysts, had been 

suppressed by the Government.  According to the leaked report, the programme had so 

far had no measurable impact (Cook, 2016; Swinford, 2016).  The report was finally 

released, almost a year late, in October 2016 with the authors concluding that they ‘were 

unable to find consistent evidence that the programme had any significant or systematic 

impact’ across the range of outcomes (employment, child welfare, school attendance, 

etc.) (National Institute of Economic and Social Research, 2016:1).  However, there were 

some improvements in the lives of families, but they could not be definitely attributed to 

the programme.  It was also acknowledged that there were some limitations with the 

evaluation; there were data limitations in some areas, and it may have been too early to 

realistically evaluate the progress of some families (after 12 to 18 months).  Also, the 

point was made that there was wide variation in how local authorities interpreted the 

programme; some performed better than others, and the averaging effect of the overall 

analysis may have hidden this (Day et al., 2016). 

However, the report did find some positive outcomes: local authorities were found to 

have transformed their systems and processes in dealing with these families; there was 

an improvement in local data management systems due to the auditing requirements of 

the programme; and there were positive changes in practice for assertive key working.  

Most notably, the report stated that there was a statistically significant impact on how 

families felt, with many feeling more positive about their future after participation. 

However, justification of the TF programme is not the focus of this case study.  As a by-

product of the TF programme, detailed databases of information were collected and 

compiled about the TF (and by extension, those who might qualify as TF).  This provided a 



109 
 

unique dataset, rich with information, yet messy.  The focus was on providing a data-

driven exploration of the data; looking for patterns and clusters within the data and 

exploring the use of machine learning techniques upon it. 

6.2 METHODOLOGY 

The aim of this case study was to investigate and identify whether there were any 

clusters, or similar groups of TF, within the data.  Consultation with the ECC indicated that 

they believed that different types of families existed and that it would be useful to 

identify them.  In doing so, it might provide greater clarity on the types of families that 

exist, and the different types of problems and needs that might be associated with these 

groups.  It might also enable resources to be directed more purposefully at the identified 

types of families.  The identification of these groups would allow analysis on a group level 

(as opposed to the global level) which might enable better detection of changes or 

patterns that were not detected for the whole group (i.e. any averaging effect might be 

reduced).  The Government definition of a TF was also compared to the actual data in 

order to consider whether the families matched those guidelines.  The ECC also felt that 

geographical location, that is, where a family lived, might have been a factor in 

determining both whether a family was ‘Troubled’ and also in the success of any 

intervention treatment, therefore ‘place-based’ geographical data was analysed to 

determine any effect. 

Initially, the data obtained from ECC was loaded into a MySQL database where it was 

cleansed, tidied and linked together into a usable format.  Exploratory data analysis was 

performed to look for any patterns, or problems within the data.  There was frequent 

contact with the ECC to query any issues.  Hierarchical clustering was performed to 

identify any clusters of families within the data.  This was performed using the R 

programming language.  Families were clustered on the events (such as offences, social 

care, school absence, etc.) that occurred in the year prior to their entry into the TF 

programme; a years’ worth of events was thought sufficient to understand the type of 

issues that a family had before they joined the programme. 

Decision tree learning was utilised to derive rules and provide further insight into the 

cluster assignments.  An analysis was performed using GIS (Geographic Information 

System) to link families to various geographical data and determine whether cluster 
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assignment had any link to geographical or demographic elements.  Machine learning 

methods, together with regression, were also utilised in order to determine whether the 

geographical data might have any link to the cluster assignment of each family. 

6.2.1 Data Description 

The data was obtained from the ECC in March 2016 and was stored in a MySQL database 

on a secure server in a secure location at Manchester Metropolitan University (MMU).  

The data was accessible only to individuals approved by MMU and the ECC, under secure 

conditions, and only for research purposes.  The ECC accumulated the data under a series 

of specific agreements with the various authorities concerned, under the condition that it 

was used for research purposes and not for any specific intervention decisions.  Names 

and addresses were anonymised by the ECC, however, where available, the post code of 

each family/individual was retained, so that the data might be analysed from a 

geographical point of view.  In the anonymization process performed by the ECC all 

Identification codes were changed (every individual and family had a unique ID); most 

importantly, these changes were consistent within the database so that the data could 

still be linked together (for example, if unique ID A1234 was changed to B6789 this 

change was performed for every occurrence of A1234 consistently throughout the 

database). 

The database contained 265 different tables, with each describing different information 

(e.g. one table for school absence, one for criminal offences, one for personal 

information, etc.).  Each table covered a different timeframe.  The majority of the data 

covered the whole of the population of the city, rather than just those from TF. 

All records in a table had a Unique ID, which could be used to link them to records in 

other tables.  For instance, offences could be linked to people, and people could be linked 

to families.  The links were made via one large table which contained all link 

combinations.  Despite there being 265 tables in the database, many were empty or not 

useful.  Table 3 lists details of the most useful tables in the database. 
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Table 3: Details of useful Information contained in the ECC database 

Table Information Number of 
records 

Absence School attendance records for all ECC areas 
Dating from the start of the 2010/11 term to the end of Term 1 in 
the 2015/2016 term 

1418508 

Anti-Social 
Behaviour (ASB) 
Legal Actions 

Anti-social behaviour legal actions for all ECC areas 
Dating from 2000 (although the majority date from 2009 onwards) 
up to Feb 2015.  Known to be missing data 

1393 

Children Missing 
Education (CME) 

Children Missing Education for all ECC areas 
Dating from May 2007 up to April 2016.  Likely to have missing 
data 

1567 

Department for 
Work and Pensions 
(DWP) Benefits 

Benefit claims for individuals who were in TF (or those who were 
associated with or suspected of qualifying for TF)  
Claims date from 1984 up to Dec 2015, but data is not historical 
(i.e. those no longer receiving benefits are excluded) 

44273 

School Exclusions School exclusions for all ECC areas 
Dating from Sept 2009 up to Nov 2015 

26363 

Free School Meals Free School Meals claims for all ECC areas 
Data is not historical; it lists only those receiving on the check date, 
which ranges from Jan to Dec 2015 

12900 

Housing Benefit Housing benefit claims for all ECC areas 
Data is not historical; it lists only those receiving on the check date, 
which ranges from Jan to Dec 2015 

45358 

Intervention Event Records of Interventions for TF.  Contains the date of referral, type 
and status of intervention 
Dating from June 2009 up to April 2016 

6032 

Children In Need 
(CIN) Event 

Children in Need events across all ECC areas 
Dating from 1983 up to July 2015 

111337 

Child Protection 
Plan (CPP) Event 

Records of Child Protection Plans for all ECC areas 
Dating from May 1989 up to Dec 2015 

11219 

Drug/Alcohol (DA) 
Event 

Drug Alcohol events across all ECC areas, from social care records 
Dating from Sep 2000 (although the majority date from 2008 
onwards) up to Jan 2016 

4233 

Looked After 
Children (LAC) 
Event 

Looked After Children records for all ECC areas 
Dating from 1983 up to Nov 2015 

22148 

Not in Employment, 
Education or 
Training (NEET) 

Records for those Not in Education, Employment or Training across 
all ECC areas 
Dating from April 2010 up to April 2016 

11276 

Offence Criminal offences for all ECC areas  
Dating from Jan 2010 up to Dec 2015 

93871 

Person Contains records for all people in the table, such as date of birth, 
gender, and various IDs (such as Student and Social care) 

617944 

Person to Address 
Via Event 

Links people to addresses (post codes) via various events 
(offences, CIN events, etc.) 
Dating from 1932 up to 2029 (there were some inconsistencies) 

459247 

Pupil Referral Unit 
(PRU) 

Records of individuals in Pupil Referral Units 
Dating from June 2008 up to April 2016. Appears to be incomplete 

1337 

 

There were 617944 individual people contained in the database.  The quality of the data 

varied; many tables were obtained from different agencies and some may not have been 

well or consistently maintained.  The database contained duplicate people, that is, two or 

more records pertaining to the same person.  Records identified as duplicate were 
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merged into one.  Duplicates were considered to be records that shared one or more of 

the same ID (such as a social care ID, or student ID).  2855 duplicate records were 

removed (merged), leaving 615089 individuals in the database.  It was notable that whilst 

people could be duplicated, events were not; for instance, where two records were 

merged into one, this did not mean that the events linked to those records were counted 

twice.  There was no evidence of duplicate events within the database; each criminal 

offence, or school exclusion, for example, was reported only once, regardless of the 

individual it was attributed to. 

There were inconsistencies within the data; dates of birth ranged from 1798 to 2049, 

implying some mistakes in a small minority of the records.  However, the majority 

appeared to be credible.  The data also contained a date of death; 62646 individuals were 

deceased.  However, this data may not have been up to date, and the number of 

deceased was likely to be higher (given that 4347 individuals in the database were aged 

100 or over on the 1st Jan 2016).  Table 4 contains a brief description of the individuals 

contained in the database. 

Table 4: Brief description of all individuals contained in the ECC database 

Number of people 615089 

Gender Female: 46%, Male: 44%, Unknown:11% 

Age 
Average age = 36 
42% of individuals were aged under 25  
(calculated on 01/01/2016) 

Location 65% could be linked to a postcode 

Troubled Families 2% belonged to a TF 

Students 16% had a student ID (are or were at school) 

Social Care 68% had a social care ID; only 14% link to any social care events 

Events 
77% linked to no events (offences, school absence/exclusion, social care, 
etc.) 

 

The other sources of data utilised were: 

 OFSTED report data for all schools in the ECC area, obtained from (Department for 

Education, 2016).  Where possible, the OFSTED rating of the school each Troubled 

Family child attended during the year before first intervention was linked to the 

child.  This was to consider whether there was any pattern related to the types of 

school that TF children attended 

 Office for National Statistics post code data (Office for National Statistics, 2016) 

which was used to link post codes to various geographical markers (Output Areas, 
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etc.).  Whilst the ECC database contained post codes, in order to link these to 

other geographical data, markers such as the Output Area classifications were 

required 

 2011 Census data for the ECC area, obtained from (UK Data Service, 2011) and 

utilised to link various demographic data to geographical markers (Output Areas, 

etc.).  The Census data was linked in order to consider whether there were any 

patterns surrounding the characteristics of where a family lived 

 Police data for the ECC area, detailing crime and anti-social behaviour incidents 

linked to geographical markers (Home Office, 2016).  Whilst the ECC data 

contained information on crimes, it consisted of listing individuals who had 

committed crimes (and the type of crime), but not the location of crimes; the 

Police data was obtained to provide information on where crimes were occurring  

 

6.2.2 Troubled Families Data 

Individuals who were involved in the Troubled Families programme each had a Troubled 

Family Identification Number (TF ID), which was utilised to identify TF members from the 

data for analysis.  Each unique family had a different TF ID; therefore, members of the 

same family could easily be grouped together.  13111 individuals had a TF ID, belonging to 

4160 unique families.  However, the presence of a TF ID did not confirm that a family 

actually participated in the TF programme or received any intervention treatment.  

Families were assigned a TF ID when they were referred for treatment, sometimes these 

referrals were found to be inappropriate (and therefore no treatment was received), or 

else families may have chosen not to participate in the programme.  Therefore, to 

confirm that a family actually participated in the programme, the record of Intervention 

Events was consulted.  Of the 4160 families with a TF ID, 2555 families (comprising 8447 

individuals) actually received any treatment. 

In order to cluster on just the events that happened in the year preceding entry into the 

TF programme, data was compiled that counted all events occurring in the year prior to a 

family’s first intervention date.  The first intervention date was taken as a family’s date of 

entry into the TF programme.  Where a family had multiple intervention referrals, the 

first date that resulted in treatment was used.  If a family was referred at an earlier date, 

but did not receive treatment at this time, this date was discounted.  It was felt that a 
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years’ worth of data provided a sufficient amount of time to build up a picture of events 

surrounding that family’s life before intervention. 

Given the various timeframes of events data in the database, and to ensure that a years’ 

worth of data existed before the first intervention date, only TF with a first intervention 

date between 1st August 2011 and 31st July 2015 were included for analysis.  This allowed 

a window of four years for analysis and included 2155 families.  All events that it was 

possible to count were counted (for example, school absence, criminal offences, social 

care events, benefits data, etc.).  Since most events linked to the individual, rather than to 

the family, all events were counted on an individual level and then summed together for 

each family (where appropriate).  For each family, a count was made of how many people 

were in the family, how many were of each gender and how many were children and 

adults.  An individual aged under 18 on the date of first intervention was counted as a 

child.  Table 5 details the family composition, in terms of how many adults and children 

there were in each family.   

Table 5: Number of troubled families with each configuration of adults and children, using ECC TF data 

 Number of adults in family 

Number of children in 
family ↓ 

0 1 2 3 4 5 6 
Total 

0 0 252 77 21 7 1 0 358 

1 72 325 209 29 9 3 1 648 

2 66 251 193 34 10 0 2 556 

3 26 159 128 21 6 0 1 341 

4 14 59 53 9 4 1 1 141 

5 3 25 26 6 0 0 0 60 

6 1 11 17 2 1 0 0 32 

7 0 7 7 1 1 0 0 16 

8 0 0 0 0 0 0 0 0 

9 0 1 0 0 0 0 0 1 

10 0 1 0 0 0 0 0 1 

Total 182 1091 710 123 38 5 5  

 

The most common configuration for families was 1 adult and 1 child (325 or 15% of 

families).  182 (8%) families had no adult (consisted of only children), and of these 72 

(40%) consisted of a single child.  Conversely, 358 (17%) families had no child (consisted 

of only adults).  The most common configuration of adults was one adult in a family (1091 

families, or 51%).  Of those single-adult families, 886 (81%) of the adults were female.  

Table 6 contains an overview of the TF data, together with the percentage of families who 

had each of the particular events occur in the year prior to first intervention. 
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Table 6: Overview of TF demographics and events occurring in the year prior to intervention, using ECC data 

Number of TF 2155 Families, comprising 7057 individuals 

Family Size 
Range: 1 – 11, average 3 members 
320 (15%) families consisted of only one member 

Gender 
Female: 53.7%, Male: 45.9%, unknown: 0.5% 
442 (21%) families were all female; 198 (9%) families all male 

School Events 

Any school absence: 41% of families 
Absence greater than 15%: 7% of families 
Exclusions: 12% of families 
Children Missing Education: 0.1% of families 
Pupil Referral Unit: 2% 
Not in Education, Employment or Training: 4% 

Social Care Events 

Children in Need: 41% of families 
Child Protection Plans: 17% of families 
Looked After Children: 8% of families 
Drug/Alcohol Events: 2% of families 

Criminal Offences 
Committed by Adults: 12% of families 
Committed by Children: 8% of families 
Classed as domestic abuse: 3% of families 

Anti-Social Behaviour 
Legal Actions 

0.5% of families 
(There was missing data here, so it is unlikely to be accurate) 

Benefits 

43% of families receiving DWP benefits 
49% of families receiving Free School Meals 
67% of families receiving Housing Benefit 
(Benefits data was not historical, therefore may not be accurate) 

Derived attributes 
8% of families with Domestic Abuse issues 
3% of families with Drug and/or Alcohol issues 

 

Whilst Table 6 provides the detail of individual events, in more general terms the 

following were true: 

 State benefits: 72% of TF received some form of state benefits (DWP benefits, 

housing benefit or free school meals, though as will be considered in the 

following section, this data may not be complete) 

 Child safeguarding: 50% of TF had child safeguarding events in the year prior to 

first intervention (Children In Need, Child Protection or Looked After Child events) 

 Education: 44% of TF had events pertaining to education in the year prior to first 

intervention (school absence, exclusion, children missing education, children in a 

pupil referral unit, or members who were not in education, employment or 

training) 

 Crime/Anti-Social Behaviour: 17% of TF had members involved in crime or anti-

social behaviour in the year prior to first intervention (Offences committed by 

adults, or children, or anti-social behaviour legal actions) 
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There were three attributes detailing child safeguarding events: Children In Need (CIN) 

events are the lowest level and occur where there are concerns about a child and they 

need some form of help; Child Protection Plans (CPP) occur where there are concerns 

about the safety of a child; and Looked After Child (LAC) events occur where a child has 

been placed into social care. 

It was possible to extract further information from the various attributes, for instance for 

each Children in Need (CIN) or Child Protection Plan (CPP) event, there was a subcategory 

detailing what type of event had occurred (such as domestic abuse, or neglect, etc.).  This 

was used to calculate two extra attributes (as listed in the ‘Derived Attributes’ section of 

Table 6): an overall Domestic Abuse attribute was created by combining CIN, CPP and 

Criminal Offence data; and an overall Drug/Alcohol abuse attribute was created by 

combining the CIN, CPP and existing Drug/Alcohol data.  Whilst they were partial subsets 

of the attributes they were derived from, and therefore might not have been useful for 

building clustering models, they were derived to provide extra information for the overall 

analysis. 

The Department for Work and Pensions (DWP) benefits data contained details pertaining 

to claims for six different types of benefits: Job Seekers Allowance, Employment and 

Support Allowance, Income Support, Incapacity Benefit, Severe Disablement Allowance 

and Carers Allowance.  These are considered ‘out of work’ benefits and indicate that the 

recipients were probably not employed.  It was noted that the DWP benefits (and other 

benefit data) was not necessarily accurate, as not all historical data was retained.  In the 

case of the DWP benefits data, it was accurate where a TF had been receiving benefits at 

the time of first intervention, and still were currently; however, where a family had been 

receiving benefits but were no longer, this data had not been retained.  An indication of 

this missing data is provided by the fact that across the whole TF programme in England, 

63.8% of families had an adult claiming DWP benefits in the year prior to intervention 

(Department for Communities and Local Government, 2017); the ECC data found only 

43% of families, which was some way off.  The missing data was disappointing as it meant 

that it was impossible to identify families that had presumably had an improvement in 

their circumstances at some point and moved off benefits.  This was also a key criterion of 

the Government guidelines for a family to be considered ‘turned around’, therefore, it 

meant that an accurate analysis of whether the families in the ECC data could be 
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considered ‘turned around’ according to the Government guidelines could not be 

performed. 

The free school meal and housing benefits data were also considered unreliable, as the 

data was only accurate on the date it was collected, and therefore not historical.  Also, it 

was noted that from September 2014 onwards all children in the first three years of 

primary school were eligible to receive free school meals, rendering this data less 

meaningful.  The Anti-Social Behaviour, Children Missing Education (CME), Social Care 

Drug/Alcohol (DA), and Pupil Referral Unit (PRU) data were acknowledged by ECC to be 

missing records and were sparse.  However, all attributes were included in initial 

exploratory data analysis. 

The data was analysed for correlations, using Pearson correlation, as plotted in Figure 7; a 

blue colour indicates positive correlations (red indicates negative), and the depth of the 

colour indicates the strength of correlation.  Aside from being in receipt of the different 

state benefits, there was an absence of strong correlations.  This was evidenced by the 

pale colours in the plot; the majority of attributes had weak correlations, less than 0.1.  

Receipt of the various benefits was most highly correlated, with receiving free school 

meals (FSM) and housing benefit (HB) having a correlation of 0.69, and DWP benefits 

having correlations of 0.32 to FSM and 0.42 to HB.  This was perhaps to be expected as 

receipt of the different state benefits are often linked. 

Other correlations that were more notable (but still weak) were: school exclusion and 

having a family member in a Pupil Referral Unit (0.25); school absence and school 

exclusion (0.22); and school absence and criminal offences committed by children (0.22).  

This may reflect that some families with children who miss school may have a higher 

likelihood of having members involved in youth crime and school exclusion (and by 

extension attendance at a Pupil Referral Unit (PRU), since children who are excluded from 

school often go on to attend a PRU).  More generally, it has been shown that persistent 

school absence is correlated with crime, and that a quarter of school-age offenders have 

persistent school absence (The British Psychological Society, 2017) 



118 
 

 

Figure 7: Pearson correlation for various events occurring in the year prior to first intervention, utilising the ECC TF data 

The child safeguarding events, CIN and CPP were correlated, as might be expected (0.21).  

It was notable that, of all the attributes, Looked After Children events (LAC) had the most 

negative correlations with other attributes.  Whilst the correlations were very weak, LAC 

events were negatively correlated with school absence, school exclusion and being in 

receipt of the various benefits.  This might suggest that families with children in care are 

perhaps less likely to have school-related issues.  LAC events were most highly correlated 

with criminal offences committed by adults (although this was still low at 0.13), this may 

cautiously indicate that some families with children in care are more associated with 

crimes committed by adults.  The Government report into the TF programme in England 

(Ministry of Housing Communities & Local Government, 2018) found that nearly a third of 

families with LAC events had at least one member of the family who had committed a 

criminal offence. 

For each TF, data was compiled to evaluate the proportion of families receiving each 

Intervention treatment type (Table 7).  The details for each treatment type are contained 

in section 6.1.2.  The CFPT, FIP and AO intervention types were the most commonly 
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utilised methods of treatment for a first intervention.  The FINIS type had a low 

percentage, but this was because it was a relatively new treatment and had only been 

utilised for the last year that data was collected.  The ‘Other’ label accounts for one family 

who received a different type of treatment, that was not detailed in the data. 

Table 7: Percentage of TF receiving each first intervention type, from ECC TF intervention data 

Intervention Type Percentage of TF receiving 

Complex Families Parenting Team (CFPT) 29.5% 

Family Intervention Project (FIP) 27.7% 

Assertive Outreach (AO) 24.5% 

Families First (FF) 15.2% 

Family In Need Intervention Service (FINIS) 3.1% 

Other 0.05% 

 

Table 8 details the outcome (or status) of each intervention.  Just under three quarters of 

first interventions resulted in a planned ending, and a fifth had an unplanned ending.  An 

unplanned ending would indicate that the treatment was not completed, perhaps 

because a family did not want to have further involvement, or if the treatment was not 

suited to their needs.  Interventions were classed as Open when they did not have an end 

date; this indicated they were still ongoing when the data was collected. 

Table 8: Status of first interventions, from ECC TF intervention data 

Status of Intervention Percentage of TF 

Planned Ending 74.8% 

Unplanned Ending 19.9% 

Open 5.3% 

 

6.2.3 Geographical Visualisation of Data 

All but nine of the TF (2146 out of 2155) could be linked to a Post Code.  Where a TF had 

multiple addresses, the address that was most recent before the First Intervention Date 

was utilised; if there was no address before, the address that was dated most recently 

after the First Intervention date was utilised.  The Post Code could then be linked to 

various geographical markers, such as the Output Area (OA), and Lower Layer Super 

Output Area (LSOA) codes by utilising the ONS Postcode Directory (Office for National 

Statistics, 2016).  An Output Area is the smallest geographical area for which Census 

aggregate data is provided and may contain between 40 and 139 households (Office for 

National Statistics, 2017).  The LSOA covers a larger geographical area and generally 

contains between 4 and 6 Output Areas combined. 
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Once linked to these codes, each TF could then be linked to aggregated data for their 

particular area.  Demographic data (such as tenure, ethnic group, and education levels) 

was obtained from the 2011 Census (UK Data Service, 2011).  Information detailing 

individual crime and anti-social behaviour incidents was obtained from data.police.uk 

website (Home Office, 2016); this contained a monthly list of all incidents handled by the 

Police force and linked to LSOA.  Latitude and Longitude were also supplied; however, 

these were anonymised to only point to an approximate location, therefore, the LSOA 

was utilised for location identification.  Police data was obtained for the time period 

covering August 2011 to July 2016, which covers the timeframe of analysis for a TF’s first 

Intervention, with a year added at the end.  Although the ECC database already contained 

information about crimes, it did not contain the location of the crimes; the police data 

was obtained to provide this information.  It was also thought that it might provide 

contrast to the ECC data, as this provided the location of people who committed crimes, 

and the police data provided the location of crimes (although there was no way to link the 

two). 

This data was then collated to produce an overall count (and percentage, where 

appropriate) of the demographic data and Police data for each OA and LSOA.  Since there 

were many categories of Police crime available, an overall count of crime, together with 

counts of Anti-Social Behaviour, Violent Crime and Burglary were included, as these were 

the three most populous categories; they were calculated on a yearly basis for each area. 

Figure 8 plots the percentage of TF living in each LSOA; that is, the number of TF in a 

particular LSOA divided by the overall number of households in that LSOA (as given by the 

2011 census).  There are 282 individual LSOAs in the ECC area.  On the date of first 

intervention, at least one TF lived in 239 of them; 43 (15%) had no TF residing there.  The 

maximum number of TF living in any one LSOA was 34, the median was 7.  There 

appeared to be two main areas where TF lived in higher proportions; one in the North-

Western area of the city, and one in the East. 

Figure 9 plots the percentage of TF living in each OA and provides a more fine-grained 

view.  There are 1530 individual OAs, and there were TF living in 845 of them on the date 

of first intervention.  685 (45%) contained no TF.  The maximum number of TF living in 

one OA was 19; the median was 1.  Both plots highlight that there was a greater 

proportion of TF located in certain areas of the city (notably the North-Western and 
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Eastern areas) and that these areas with a higher density of TF tended to be clustered 

together.   

Figures 8 and 9 contain no identifying geography (the underlying map is not visible) in 

order to protect the anonymity of the city involved.  The range of the bins on the plots 

were chosen as percentiles; there was one clear group for areas with no TF, then the 

remaining TF were split evenly into groups (hence different range sizes for the bins). 

 

Figure 8: Percentage of Troubled Families living in each LSOA (as a percentage of all families living there). Using ECC 
data and Census 2011 data 

 

 

Figure 9: Percentage of Troubled Families living in each OA (as a percentage of all families living there). Using ECC data 
and Census 2011 data 



122 
 

For each Output Area, demographic data was compiled (from the 2011 Census data); this 

included data such as the percentage of people with no qualifications living in each OA, 

and the percentage of lone-parent households, etc.  The percentage of TF living in each 

OA was also included and this was utilised to plot the correlation between the various 

attributes, Figure 10.  Whilst there were some strong correlations between the various 

census attributes (as evidenced by the dark colours), it was the correlations with the 

percentage of TF living in an area that was the focus for this analysis. 

 

Figure 10: Pearson Correlation between various characteristics of the city’s Output Areas (using Census 2011 data) and 
percentage of TF living in the Output Area (using ECC data) 

The percentage of TF living in an area was negatively correlated with an area having 

economically active people (-0.35), and positively correlated with an area having people 

with no qualifications (0.48).  This suggests that greater proportions of TF live in areas 

with lower levels of economic activity (employment, etc.) and areas that have higher 

levels of people with no qualifications.  Looking more closely at the complete economic 

activity data (not plotted), it would appear that greater proportions of TF also live in areas 

where higher levels of people are employed part-time (0.39), rather than full-time (-0.35) 

and also where higher proportions of people stay at home to look after their families 

(0.55).  The Census data for economic activity was compiled by asking the household 

reference person about their economic activity in the week prior to the 2011 Census.  A 
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person (aged 16 or over) was described as economically active if they were in 

employment, actively looking for employment or about to start employment.  

It is likely that higher proportions of TF live in areas with more social housing, less home 

ownership and fewer households who rent privately; this is evidenced by the positive 

correlation with the percentage of households living in social housing (0.45) and the 

negative correlations with the percentage of households who own their own home (-0.23) 

and households renting privately (-0.31). 

Higher proportions of TF would appear to live in areas with higher levels of household 

deprivation and bad general health; this was implied by the positive correlations with the 

percentage of households who were deprived in at least one dimension (0.43) in an area 

and with the percentage of people with bad or very bad general health (0.30) in an area. 

There were four household characteristics that were considered to be indicators of 

household deprivation by the 2011 Census (Office for National Statistics, 2014), these 

were: 

 Employment: any member of the household (who is not a full-time student) is 

unemployed or long-term sick 

 Education: no person in the household has qualifications greater than Level 1, and 

no person aged 16-18 is a full-time student 

 Health and disability: any person in the household has general health classed as 

‘bad’ or ‘very bad’, or has a long-term health problem 

 Housing: the household has overcrowded accommodation, or is a shared dwelling 

or has no central heating 

The attribute that was most highly correlated (in Figure 10) with the percentage of TF 

living in an area was the percentage of lone-parent households in an area; the correlation 

was 0.59.  This would imply that TF tend to live in areas with higher proportions of lone-

parent households.  One other notable aspect was the lack of correlation with being born 

in the UK (0.04) or belonging to the white ethnic group (-0.05) which would indicate there 

was little identifiable pattern here.  The highest correlation the percentage of TF living in 

an area had with any ethnic group was for the percentage of 

black/African/Caribbean/black British people living in an area (0.29).  Similarly, the 

highest correlation with any place of birth was for the percentage of people living in an 

area who were born in Africa (0.30). 
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Whilst the correlations provide useful insight into the types of areas that the TF lived in at 

the start of their intervention treatment, these statistics could not provide any 

information as to the proximity or geographical representation of the families, therefore 

Figures 11 to 19 plot some of these attributes on maps to visualise and compare the 

various demographic statistics with TF location. 

Plots utilising the LSOA are shown as not all the data was available to the OA level; and 

the less fine-grained nature of these plots (compared to the OA level) was easier to 

analyse visually.  No identifying geography is included in the maps in order to protect the 

anonymity of the city.  Figures 11 to 16 utilise the 2011 Census data, and Figures 17 to 19 

utilise the Police crimes data and ECC crimes data (taken for the year 2011 to match the 

Census data).  On each page, a plot of the percentage of TF in each LSOA is also included 

(as in Figure 8) so that the concentration of TF in an area might be easily compared to the 

particular characteristic. 

Figure 11 plots the percentage of households in each LSOA that were classed as deprived 

in at least one dimension by the 2011 Census.  When compared to the location of TF, it 

appears that higher proportions of TF live in the areas that contain proportionally more 

deprived families, as was also indicated by the correlation.  There was a similar pattern 

for the proportion of people with no qualifications (Figure 12); it appears that, in general, 

higher proportions of TF live in areas that have higher proportions of people with no 

qualifications. 

Where considering general health (Figure 13), LSOAs with a higher proportion of people 

who considered their health to be ‘bad’ or ‘very bad’, also tended to align with those 

LSOAs that contained proportionally more TF.  This was true also of lone parent 

households; of all the plots, Figure 14 and the map detailing the percentage of TF in each 

LSOA appear to be the most similar, confirming the high correlation between these two 

attributes.  Conversely, Figure 15 appears to confirm the negative relationship between 

the proportion of TF living in an area and home ownership. 

Figure 16 plots the percentage of households in each LSOA whose household reference 

person was considered economically active in the week before the 2011 Census.  It was 

notable that greater proportions of TF tended to be located in areas with less economic 

activity (as also indicated by the correlation); this was particularly evident where the 

North-Western block of TF were considered. 
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Figure 11: Percentage of deprived households per LSOA (Census 2011 data) 

 

Figure 12: Percentage of people with no qualifications per LSOA (Census 2011 data)
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Figure 13: Percentage of people with bad or very bad general health per LSOA (Census 2011 data) 

 

Figure 14: Percentage of lone parent households per LSOA (Census 2011 data) 
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Figure 15: Percentage of households that own their home per LSOA (Census 2011 data) 

 

Figure 16: Percentage of economically active people per LSOA (Census 2011 data) 
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In terms of crime, Figure 17 plots the percentage of people living in each LSOA who 

committed a crime in 2011.  This was derived from the ECC crime data; each crime was 

linked to one or more persons, which could then be linked to that person’s address.  

However, not all crimes could be linked to a person’s address, therefore this only 

considers the data that could be linked.  To derive the percentage, the total number of 

individuals living in each LSOA who had committed a crime in 2011 was divided by the 

total number of people living in that LSOA (using the census 2011 count).  The correlation 

between the percentage of TF living in each LSOA with the percentage of people living in 

each LSOA who had committed a crime was 0.57, indicating that TF tend to live in areas 

that contain higher proportions of people who have committed crimes. 

In contrast to this, Figure 18 plots the percentage of total crime occurring in each LSOA, 

utilising the police data (Home Office, 2016).  There was no correlation (0) with the 

percentage of TF living in an area, indicating that there was no detectable relationship (in 

terms of correlation) between where TF live and the amount of crime committed in the 

area, and this was also indicated by the plot.  Figures 17 and 18 (and the correlations) 

suggest that TF live in areas that have higher proportions of people who have committed 

crimes, but that there is no correlational indication of any pattern with respect to the 

amount of crime committed in these areas. 

Overall, the correlations and the visualisations of the various characteristics compared to 

where the families lived indicate that at the start of their first intervention TF tended to 

live in areas with higher percentages of lone-parents, higher levels of deprivation, lower 

educational levels, poor health, less economic activity and higher levels of social housing.   

To some degree, such results might be expected, but it was useful to consider these 

characteristics in relation to the geographical proximity of families and areas. 

Whilst this ‘place-based’ analysis has already been informative, it was performed in order 

to build the groundwork for later analysis which considered whether the particular cluster 

assignment had any relationship to where a family lived.  When analysing a large group of 

families (or any large group of data) there is always the possibility that there could be an 

averaging effect; identifying different clusters may minimise this effect and allows the 

possibility of discovering ‘place-based’ characteristics that are specific to particular 

clusters, and therefore potentially providing further insight into the families. 
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Figure 17: Percentage of people who committed a crime in each LSOA (2011), using ECC data 

 

Figure 18: Percentage of total crime occurring in each LSOA (2011), using Police data (Home Office (2016)) 
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6.2.4 Hierarchical Clustering Preparation 

The data was clustered in order to identify unique groups of TF.  The data for the year 

leading up to a family’s first intervention was utilised in order to particularly consider 

what precipitated a first intervention.  Therefore, nothing pertaining to the outcome of 

treatment was included, only that which was known about the family prior to the start of 

treatment.  It was thought the identification of these groups might lead to a greater 

understanding of the types of different families that exist within the data, and therefore a 

better understanding of their needs.  In general, discovery of unique groups in the data 

might allow for more detailed analyses of the particular groups, rather than the overall 

global analysis of the families which may succumb to an averaging effect. 

This was a data-driven analysis, and the aim was to include as much data that described 

the family as was possible in the cluster analysis, without having to make prior 

assumptions.  After considering the data and the various shortcomings of some of the 

attributes (incompleteness, etc.), the attributes remaining for clustering were: 

 School Absence: Percentage of unauthorised school absence overall for applicable 

members of the family 

 School Exclusion: count of school exclusions for the whole family 

 Children in Need events (CIN): binary  

 Child Protection Plan event (CPP): binary 

 Looked After Child events (LAC): binary 

 Criminal Offences committed by adults (aged 18 or over on the first intervention 

date): count 

 Criminal Offences committed by children (aged under 18 on the first intervention 

date): count 

 Members not in education, employment or training (NEET): binary 

The NEET, CIN, CPP and LAC attributes were included as a binary indication of whether a 

family had any of these events in the year prior to intervention as a count of these events 

did not make logical sense.  For instance, if using a count of NEET events, it would have in 

most cases simply indicated the same individual moving in and out of NEET status.  The 

same was true of the CIN, CPP and LAC data; many of the events were inter-related and a 

count did not make sense. 
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The percentage of school absence could be calculated by counting the total number of 

unauthorised school sessions divided by the total number of available sessions for the 

whole family.  An unauthorised session is one that a child did not attend, and the school 

did not authorise this absence (absence might be authorised if a child was ill, for 

example).  This was only performed where school absence data was available; if only one 

child attended school, then only their data was compiled, if there were two or more 

children their data was combined and compiled.  School exclusions and criminal offences 

could logically be included as a count.  The Children Missing Education (CME), Anti-Social 

Behaviour Legal Actions (ASB), inclusion in a Pupil Referral Unit (PRU) and social care 

Drug/Alcohol data were excluded from further analysis as they were incomplete and very 

sparse.  Benefits data was also excluded, as it was not complete and could not be 

accurately attached to the time period before a family’s first intervention.  

The eight attributes that remained for clustering meant that the focus of the clusters 

would be around child safeguarding (CIN, CPP, LAC), education (school absence, exclusion 

and NEET status) and crime (committed by adults and children). 

In order to visualise the overall trend of the types of events that each family had in the 

year prior to intervention, a heatmap was plotted, Figure 19.  Plotting the data in this way 

can be useful as it may indicate groups within the data.  The plot provides a binary 

indication of each of the events, i.e. simply whether a family had that event or not.  Each 

of the 2155 families was represented as a very thin vertical line, running from the top of 

the plot to the bottom.  Purple indicates the presence of an event, whereas turquoise 

indicates the absence of an event.  Highlighted on the right of the plot, the block of 

turquoise indicates that 605 families had none of the listed events occur in the year prior 

to their first intervention.  There were also three other distinct blocks of families, as 

highlighted: those with only CIN events (243); those with only school absence (223); and 

those with only CIN events and school absence, but nothing else (182).  These groups of 

families could be thought to form their own clusters as they represent distinct groupings, 

and as such were excluded from the cluster analysis.  The criteria used for deciding which 

groups to exclude was that a group must be of a reasonable size; greater than 10% of the 

data (where the zero group had already been removed), i.e. it must contain more than 

155 TF. 
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Figure 19: Heatmap of the events occurring for each TF in the year prior to intervention, using ECC data 

As Figure 19 highlights, 28% of families had none of the specified events linked to them; 

605 out of 2155 TF did not have a record of any of the eight events occurring in the year 

prior to their first intervention date.  However, had the DWP benefits data been reliable 

and included as an event, it would have accounted for 40% of these families.  For 

comparison, 44% of families who had at least one event also received DWP benefits, so 

the proportions for both groups were somewhat similar.  The other attributes that were 

excluded due to data unreliability (PRU, CME and ASB) only accounted for 0.2% of the 

families with no events. 

Of the 605 families with no events, it was noted that 20 families (3%) had an existing Child 

Protection Plan (issued over a year before the first intervention date), and that 6 families 

(1%) had Looked After Children events (occurring over a year before the first intervention 

date and that appeared to be ongoing).  However, since the focus was on events 

occurring in the year prior to intervention (and what might have precipitated a family’s 
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need for an intervention), these families were left in the group with no events, as they 

had not had any documented events in the previous year; that is, their status remained 

the same. 

Overall, Figure 19 highlights that while there were some families with a complex 

assortment of problems and events, there were others with only a single problem, or 

none at all, at least where considering the available data.  Whilst this appears to 

contradict the Government’s criteria that TF have multiple problems, it must be 

considered that the available data does not cover all the criteria.  No family had all eight 

of the different events occur in the year prior to intervention, and only nineteen families 

(0.8%) had 5 or more of the different events.  The majority of families (1756, or 81%) had 

two or fewer different events occur.  Table 9 details the percentage of families with each 

number of different events.  It is also worth considering that in Figure 19 any amount of 

school absence was considered as an event; this could mean that a family was marked as 

having school absence when they might only have one child who had one unauthorised 

school session. 

Table 9: Percentage of families with each number of different types of events in the year prior to intervention (ECC data) 

 Number of different types of event a family had 

0 1 2 3 4 5 6 7 8 

Percentage 
of families 
(number in 
parentheses, 
total 2155)  

28.1% 
(605) 

29.7% 
(639) 

23.8% 
(512) 

13.2% 
(285) 

4.4% 
(95) 

0.8% 
(17) 

0.1% 
(2) 

0 0 

 

Considering the Government’s guidelines as to qualification for the TF programme (a 

family must have three of the following events: have members involved in crime or anti-

social behaviour; have children not in school; have an adult on out of work benefits; or 

cause high costs to the public purse), it would appear that some of these families may not 

meet the criteria.  However, since not all data pertaining to these events was available for 

analysis, it may be that at least some of the families with no events could have satisfied 

the criteria were that data available.  In particular, the fact that there was no anti-social 

behaviour data and incomplete benefits data means that one or two of the criteria could 

have been invisibly satisfied, however the available data cannot reflect this.  It should also 

be considered that the ‘local discretion’ (or high cost to the public purse) criterion could 

also have covered events not contained in the data (such as health problems). 
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One other issue to consider, in terms of the lack of events counted for families, is that 

some families move in and out of areas, and it is unclear from the available data when 

this happens.  For instance, if a family had lived in another area previously there would be 

no data (i.e. no school records, etc.) for them contained in the ECC database; this would 

be contained in their previous Council’s database.  And since there was nothing in the 

available data to indicate the date of a family’s arrival in the area, it was impossible to 

determine whether they simply had no events or had none recorded because they were 

not living in the area.  ECC indicate that families moving into the area would likely have 

been referred into the TF programme by their previous area’s social services teams and so 

would have legitimate issues, but their historical events would not be contained in the 

ECC database.   

Without this data, it was impossible to determine how many families with no, or few, 

events might have had more events occur in the year prior to intervention and so 

ultimately satisfy the TF criteria.  However, this case study could only analyse the 

available data, and in order to determine if there were any specific characteristics 

between the groups of families with and without events occurring in the year prior to 

intervention, a comparison was carried out; Table 10 compares the two groups. 

Table 10: Comparison of TF with and without events in the year prior to first intervention, using ECC data 

 Families with events 
(n = 1550) 

Families without events 
(n = 605) 

Family Size Range: 1-11, mean: 3.7 Range: 1-9, mean: 2.2 

Family Composition 4.6% were single person families 
3.7% have no children in family 
8.6% have no adults 

41.2% were single person families 
49.8% have no children in family 
8.1% have no adults 

Intervention type 
 

AO: 20.3% 
CFPT: 29.7% 
FF: 16.4% 
FINIS: 3.7% 
FIP: 29.8% 
Other: 0.1% 

AO: 35.0% 
CFPT: 28.9% 
FF: 12.2% 
FINIS: 1.3% 
FIP: 22.5% 
Other: 0.0% 

Intervention status 
 

Open: 5.4% 
Planned Ending: 74.7% 
Unplanned Ending: 19.9% 

Open: 5.1% 
Planned Ending: 74.9% 
Unplanned Ending: 20.0% 

Receiving DWP benefits on 
first intervention date 

43.7% 40.2% 

At least one change of 
address in previous year 

48.5% 36.0% 

 

The most notable difference between the two groups was the difference in family size: 

those who had events occur in the year prior to intervention generally comprised larger 

families than those without events.  Of the families without events, 41.2% comprised a 



135 
 

single person, compared to only 4.6% for those with events.  Figure 20 and Figure 21 plot 

the distribution of family sizes for the two groups and illustrate the difference in 

distributions: families without events (Figure 21) are right-skewed with proportionally 

more families having only one member; families who had events (Figure 20) comprise a 

more Normal like distribution with proportionally more families having 2, 3 or 4 

members. 

 

Figure 20: Distribution of family size for TF who had events in the year prior to intervention, using ECC data 

 

Figure 21: Distribution of family size for TF who had no events in the year prior to intervention, using ECC data 
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Something that may at least partially explain the number of families with only one 

member could be problems with the data itself.  In general, TF should not comprise one-

person families, and it may be that due to missing linking attributes some individuals 

simply were not linked to the rest of their family.  The ECC acknowledged that there were 

problems such as this within the data, although it was not clear how pervasive they were. 

Another notable difference between the two groups was that almost half (49.8%) of the 

families without events had no children (aged under 18), compared to 3.7% for those with 

events.  The fact that there were fewer children in the no event group might help to 

explain the absence of events; most of the events concern issues with children (school 

issues, and child safeguarding), and if there were fewer children in the group then it was 

likely that there would be fewer of these events.  The only event that would be 

considered specifically adult was criminal offences committed by adults. 

Where considering Table 10 and the comparison between groups, it was also notable that 

a higher proportion of families without events received AO treatment (35% compared to 

20%).  AO treatment is provided to families who are deemed at risk of developing more 

complex needs, so this may provide some insight into the families (or at least those who 

were receiving the AO treatment).  It may indicate that whatever their particular 

problems were, they could have been fairly low-level and these families were receiving 

treatment in order to prevent escalation. 

Another notable difference between the two groups was that the families with no events 

had fewer address changes than those with events (36% of families had at least one 

change of address in the year prior to intervention compared to 49%).  However, it is 

possible that this difference may have been a reflection of how the data was collected.  If 

families had no events, then there simply may have been less opportunity to record a 

change of address since there would be less interaction with the services that collect this 

type of data.  But it is also possible that a characteristic of this group could be that they 

just do not change address as frequently. 

Perhaps surprisingly, despite the significant differences between the two groups, the 

outcomes of the first intervention treatment were almost identical across both groups.  

The proportion of planned endings was just under three quarters for both groups, and a 

fifth of interventions had unplanned endings for both groups.  This appears to imply that 

the differences between the groups had little bearing on how an intervention would end. 
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Whilst this part of the analysis concentrated on the unique group of families with no 

events, there were three other large groups of families identified within the data that 

were also considered to form unique groups.  These were families who just had school 

absence (223 families), families who just had CIN events (243 families) and families who 

just had school absence and CIN events (182 families).  Together with the no event group 

(605 families) they were excluded from the cluster analysis and were considered to form 

their own unique clusters; they are referred to as the ‘pre-specified’ clusters throughout 

the rest of the analysis. 

6.2.5 Models 

Hierarchical clustering was performed upon the data (minus the pre-specified clusters) in 

order to identify groups of similar families.  This method was chosen as it can effectively 

deal with mixed data (that is, data that contains both numerical and categorical 

attributes).  It also provides a visual clue as to how the data is formed into clusters and is 

particularly useful since there is no requirement to know in advance how many clusters 

the data contains.  Gower’s general coefficient of similarity (J. C. Gower, 1971) was used 

to calculate the dissimilarities.  This normalises the numerical data by dividing by the 

range, therefore, to avoid skewing the data, any extreme outliers were capped (at the 

next lowest value) prior to this.  There was no indication that the few outliers identified 

were due to incorrect data, so it was not necessary to exclude them from the data; it was 

felt that retaining them at a capped level would still represent that they had a high value. 

Initial experiments found that utilising mixed data resulted in the binary attributes being 

heavily favoured by the hierarchical clustering algorithm, therefore it was necessary to 

apply weights to the binary data to lessen its impact.  The binary attributes were given 

half the weight of the numerical attributes. 

The Complete-Linkage method was chosen as it can produce compact clusters, and is 

suitable for mixed data.  The other hierarchical clustering linkage methods were also 

utilised in order to determine whether they might produce similar results.  Experiments 

with various attribute combinations and different types of clustering were performed as 

part of the data analysis stage, in particular a consideration of using all binary data, but it 

was felt that this unnecessarily removed detail from the data. 

Cluster size was decided by visualising the dendrogram of the hierarchical clustering and 

considering the silhouette values (Rousseeuw, 1987) and Goodman and Kruskal’s Gamma 



138 
 

coefficient values (Milligan and Cooper, 1985).  Visualisations of the resulting clusters 

mapped back to the data on a two-dimensional representation were plotted using T-

Distributed Stochastic Neighbor Embedding (t-SNE) with the ‘Rtsne’ R package (Krijthe 

and van der Maaten, 2017). 

Since the preceding data analysis identified large groups of TF that all shared the same 

characteristics in the data (i.e. families that had no events, or just a single event prior to 

intervention), these pre-specified groups were excluded from the clustering, and were 

considered already as pre-formed clusters.  These pre-specified clusters accounted for 

1253 TF, leaving 902 TF records for the cluster analysis. 

In order to provide deeper insight into the clusters, decision tree learning was utilised to 

derive rules for the cluster assignments.  This was utilised with the ‘rpart’ R package 

(Therneau et al., 2017), which is an implementation of the CART algorithm.   

Analysis was performed to determine if geographical location might be a factor in 

determining which cluster a TF belongs to.  QGIS, which is a geographical information 

system (GIS) software was utilised for mapping, and machine learning was performed to 

determine if place-based data was a predictor of cluster membership.  Decision tree 

learning (with the ‘rpart’ R package), random forests (with the ‘randomForest’ R package 

(Liaw et al., 2015)) and generalized boosted models (with the ‘gbm’ R package (Ridgeway, 

2017)) were utilised.  To provide a comparison to a more traditional regression model, 

multinomial logistic regression was also performed (with the ‘nnet’ R Package (Ripley and 

Venables, 2016)) 

6.3 RESULTS 

6.3.1 Hierarchical Clustering using Complete-Linkage 

Clustering was performed upon 902 records.  The Complete-Linkage method produced 

seven clusters, where cutting at a height of 0.58, which is the point at which the greatest 

drop in height occurs in the dendrogram (Figure 22). 

Upon visual inspection of the dendrogram, it appeared that a cut creating five clusters 

might also be a viable solution, however, whilst it can be informative to study the 

dendrogram, it is not a very scientific method of deciding the cluster number.  Therefore, 

in order to more rigorously determine which was the optimal point at which to cut the 



139 
 

dendrogram, the silhouette values and Goodman and Kruskal’s Gamma coefficient values 

were calculated for various cluster solutions (Table 11).  These metrics were chosen as 

they are suitable for mixed data; many are only suitable for data that can be represented 

in Euclidean space.  For both measures, a higher value is desirable.  They both can take 

values from -1 to +1, and a value closer to +1 indicates better cluster cohesion.     

 

Figure 22: Complete-Linkage hierarchical clustering dendrogram with the seven-cluster solution highlighted 

 
Table 11: Comparison of cluster metrics to determine the optimal number of clusters 

Number of clusters Overall Silhouette Value Gamma Coefficient 

2 0.21 0.26 

3 0.27 0.39 

4 0.27 0.48 

5 0.34 0.66 

6 0.34 0.68 

7 0.36 0.70 

8 0.36 0.70 

9 0.31 0.71 

 

Table 11 and Figure 23 highlight that for both metrics, the values kept rising up to the 7-

cluster solution, they then both hit a plateau before the silhouette value decreased at 9 

clusters and Gamma increased slightly at 9 clusters.  The seven-cluster solution was 
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chosen as it had the highest silhouette value, and it represented a point where the 

increase of both values slowed. 

 

Figure 23: Silhouette values and Gamma statistic values plotted for various cluster solutions using complete-linkage 
hierarchical clustering method 

The other linkage methods were also utilised: Average, Single, Median and Ward’s 

method.  For each, a dendrogram was plotted, Figure 24.  The Single, Average and 

Median-linkage methods resulted in dendrograms that were difficult to interpret.  Single 

linkage showed chaining, and the median-linkage method produced inversions, making it 

impossible to cut the dendrogram in any meaningful way.  However, Ward’s method 

showed evidence of more distinct clusters. 

The clusters produced by Ward’s method (seven clusters) were broadly similar to those 

found by the Complete-Linkage method.  The Adjusted Rand value for comparing the 

Complete-Linkage solution to Ward’s method with seven clusters was 0.65.  The Adjusted 

Rand metric may take a value between -1 and +1, with -1 indicating no similarity at all, 

and +1 indicating an identical clustering, therefore there was a good level of similarity 

between the two sets of clusters.  However, whilst Ward’s method found similar clusters, 

and to some degree helps to confirm the clusters discovered with the complete linkage 
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method, it was not utilised in the final analysis.  This is because, even though there are 

documented cases of its usage in this way (Finch, 2005), it does not appear to make 

logical sense to use a sum of squares method with binary (or in this case, mixed) data. 

 

Figure 24: Comparison of other hierarchical clustering linkage methods 

6.3.1.1 Details of the seven-cluster solution 

As a measure of the clustering quality, the silhouette values for each of the clusters were 

considered.  Values may range from -1 to +1, and are calculated for each object within the 

cluster.  A high value indicates that an object is well matched to its cluster, whereas a low 

value indicates that it may be better suited to another cluster.  The individual silhouette 

values are averaged for each cluster to produce an overall value for the cluster, as shown 

in Table 12.  The overall average silhouette value for the whole clustering was 0.34.   

Table 12: Silhouette widths for seven-cluster solution of the ECC TF data clustering 

Cluster 1 2 3 4 5 6 7 

Cluster Size 291 335 115 61 21 54 25 

Average Silhouette 0.22 0.44 0.56 0.44 0.46 0.14 0.20 

 
The silhouette plot, Figure 25, highlights that cluster 3 was the most cohesive, followed 

by clusters 2, 4 and 5.  The tails on the negative side of the plot represent those records 

that did not fit as well into their respective clusters.  All except cluster 5 had some records 
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on the negative side, however, clusters 1, 6 and 7 each had a higher proportion (> 10%) of 

records with negative silhouette values.  This is represented by the lower average 

silhouette values for these clusters and indicates that some caution should be applied in 

the analysis of these clusters, since they are less cohesive.  

 

Figure 25: Silhouette plot of the seven-cluster solution, obtained using complete-linkage hierarchical clustering of the 
ECC TF data 

In order to visualise how the clusters relate to the data, Figure 26 plots the clusters 

represented in two-dimensional space using T-Distributed Stochastic Neighbor 

Embedding (t-SNE).  This was achieved with the parameters set at perplexity (which is 

approximately equivalent to the number of nearest neighbours) equal to 20, theta (which 

controls the speed) equal to 0.1, the learning rate set at 200 and using 1000 iterations.  

This process embeds the eight-dimensions (clustering attributes) of data down into two 

dimensions and plots it in a scatter plot.  Each family is represented by a coloured dot.  

Although four of the clustering attributes were binary, there was also a numerical count 
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for each of these attributes contained in the data (e.g. the number of CIN events as 

opposed to simply having CIN events), and this was used in the plot.  

 

Figure 26: Two-dimensional representation, plotted using t-SNE, of the seven hierarchical clusters obtained from 
complete-linkage hierarchical clustering of the ECC TF data 

Whilst the points from each cluster are not compact in the plot, they do loosely form an 

overall pattern of togetherness, albeit with some overlaps.  Cluster 1 had a low silhouette 

value (and a larger proportion of families with negative silhouette values) and this 

appears to be represented by the large spread and overlap of the yellow points in the 

plot.  Interestingly, the points from cluster 6, which had the lowest silhouette value and 

would therefore be considered the least cohesive group, form a fairly compact group in 

the plot.  

It should be noted that setting different parameters and/or a different random 

initialisation seed for the t-SNE process will result in a different projection into two-

dimensional space, so the method should be utilised with caution, however this method 

can provide a useful visualisation of high-dimensional data and the results do indicate 

that there is an underlying pattern in the data with regard to the cluster assignments. 
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6.3.1.2 Cluster Characteristics 

The seven clusters extracted from the hierarchical clustering, together with the four 

clusters that were extracted prior to clustering (the pre-specified clusters, that were 

families with: no events; just school absence; just CIN events; and just school absence and 

CIN events), comprised a total of eleven clusters.  Clusters 1 to 7 represent the clusters 

derived from the hierarchical clustering and clusters 8 to 11 represent the pre-specified 

clusters.  In brief, a summary of their characteristics: 

 Cluster 1: School exclusion and criminal offences.  (n = 291).  High levels of school 

exclusion, criminal offences committed by adults and criminal offences committed 

by children.  Low levels of child safeguarding (CPP, LAC and CIN) events.   

 Cluster 2: Child Protection.  (n = 335).  All families had Child Protection events.  

Very little school exclusion and offences committed by children.  Families tended 

to have younger children with most aged under 11. 

 Cluster 3: Looked after Children.  (n = 115).  All families had Looked after Children 

events, there were low levels of school absence and exclusion  

 Cluster 4: NEET.  (n = 61).  All families had members who were NEET, there were 

low levels of CIN and CPP events 

 Cluster 5: Adult criminal offences.  (n = 21).  All families had criminal offences 

committed by adults, and these were at a high level (with a mean of 4).  Almost no 

child safeguarding (CIN, CPP, LAC) events 

 Cluster 6: High levels of school absence.  (n = 54).  All families had school absence, 

at high levels, with 39% unauthorised absence on average.  More complex mixture 

of events, 78% of families had 3 or more different types of events 

 Cluster 7: Child criminal offences.  (n = 25).  All families had criminal offences 

committed by children, and these were at a high level (mean of 4).  Just under half 

had school absence, and most of those with absence also had child protection 

plans 

 Cluster 8: School absence only.  (n = 223).  All families had school absence but no 

other events.  The average unauthorised absence per family was 6.4% 

 Cluster 9: Children In Need events only.  (n = 243).  All families had CIN events but 

no other events 
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 Cluster 10: Absence and CIN.  (n = 182).  All families had school absence and CIN 

events but nothing else.  Average unauthorised absence was 10.6%, a little higher 

than for most other clusters 

 Cluster 11: No events.  (n = 605).  All families had none of the events.  41% of 

families consisted of single people, a far higher percentage than any other cluster.  

Half of the families had no children 

For comparison, a T-Distributed Stochastic Neighbor Embedding (t-SNE) plot was also 

composed for all eleven clusters, Figure 27.  This was achieved with the parameters set at 

perplexity equal to 20, theta equal to 0.5, learning rate equal to 200 and with 500 

iterations.   

 

Figure 27: Two-dimensional representation, plotted using t-SNE, of all eleven clusters (the seven clusters obtained by 
complete-linkage hierarchical clustering together with the four pre-specified clusters) 

Although it is difficult to represent 11 clusters in a plot (as it can be difficult to distinguish 

between 11 different colours) this was attempted in order to illustrate how a t-SNE plot 

can represent the data and clusters.  For instance, cluster 8, which contained only families 

with school absence, essentially forms a line of dots; this most likely represents the 

varying levels of absence each family had (some might have 5%, some might have 20%, 
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etc.).  And cluster 11, which was all zeroes (as it was the families with no events at all), is 

represented by an oval spread of points.  Whilst, again, as also illustrated in Figure 26, the 

clusters do not fall into neat groupings when represented in two-dimensional space using 

this method, the plot does still indicate underlying patterns in the data with relation to 

the cluster assignments. 

Table 13 details the percentage of families with each event by cluster, with more notable 

percentages highlighted in bold.  For instance, in cluster 2, 100% of families had Child 

Protection Plans (CPP) in the year prior to intervention.  It is clear that the clustering 

formed a pattern to some degree; aside from school exclusion, each attribute has its own 

cluster (where every family has that event).  For instance, in cluster 5, all families had at 

least one adult who had committed a criminal offence, and in cluster 4 all families had at 

least one NEET member, and so on.  This may be because many families did not have a 

diverse mix of events (58% had one or no different events, 81% had two or fewer) and so 

they fell into clusters that represented their main (or only) issue. 

Table 13: Percentage of families with each event per cluster with notable percentages highlighted in bold 

Cluster 
1 

n=291 
2 

n=335 
3 

n=115 
4 

n=61 
5 

n=21 
6 

n=54 
7 

n=25 
8 

n=223 
9 

n=243 
10 

n=182 
11 

n=605 

School Absence 66% 44% 30% 43% 29% 100% 44% 100% 0 100% 0 

School Exclusion 57% 6% 11% 16% 24% 54% 24% 0 0 0 0 

Children in Need 
events 

42% 58% 63% 31% 10% 57% 32% 0 100% 100% 0 

Child Protection 
events 

1% 100% 2% 0 5% 22% 44% 0 0 0 0 

Looked After 
Children events 

0.3% 12% 100% 10% 0 9% 4% 0 0 0 0 

NEET 0 2% 1% 100% 0 15% 0 0 0 0 0 

Adult Offences 36% 17% 21% 15% 100% 13% 8% 0 0 0 0 

Child Offences 27% 4% 8% 21% 10% 43% 100% 0 0 0 0 

 
Table 14: Mean number of events for each cluster, with notable means highlighted in bold 

Cluster 1 
n=291 

2 
n=335 

3 
n=115 

4 
n=61 

5 
n=21 

6 
n=54 

7 
n=25 

8 
n=223 

9 
n=243 

10 
n=182 

11 
n=605 

Absence: Mean 
percentage of 
unauthorised 
absence 

3.9 3.7 1.3 2.2 7.8 38.7 2.9 6.4 0 10.6 0 

Exclusion 2.1 0.1 0.2 0.2 0.5 1.1 0.5 0 0 0 0 

Adult Offences 0.9 0.4 0.6 0.7 4.4 1.5 4.5 0 0 0 0 

Child Offences 0.4 0.1 0.1 0.3 0.3 1.3 4.4 0 0 0 0 

Family size 3.7 3.8 3.7 4.4 3.3 3.8 3.4 3.6 3.4 3.9 2.2 

 

Table 14 details the mean number of events for each cluster, where the count of events 

was considered.  Also included is the mean family size for families in each cluster.  Cluster 
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4 contained the largest families (mean 4.4) whereas cluster 11 contained the smallest 

families (mean 2.2, as considered previously). 

Figure 28 depicts a Nightingale (or Coxcomb) plot of the characteristics of each cluster.  

Each cluster is depicted by a circle divided into eight equal segments to represent the 

eight clustering attributes utilised in the model, and each are represented by a different 

colour.  Where a cluster had families with any of the eight attributes, those particular 

segments are coloured in, with a radius proportional to the value.   

For the four attributes that were integer/continuous values (criminal offences committed 

by children and adults, school exclusion and school absence) the mean value for each 

cluster is represented.  The radius of the segment is proportional to the mean value.  For 

instance, cluster 1 had the highest mean level of school exclusions over all clusters, so this 

is represented by a fully coloured blue segment; the other clusters that had exclusion had 

much lower levels and so are represented by a smaller radius segment. 

For the four attributes that were binary values (CIN, CPP, LAC and NEET), it was not 

possible to calculate a mean value, therefore the proportion of families with that 

attribute/event in each cluster was represented.  For instance, in cluster 2 all families had 

CPPs, and this is represented by a fully coloured orange segment; the smaller percentage 

of families with CPPs in other clusters is represented by much smaller orange segments. 

Using the plot to compare the clusters, the prevalence of CIN events in all but clusters 8 

and 11 is perhaps most notable.  Cluster 11 had no events, and this is represented by an 

empty plot.  Cluster 8 looks a little sparse, with just a small purple segment representing 

school absence, but this highlights that cluster 8’s only characteristic was school absence 

and that the absence levels were at a relatively low level compared to the other clusters.  

Overall this plot aims to provide a more intuitive visualisation of the cluster 

characteristics in order to complement Table 13. 
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Figure 28: Nightingale plot of cluster characteristics 

Table 15 considers attributes that were contained in the data but were not clustered 

upon.  The attribute detailing number of address changes was not used for clustering as it 

was thought that it may be unreliable data; it was derived from the address data, but this 

was not necessarily up to date for all families.  Nevertheless, there were clear differences 

between clusters, with cluster 3 having almost two thirds of families changing address at 

least once in the year prior to intervention.  The rows detailing the percentage of families 

with pre-existing Child Protection Plans (CPP) and Looked after Child (LAC) events were 
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included to highlight that although these families did not have new events pertaining to 

these in the year before intervention, they were already ongoing prior to this. 

Table 15: Percentage of families with each event per cluster, for events not clustered on (with notable percentages 
highlighted in bold) 

Cluster 1 
n=291 

2 
n=335 

3 
n=115 

4 
n=61 

5 
n=21 

6 
n=54 

7 
n=25 

8 
n=223 

9 
n=243 

10 
n=182 

11 
n=605 

Receiving DWP 
benefits 

48% 46% 35% 57% 57% 57% 28% 42% 36% 42% 40% 

Changed 
address at least 
once 

46% 53% 73% 49% 48% 48% 64% 30% 54% 42% 36% 

Percentage of 
single person 
families 

8% 3% 4% 10% 14% 0 12% 3% 2% 4% 41% 

Drug/Alcohol 
Events 

2% 5% 2% 5% 0 4% 0 1% 3% 4% 1% 

Domestic Abuse 
Events 

14% 17% 7% 5% 33% 6% 20% 0 13% 14% 0 

Percentage 
with no 
children (aged < 
18) 

11% 0.3% 0 18% 48% 0 4% 0 1% 0 50% 

Percentage 
with no adult 
(aged >= 18) 

4% 8% 7% 5% 0 7% 8% 13% 10% 13% 8% 

Pre-existing 
CPP 

5% 10% 6% 2% 10% 2% 4% 12% 1% 3% 3% 

Pre-existing LAC 1% 1% 1% 2% 0 0 4% 2% 0 0 1% 

 
 

Table 16 details the treatments types for the first intervention by cluster.  There were 

clear differences across the clusters where intervention treatment types were considered, 

which would seem to be logical, as intervention treatment should target different types 

of problems.  To illustrate these differences better, Figure 29 plots them (excluding the 

‘Other’ treatment type as this included only one family). 

Table 16: First intervention treatment types by cluster (with notable percentages highlighted in bold) 

Cluster 1 
n=291 

2 
n=335 

3 
n=115 

4 
n=61 

5 
n=21 

6 
n=54 

7 
n=25 

8 
n=223 

9 
n=243 

10 
n=182 

11 
n=605 

Intervention type: 
AO 
CFPT 
FF 
FINIS 
FIP 
Other 

 

23% 10% 12% 25% 33% 13% 20% 30% 25% 20% 35% 

32% 25% 23% 16% 29% 13% 16% 39% 36% 31% 29% 

14% 24% 51% 10% 0 19% 24% 8% 9% 8% 12% 

4% 2% 2% 2% 5% 6% 0 4% 6% 4% 1% 

27% 38% 11% 48% 33% 50% 40% 19% 24% 36% 22% 

0 0 0 0 0 0 0 0 0 1% 0 
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Figure 29: The percentage of families receiving each intervention type by cluster (ECC data) 

The plot highlights that families in cluster 3 received proportionally more FF (Families 

First) treatment than families in any other cluster.  Since the main characteristic of cluster 

3 was that it contained families who had at least one Looked After Child (LAC) event, and 

the FF treatment is aimed at families with LAC problems, this would seem to make sense.  

Families in cluster 6 received the highest proportion of FIP (Family Intervention Project) 

treatment; this was aimed at families with the most complex needs, which suggests that a 

higher proportion of families in cluster 6 have a complex mixture of problems. 

Where treatment resolution was considered (Table 17), although the percentages were 

broadly similar across the clusters, there was some variation.  Clusters 2 and 3 had a 

higher percentage of planned endings than the other clusters, whereas cluster 5 had a 

particularly low percentage.  However, the small size of cluster 5 should be considered 

when evaluating this value.  Aside from cluster 5, clusters 6 and 8 had the lowest 

percentage of planned endings, this is interesting as the main characteristic of both these 

clusters was school absence.  The main characteristic of clusters 2 and 3, which had the 

most planned endings was child safeguarding (CPP and LAC). 
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Table 17: First Intervention treatment outcomes by cluster (with notable percentages highlighted in bold) 

Cluster 1 
n=291 

2 
n=335 

3 
n=115 

4 
n=61 

5 
n=21 

6 
n=54 

7 
n=25 

8 
n=223 

9 
n=243 

10 
n=182 

11 
n=605 

Intervention status: 
Open 
Planned Ending 
Unplanned Ending 

 

7% 4% 2% 3% 0 7% 8% 8% 6% 5% 5% 

75% 80% 81% 75% 57% 70% 72% 69% 75% 72% 75% 

18% 17% 17% 21% 43% 22% 20% 24% 19% 23% 20.0% 

 

Table 18 and Figure 30 detail the percentage of children in each cluster grouped by the 

OFSTED rating for the school they attended during the year prior to their first 

intervention.  The final row of Table 19 also details the cumulative percentage of children 

who attended schools rated as ‘good’ or ‘outstanding’.  Not all children could be linked to 

a school OFSTED rating (some were not of school age, or else they had no school records, 

etc.), so the percentages include only the children that could be linked.  Overall, 56% 

(1562 out of 2772) of children of approximate school age (aged between 5 and 16 a year 

before the first intervention date) could be linked to a school OFSTED rating.  At least half 

of the school age children in all but clusters 4, 5, 9 and 11 could be linked to an OFSTED 

rating; 42% of children in cluster 4 were linked and for clusters 5, 9 and 11 just under a 

third could be linked.  The top row, detailing the cluster number, also details the number 

of children that could be linked, to provide context. 

Table 18: School OFSTED ratings by cluster, utilising ECC data linked to Department for Education (2016) data 

 Cluster 

Percentage of 
children who 
attended 
schools rated by 
OFSTED as: 

1 
n=316 

2 
n=292 

3 
n=80 

4 
n=52 

5 
n=6 

6 
n=62 

7 
n=25 

8 
n=305 

9 
n=80 

10 
n=236 

11 
n=108 

Outstanding 8.9% 14.0% 23.8% 3.9% 16.7% 8.1% 12.0% 10.2% 20.0% 8.9% 14.8% 

Good 52.2% 63.4% 57.5% 61.5% 50.0% 56.5% 76.0% 63.0% 57.5% 67.0% 64.8% 

Requires 
Improvement 

37.0% 18.5% 18.8% 30.8% 16.7% 33.9% 8.0% 24.3% 22.5% 19.1% 18.5% 

Inadequate 1.9% 4.1% 0 3.9% 16.7% 1.6% 4.0% 2.6% 0 5.1% 1.9% 

            

Good or 
Outstanding 

61.1% 77.4% 81.3% 65.4% 66.7% 64.5% 88.0% 73.1% 77.5% 75.8% 79.6% 

 

For each child, the OFSTED rating that would have applied during the year before 

intervention was utilised (if there was more than one); if there was no OFSTED rating 

available for this time period, then the rating dated most recently after the first 

intervention date was utilised. 
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Figure 30: Percentage of children in each cluster attending schools with each OFSTED rating, utilising ECC data linked to 
Department for Education (2016) data 

Figure 30 illustrates that, comparatively, cluster 3 had the highest percentage of children 

attending Outstanding schools, and cluster 4 the lowest percentage.  Clusters 3 and 9 had 

no children attending Inadequate schools.  Whilst cluster 5 did have the highest 

percentage of children attending Inadequate schools, there were only 6 children in 

Cluster 5 who linked to OFSTED data, and so this number could be misleading. 

Cumulatively, cluster 1 had the lowest percentage of children attending good or better 

schools, whereas cluster 7 had the highest percentage.  However, the small size of cluster 

7 (only 25 children could be linked to an OFSTED rating) might mean that such a high 

percentage could simply be a quirk of the data.  Clusters 3 and 11 also had higher 

percentages of children attending good or better schools, and they had a more reliable 

sample size.  The school OFSTED data was analysed as it was thought that it might provide 

useful insight since two of the clustering attributes pertained to school events (absence 

and exclusion), and to some extent the OFSTED rating could also be considered a ‘place-

based’ attribute, since children tend to attend schools that they live close to. 
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6.3.2 Detailed summary of clusters 

There follows a detailed description of the characteristics of each of the eleven clusters, 

drawing together the information from the previous section. 

6.3.2.1 Cluster 1: School exclusion and criminal offences 

To provide a visual reminder, Figure 31, details the percentage of families in cluster 1 who 

had each of the particular events in the year prior to the start of first intervention.  For 

comparison, the percentage of families who had these events for all the data (all TF) are 

also plotted.  This comparison illustrates that cluster 1 had proportionally more families 

with school absence, exclusion and criminal offences, but proportionally fewer serious 

child safeguarding issues (CPP and LAC). 

 

Figure 31: Percentage of families in cluster 1 with each event, with percentage of events for all families highlighted for 
comparison 

Cluster 1 contained 291 families, consisting of 1067 individuals.  Of these 602 (58%) were 

children, with the mean age being 10.  Figure 32 plots the age distribution for adults and 

children and shows that a large proportion of children were in the 10 to 15 years of age 

range.  11% of families did not have a child (under the age of 18). 
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Figure 32: Age distribution of children (aged under 18 on first intervention start date) and adults in cluster 1 

Two thirds (66%) of all families with school exclusion were contained in this cluster.  57% 

of families in cluster 1 had school exclusion (mean = 2) and this tended to be 

accompanied by school absence (85% of those with exclusion had absence too).  

However, although two thirds of families had school absence, the absence levels were 

low, with an average of 3.9% unauthorised school sessions per family.  Only 7% of families 

had over 15% unauthorised absence.  Of all the clusters, proportionally fewer children 

(61%) in cluster 1 attended a school rated ‘good’ or ‘outstanding’ by OFSTED, and cluster 

1 had the highest percentage of children attending schools that required improvement. 

It was also notable that just under half (47%) of all families with criminal offences 

committed by adults were contained in this cluster.  And just under half (48%) of all 

families with offences committed by children were contained here too.  However, families 

tended to have one or the other but not both; only 6% of families who had criminal 

offences had offences committed by both adults and children. 

There were almost no serious child safeguarding events (only 4 families had Child 

Protection Plans, and 1 family had Looked after Children).  However, 16 families had a 

pre-existing CPP, and 4 had previous LAC events that were likely to be ongoing (as they 

had no end date), but given the cluster size these were low numbers.  42% of families had 

CIN events; given the spread of CIN events over all clusters this was not particularly 

remarkable.  No families had members who were logged as NEET. 
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This cluster had a fairly low average silhouette value (0.22) and might be considered only 

loosely cohesive.  11% of records/families had a negative individual silhouette value, 

indicating that these families might have been better suited to another cluster. 

In terms of intervention treatment, 32% of families received Complex Families Parenting 

Treatment (CFPT), 28% were receiving Family Intervention Project (FIP), 23% were 

receiving Assertive Outreach (AO), and smaller percentages were receiving FF and FINIS. 

6.3.2.2 Cluster 2: Child Protection 

Figure 33 details the percentage of families in cluster 2 who had each of the particular 

events in the year prior to the start of first intervention.  For comparison, the percentage 

of families who had these events for all the data (all families) are also plotted.  The plot 

illustrates that cluster 2 had proportionally far more families with Child Protection Plans. 

 

Figure 33: Percentage of families with each event for cluster 2, with percentage for all families highlighted 

Cluster 2 contained 335 families, consisting of 1282 individuals.  Of these 753 (59%) were 

children, with the mean age being 7.  Figure 34 plots the age distribution for adults and 

children and shows that a large proportion of children were aged under 11. 
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Figure 34: Age distribution of children (aged under 18 on first intervention start date) and adults in cluster 2 

All families had Child Protection plans in cluster 2; 53 families (16%) had only a CPP and 

no other events.  Of all the families with CPPs, 92% were contained in this cluster.  58% of 

families had CIN events, which was proportionally higher than for most of the other 

clusters, but this may be because CIN events are somewhat correlated with CPPs.  12% of 

families had LAC events, and of all the families with LAC events almost a quarter (23%) 

were contained in this cluster.  

There was very little school exclusion; 6% of families had them, which was the lowest 

proportion of all the clusters (1-7).  44% of families had school absence, but the levels 

were low, with an average of 3.7% unauthorised sessions per family.  15% of families had 

over 15% unauthorised absence.  77% of children in cluster 2 attended a school rated 

‘good’ or ‘outstanding’ by OFSTED; this was comparatively high. 

There were very few families with members who were NEET (2%) or those with criminal 

offences committed by children (4%).  However, 17% of families had criminal offences 

that were committed by adults.  Of all the families with adult criminal offences, a quarter 

(25%) were contained in this cluster.  17% of families had events that were classed as 

domestic abuse. 

Cluster 2 represents one of the more diverse clusters, as 44% of families had 3 or more 

different types of events occur in the year prior to intervention.  The average silhouette 

width of 0.44 was acceptable, and only 4% of families had negative individual silhouette 

values, meaning that the majority of families most likely did belong in this cluster 

In terms of Intervention treatment type, 38% of families were receiving Family 

Intervention Project (FIP), which aims to engage the most challenging families.  25% had 
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Complex Families Parenting (CFPT), and 24% Families First (FF), with smaller percentages 

receiving AO and FINIS.  Almost all families receiving FF and FINIS had planned endings. 

6.3.2.3 Cluster 3: Looked After Children 

Figure 35 details the percentage of families in cluster 3 who had each of the particular 

events in the year prior to the start of first intervention.  For comparison, the percentage 

of families who had these events for all the data (all families) are also plotted.  The plot 

illustrates that comparatively families in cluster 3 had much higher proportions of LAC 

events, and also higher proportions of CIN events and offences committed by adults; but 

lower proportions of CPP events and school absence.  

 

Figure 35: Percentage of families with each event for cluster 3, with percentage for all families highlighted 

Cluster 3 contained 115 families, consisting of 424 individuals.  Of these 233 (55%) were 

children, with the mean age being 8.  Figure 36 plots the age distribution for adults and 

children and shows a mixed distribution for the children, with a peak at age 6. 
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Figure 36: Age distribution of children (aged under 18 on first intervention start date) and adults in cluster 3 

All families in this cluster had Looked After Children events, 18% of families had only LAC 

events and no other event.  Of all the families with LAC events, 69% were contained in 

this cluster.  Just under two thirds of families (63%) had CIN events, which was 

comparatively high, but few had Child Protection Plans (2%, which rose to 8% when 

considering pre-existing plans). 

Just under a third (30%) of families had school absence, which was proportionally lower 

than most of the other clusters.  And the average percentage of unauthorised absence 

per family was 1.2%, which was a very low level; only 3% of families had school absence 

that was greater than 15% of available sessions.  There were also low levels of school 

exclusions (11% of families).  Cluster 3 had the highest percentage (24%) of children 

attending schools OFSTED rated as ‘outstanding’; and 81% of children attended a school 

with a rating of ‘good’ or ‘outstanding’, which was the second highest percentage of all 

the clusters.  Only one family had NEET members. 

Few families had criminal offences committed by children (8%), however a comparably 

higher proportion had offences committed by adults (21%).  It was notable that most 

families who had offences committed by adults did not also have school absence. 

Just over a third of families (35%) were receiving DWP benefits, and this was a lower 

percentage than for most other clusters.  74% of families had changed address at least 

once in the year prior to intervention, which was a much higher percentage than any of 

the other clusters.  However, this might be explained by the fact that all families in this 

cluster contain children who were moving around (in social care), therefore it is likely that 

address changes might be frequent. 
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Cluster 3 had the highest silhouette value (0.56) of all the clusters and so might be 

thought of as the most cohesive.  Only 2 families (2%) had individual silhouette values 

that were negative, and which indicated that they might be better suited to another 

cluster. 

In terms of Intervention treatment type, just over half (51%) of families in this cluster 

were receiving Families First (FF) treatment; this was a far higher percentage than for any 

other cluster.  As FF works with families who are at risk of needing social care and works 

to try and keep them together, it would appear to make sense that so many families from 

this cluster should be receiving this treatment.  Almost all families that had FF treatment 

had a planned ending. 

6.3.2.4 Cluster 4: NEETs 

Figure 37 details the percentage of families in cluster 4 who had each of the particular 

events in the year prior to the start of first intervention.  For comparison, the percentage 

of families who had these events for all the data (all families) are also plotted.  The plot 

highlights the comparatively high proportion of families with NEET members and criminal 

offences committed by children, and lower proportions of child safeguarding (CIN & CPP) 

events. 

 

Figure 37: Percentage of families with each event for cluster 4, with percentage for all families highlighted 
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Cluster 4 contained 61 families, consisting of 270 individuals.  Of these 157 (58%) were 

children, with the mean age being 11.  Figure 38 plots the age distribution for adults and 

children, and for the children it shows a larger proportion in their teens, particularly aged 

16 to 17.  For the adults, there was a very large proportion in the 18-20 age range.  18% of 

families in this cluster contained no children (aged under 18).  However, surveying the age 

ranges revealed that this cluster generally contained families with older children, 

therefore although some families contained no individuals aged under 18, the ‘children’ 

in these families were simply aged 18 or above and were classed as adults for the purpose 

of this analysis. 

 

Figure 38: Age distribution of children (aged under 18 on first intervention start date) and adults in cluster 4 

All families in this cluster had at least one member who was classed as NEET (not in 

employment, education or training).  A quarter (25%) of families had only NEET members 

and no other events.  Of all the families with NEET members just over three quarters 

(78%) were contained in this cluster. 

This cluster contained low levels of child safeguarding: only one family had a pre-existing 

CPP; 11% had LAC events; and 31% had CINs (which was a lower percentage than all but 

one cluster).  There were also fairly low levels of school absence and exclusion.  44% of 

families had some school absence, and the average percentage of unauthorised absence 

per family was low, at 2.2%.  Only 3% of families had school absence that was greater 

than 15% of available sessions.  16% of families had school exclusions.  The percentage of 

children attending schools judged as ‘good’ or ‘outstanding’ by OFSTED was 65%, which 

was lower than all but two of the clusters; overall, cluster 4 had the lowest percentage 

(4%) of children attending ‘outstanding’ schools. 
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Cluster 4 had an acceptable silhouette value (0.44) and appears fairly cohesive.  However, 

5 families (8%) had negative individual silhouette values indicating that they might be 

better suited to another cluster. 

In terms of Intervention treatment type, almost half (48%) of families in this cluster were 

receiving Family Intervention Project (FIP) treatment, which is aimed at the most 

challenging families. 

6.3.2.5 Cluster 5: Adult Criminal Offences 

Figure 39 details the percentage of families in cluster 5 who had each of the particular 

events in the year prior to the start of first intervention.  For comparison, the percentage 

of families who had these events for all the data (all families) are also plotted.  The plot 

illustrates that cluster 5 had comparatively high proportions of families with criminal 

offences committed by adults, and school exclusion; conversely, child safeguarding and 

school absence events were proportionately low. 

 

Figure 39: Percentage of families with each event for cluster 5, with percentage for all families highlighted 

Cluster 5 contained 21 families, consisting of 70 individuals.  Of these 27 (39%) were 

children, with the mean age being 10.  Figure 40 plots the age distribution for adults and 
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children, and for the children it shows a large proportion in their teens, aged 13 and up.  

This was a particularly small cluster and so it was not surprising that there were gaps in 

the age distributions.  Just under half (48%) of all families in this cluster had no children 

(aged under 18). 

 

Figure 40: Age distribution of children (aged under 18 on first intervention start date) and adults in cluster 5 

All families in this cluster had at least one adult who had committed a criminal offence, 

and the levels of criminal offences were high, with a mean of 4 per family.  A third of 

families (33%) had domestic abuse events, which was the highest proportion over all 

clusters.  The families contained in this cluster did not have a diverse mix of events; 

almost two thirds (62%) of families had only criminal offences committed by adults and 

no other events.   

Proportionally fewer families had school absence (29%) than most of the other clusters; 

this might be explained by the fact that just under half of the families had no children. 

However, those families that did have school absence had high levels of it; half had more 

than 15% unauthorised sessions. And those families with school absence tended to also 

have school exclusion; just under a quarter (24%) of families had school exclusion.  The 

percentage of children attending schools judged as ‘inadequate’ by OFSTED was 17%, the 

highest for any cluster; conversely, 67% attended schools judged as ‘good’ or 

‘outstanding’ which was fairly low in comparison to the other clusters.  However, only 6 

children (of a possible 27) could be linked to OFSTED data, therefore, this sample is so low 

that the statistics may be unreliable. 
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There were generally low levels of child safeguarding; this again might be explained by 

the fact that there were fewer children in this cluster.  10% of families had children who 

had committed criminal offences.  There were no NEET members. 

The silhouette value of this cluster (0.46) was the second highest of all clusters, and none 

of the families had a negative individual silhouette value, indicating that all families were 

probably best suited to this cluster.  In terms of Intervention treatment type, most 

families received either AO (33%), CFPT (29%) or FIP (33%) 

6.3.2.6 Cluster 6: High Levels of School Absence 

Figure 41 details the percentage of families in cluster 6 who had each of the particular 

events in the year prior to the start of first intervention.  For comparison, the percentage 

of families who had these events for all the data (all families) are also plotted.  The plot 

indicates that, comparatively the families in cluster 6 had higher proportions of all events, 

most notably school absence, school exclusion and criminal offences committed by 

children. 

 

Figure 41: Percentage of families with each event for cluster 6, with percentage for all families highlighted 
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Cluster 6 contained 54 families, consisting of 206 individuals.  Of these 123 (60%) were 

children, with the mean age being 12.  Figure 42 plots the age distribution for adults and 

children, and for the children it shows a large proportion in their teens, particularly aged 

14 to 15.  For the adults, there was a large proportion in the 18-20 range and also mid to 

late thirties.  All families had children, although 7% had no adults attached to them. 

 

Figure 42: Age distribution of children (aged under 18 on first intervention start date) and adults in cluster 6 

This cluster contains families who all had high levels of school absence (mean 39%).  All 

but one family (98%) had unauthorised school absence greater than 15%.   This was a 

diverse cluster and all families had school absence combined with at least one other 

issue; 78% had three events or more.  Just over half of families (54%) had school 

exclusion, which was the second highest level of all clusters.  The percentage of children 

attending schools judged as ‘good’ or ‘outstanding’ by OFSTED was 65%, which was the 

second lowest percentage in comparison to the other clusters. 

There were proportionally higher levels of child safeguarding events than for most of the 

other clusters, with 57% having CIN events, 24% having CPPs and 9% having LAC events.  

In terms of crime, 48% of families had criminal offences committed by children, which 

was comparatively high, and 13% had criminal offences committed by adults.  15% of 

families had at least one NEET member, which was also a comparatively high proportion. 

The silhouette value of this cluster (0.14) was the lowest of all clusters, and 19% of the 

families had a negative individual silhouette value, indicating that they may have been 

better suited to another cluster.  This implies that this cluster was not very cohesive, and 

any conclusions drawn from it should be treated cautiously. 
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In terms of Intervention treatment type, half of families (50%) of families in this cluster 

were receiving Family Intervention Project (FIP) treatment; this was the highest 

proportion over all clusters.  This treatment is aimed at the most challenging families who 

have complex needs. 

6.3.2.7 Cluster 7: Child Criminal Offences 

Figure 43 details the percentage of families in cluster 7 who had each of the particular 

events in the year prior to the start of first intervention.  For comparison, the percentage 

of families who had these events for all the data (all families) are also plotted.  The plot 

illustrates that families in cluster 7 had comparatively high proportions of children who 

committed criminal offences, and child protection plans. 

 

Figure 43: Percentage of families with each event for cluster 7, with percentage for all families highlighted 

Cluster 7 contained 25 families, consisting of 86 individuals.  Of these 53 (62%) were 

children, with the mean age being 12.  Figure 44 plots the age distribution for adults and 

children, and for the children it shows a larger proportion in their teens, aged 13 and up.  

8% of families had no adult attached to them. 
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Figure 44: Age distribution of children (aged under 18 on first intervention start date) and adults in cluster 7 

This cluster contained families who all had at least one child who had committed criminal 

offences, with the mean number of offences being 4 per family.  Just over a quarter (28%) 

of families had only criminal offences committed by children and no other event.  Only 8% 

of families had criminal offences that were committed by adults. 

Just under half of all families (44%) had school absence, although the absence levels were 

fairly low, with an average of 2.9% unauthorised absence.  Just under a quarter of families 

(24%) had school exclusion.  There were no NEET members.  The percentage of children 

attending schools judged as ‘good’ or ‘outstanding’ by OFSTED was 88%, which was the 

highest percentage in comparison to the other clusters.  However, given the small size of 

this cluster this could be a quirk of the data.  

There were high levels of child safeguarding.  Just under half (44%) of families had CPPs, 

which is the second highest proportion of all the clusters.  Those families with CPPs also 

tended to have school absence.  Just under a third of families had CIN events; families 

with CIN events tended not to have CPPs.  8% of families had LAC events.  A fifth (20%) of 

families had events that were considered domestic abuse.  Just over a quarter (28%) of 

families were receiving DWP benefits, which was proportionally lower than for all the 

other clusters. 

This is a particularly small cluster with only 25 families.  The average silhouette value was 

fairly low (0.2) and 16% of families had a negative individual silhouette value, indicating 

that they might be better suited to another cluster.  This indicates a possible lack of 

cohesion and any conclusions drawn from this cluster must be treated with caution. 
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In terms of Intervention treatment type, families were receiving either AO (20%), CFPT 

(16%), FF (24%) or FIP (40%). 

6.3.2.8 Cluster 8: School Absence Only 

Cluster 8 contained 223 families, consisting of 806 individuals.  Of these 525 (65%) were 

children, with the mean age being 9.  Figure 45 plots the age distribution for adults and 

children, and for the children it shows a larger proportion aged 8 to 12 years.  All families 

had children, as would be expected, but 13% of families in this cluster had no adult 

attached to them.  Whilst all but cluster 5 had a small percentage of families with no 

adults, 13% was the highest percentage over all clusters (cluster 10 also had 13% of 

families with no adults).  

 

Figure 45: Age distribution of children (aged under 18 on first intervention start date) and adults in cluster 8 

All families in this cluster had school absence and no other events in the year prior to 

intervention.  The average percentage of unauthorised school sessions was 6.4%, and 

only 12% of families had unauthorised absence that was greater than 15%.  The 

percentage of children from this cluster attending schools judged as ‘good’ or 

‘outstanding’ by OFSTED was 73%, which was comparatively lower than for all but four of 

the clusters.  

Although these families had no events other than school absence in the year prior to 

intervention, some families had pre-existing child safeguarding issues.  12% of families 

had ongoing CPPs, and 2% of families had previous LAC events, however they had no 

logged events in the year prior to intervention. 
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Just under a third (30%) of families had at least one address change in the year prior to 

intervention.  Comparatively this was a lower percentage than for any of the other 

clusters.  It may be that these families do not move as frequently as others, however it 

may also be possible that if a family does not have any of the other events (CIN, criminal 

offences, etc.), then address changes are less likely to be logged. 

In terms of Intervention treatment type, the majority of families were receiving AO (30%), 

FIP (19%) or CFPT (39%).  In comparison to the other clusters, this cluster had the highest 

proportion of families receiving CFPT.  This treatment provides parenting interventions 

(lessons and support) to families with a range of complex needs.  Since, these families 

only had school absence, the treatment type could indicate the possibility that at least 

some of these families might have had other needs there were simply not represented by 

the available data. 

6.3.2.9 Cluster 9: Children in Need only 

Cluster 9 contained 243 families, consisting of 834 individuals.  Of these 486 (58%) were 

children, with the mean age being 7.  Figure 46 plots the age distribution for adults and 

children, and for the children it shows a large proportion aged 1 to 6.  10% of families in 

this cluster had no adult attached to them. 

 

Figure 46: Age distribution of children (aged under 18 on first intervention start date) and adults in cluster 9 

All families in this cluster had at least one CIN event in the year prior to intervention, but 

no other events.  Three families (1%) had pre-existing Child Protection Plans, but there 

was no change to their status in the year prior to intervention.  The percentage of 

children from this cluster attending schools judged as ‘outstanding’ by OFSTED was 20%, 
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which was comparatively high.  However, a third of all children in this cluster were too 

young to attend school. 

Just over a third (36%) of families were receiving DWP benefits on the first intervention 

date.  This was low compared to the other clusters.  In terms of Intervention treatment 

type, families were generally receiving AO, CFPT or FIP.  However, in comparison to the 

other clusters, this cluster contained the largest percentage (6.2%) of families receiving 

Family In Need Intervention Service (FINIS).  This treatment specifically targets families 

with Children in Need events, so this would appear to make sense. 

6.3.2.10  Cluster 10: School Absence and CIN 

Cluster 10 contained 182 families, consisting of 716 individuals.  Of these 470 (66%) were 

children, with the mean age being 9.  Figure 47 plots the age distribution for adults and 

children, and for the children there were higher proportions of children of school age (5-

15).  All families had children, however 13% of families in this cluster had no adult. 

 

Figure 47: Age distribution of children (aged under 18 on first intervention start date) and adults in cluster 10 

All families in this cluster had unauthorised school absence and at least one CIN event, 

but no other events in the year prior to intervention.  However, 6 families (3%) had pre-

existing Child Protection Plans that were issued more than a year before intervention.  

Aside from cluster 6, the highest levels of school absence were contained in this cluster; 

families had on average 10.6% unauthorised school sessions.  A fifth of families had 

greater than 15% unauthorised school sessions.  The percentage of children from this 

cluster attending schools judged as ‘good’ or ‘outstanding’ by OFSTED was 76%, and 

comparatively four clusters had a higher percentage than this. 
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In terms of Intervention treatment type, just over a third (36%) of families in this cluster 

were receiving Family Intervention Project (FIP) treatment, and 31% were receiving CFPT.  

These both work with families who have challenging and complex needs. 

6.3.2.11  Cluster 11: No Events 

Cluster 11 contained 605 families, consisting of 1333 individuals.  Of these 541 (41%) 

were children, with the mean age being 8.  Figure 48 plots the age distribution for adults 

and children, and for the children it is fairly even, although the plot tails away for 

teenagers.  This was the largest cluster, and half of families (50%) had no children 

attached to them.  In other clusters this lack of children was at least partially explained by 

the fact that the ‘children’ were older and aged 18-20 (and therefore classed as adults), 

however, this does not appear to be the case overall here.  8% of families had no adult 

attached to them. 

 

Figure 48: Age distribution of children (aged under 18 on first intervention start date) and adults in cluster 11 

All families in this cluster had no events in the year prior to intervention.  However, 20 

families (3%) had pre-existing Child Protection Plans, 6 families (1%) had pre-existing LAC 

events and 9 families had members who were classed as NEET more than a year earlier.  

But there were no events logged pertaining to these in the year prior to intervention. 

As mentioned in previous sections, the most notable aspect of this cluster was the fact 

that 41% of families consisted of only one person.  This was a far higher percentage of 

single person families than for any of the other clusters (cluster 5 had 14%, and all others 

had less than this).  The majority of these single person families consisted of lone adults, 

however, 10% were lone children.  One possible reason for the high proportion of single 
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person families may be problems with the data; it is possible that some of these 

individuals may be part of other families, and because of errors in the data were not 

linked together.  

The percentage of children from this cluster attending schools judged as ‘good’ or 

‘outstanding’ by OFSTED was 80%, which was high in comparison to the other clusters 

(only clusters 3 and 7 had higher percentages).  Just over a third of families (36%) had at 

least one address change in the year prior to intervention; this was a fairly low 

percentage in comparison to other clusters.  However, given that these families had no 

events occur in the year prior to intervention, it is possible there may have been less 

opportunity to log address changes.  40% of families were receiving DWP benefits; this 

was a little lower than for the other clusters (only clusters 3 and 7 had a lower 

percentage). 

In terms of Intervention treatment type, just over a third (35%) of families in this cluster 

were receiving Assertive Outreach (AO) treatment; this was the highest proportion over 

all clusters.  As AO works with families who are at risk of developing complex needs, their 

treatment type may shed some light on the fact that these families appear to have no 

issues.  It is possible that at least some of the families may have been identified as likely 

to develop problems in future; this may have been performed using data that was not 

available in this analysis (such as health or anti-social behaviour data). 

6.3.2.12  Summary 

Eleven different clusters of families were discovered in the data.  Whilst the four pre-

specified clusters (8 to 11) were fairly simple to understand, at least in terms of the 

events that had occurred prior to intervention (for example, just families with school 

absence, or families who had no events at all), the other seven clusters were more 

complex.  However, they all had particular characteristics that were unique to the cluster 

and do seem to form distinct groups.   

Whilst it can be difficult to assimilate such a large of body of data for each of the eleven 

clusters, analysing the data separately on the cluster-level, as opposed to one large 

analysis of the occurrence of events for all families (as in Table 6) provided far more 

context and a much greater understanding of the types of families that exist within the 

data. 
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However, in order to provide further clarity as to the cluster assignments, and to 

determine what the important factors were, it was felt that decision tree learning could 

provide some insight.  The following analysis uses decision tree learning to derive rules 

for the clusters assignments and aid in the understanding of which attributes might be 

more important in terms of cluster assignment. 

6.3.3 Using Decision Tree Learning to describe the clusters 

As an alternative method of describing the cluster assignments, decision tree learning 

was utilised.  This method was chosen to offer a visual interpretation of the cluster rules.  

And it was also hoped that the rules might provide further clarity around the underlying 

relationships within the various clusters and identify important attributes. 

The CART algorithm was implemented using the R programming language and the ‘rpart’ 

package (Therneau et al., 2017).  Only the data that was clustered was used in the model; 

that is, the data forming clusters 1 to 7, for 902 families.  It was felt that including the four 

pre-specified clusters (8 to 11) might inflate the accuracy of the model, since they 

represent very simple rules.  However, for completeness they were included in the overall 

tree plot, Figure 49. 

The cluster assignment (numbered 1 to 7) was the target attribute; the eight clustering 

attributes (absence, offences, etc.) were the predictor attributes.  The data was randomly 

split into a training (n = 632) and testing (n = 270) dataset, with a 70:30 split, and this was 

done proportionately to the target attribute.  The classification model was built upon the 

training dataset using 10-fold cross-validation.  Since the cross-validated error rate was 

used to decide where to prune the tree, the final model was then evaluated on the test 

dataset (which was not used at all in the model building process, and therefore unbiased). 

The tree was pruned using a CP value of 0.0026, at the point where the cross-validated 

error rate was lowest.  This produced a tree with 93.3% classification accuracy on the test 

data set.  Table 19 contains a confusion matrix detailing the predicted values compared to 

the actual cluster assignments; the diagonal row contains the number of cases where the 

predicted and actual cluster assignment matched.  Of the 270 records in the test dataset, 

only 18 were assigned to the wrong cluster (and not in the diagonal row), resulting in a 

6.7% error rate.  Clusters 3 and 7 were predicted with 100% accuracy; with sensitivity 

equal to 1, that is, all records in those clusters were correctly identified.  Clusters 1 and 5 
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had specificity of 1, meaning that no record was wrongly identified as belonging to these 

clusters.   

Table 19: Confusion matrix for predicted cluster assignments 

 Actual Cluster Assignment 

Predicted 
Cluster 
Assignment 

 1 2 3 4 5 6 7 

1 83 0 0 0 0 0 0 

2 1 98 0 0 0 4 0 

3 0 0 35 4 0 1 0 

4 0 0 0 14 0 1 0 

5 0 0 0 0 5 0 0 

6 2 0 0 0 1 10 0 

7 1 3 0 0 0 0 7 

 

The balanced accuracy (that is, the sensitivity plus the specificity divided by 2) for all 

cluster predictions was very high (greater than 0.97) for all clusters except for cluster 4 

(0.89), cluster 5 (0.92) and cluster 6 (0.81).  A value of 1 would mean perfect accuracy, 

whereas a value of 0 would mean that all predictions were incorrect, so values close to 1 

indicate very high accuracy.  The slightly lower accuracy for cluster 6 might be explained 

by the fact that cluster 6 was the least cohesive cluster, and contained some families that 

were probably not well fitted to it (i.e. that had negative silhouette values); therefore, in 

this case the rules might have been more difficult to define. 

Figure 49 plots the decision tree.  The extra rules for the other four pre-specified clusters 

were also included on the right of the tree for completeness.  The plot highlights that, 

despite the seemingly complex nature of the clusters (as evidenced by the detailed 

descriptions in the previous section), the decision tree produced is fairly simple and easy 

to understand.  It provides clear rules and in doing so highlights the key characteristics of 

each cluster.  

Aside from cluster 7, each cluster is defined by a single rule.  For instance, records are 

assigned to cluster 2 if the family has a child protection plan (CPP) and has fewer than two 

(i.e. one or none) criminal offences committed by children.  Cluster 7 was defined by two 

rules (had two leaf nodes), suggesting this cluster was a little more complex to describe.    
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Figure 49: Decision tree visualising cluster rules, derived using the ‘rpart’ R package implementation of the CART algorithm and plotted with the ‘rpart.plot’ R package
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As part of the CART process, each attribute was ranked in terms of variable importance 

(Table 20).  This is calculated for all attributes by considering the sum of the goodness of 

split for each attribute in its role as either a primary or a surrogate splitter.  The rpart 

algorithm scales these to sum to 100, with the highest score indicating the most 

important attribute/s.   

Table 20: Variable importance scores for the decision tree predicting cluster assignment 

Attribute CPP LAC NEET 
School 

Absence 
Adult 

Offences 
Child 

Offences 
School 

Exclusion 
CIN 

Variable 
Importance 
Score 

43 21 14 7 7 5 3 0 

 

The CPP (child protection plan) attribute had the highest variable importance score, and 

this was reflected by it forming the main split in the tree (Figure 49).  Interestingly, the 

CIN attribute had no importance; including it in the model (or not) made no difference to 

its performance.  This may be because CIN events were spread across all seven clusters 

and therefore not unusual to any cluster.  Another reason may be that many families with 

CIN events were not included in the decision tree (they were contained in clusters 9 and 

10).  School exclusion also had a low variable importance score; however, whilst not 

utilised as a splitter, this did have some importance as a surrogate.  

One likely reason that the CPP attribute was the most important is that cluster 2 was the 

largest cluster (it contained 335 families) and its main feature was that all families had 

Child Protection Plans, therefore it would make sense that the first split in the tree would 

attempt to split the largest group off.  However, not all families with CPPs were contained 

in cluster 2, therefore the next split trims off the families that belonged to cluster 7. 

Figure 49 highlights that decision tree learning can be utilised to identify rules and make 

sense of clustering results with a high level of accuracy.  It also provides an alternative 

(and perhaps more logical way) to think about the cluster assignments and how each 

individual family was assigned to its cluster.  The variable importance scores are also 

useful in providing insight into the more important features when considering the 

clusters.  It should be noted that in this case the decision tree produced was fairly simple 

and this may be because the clusters were quite well defined with each having their own 

particular unique characteristics.  In the case of a more complex cluster analysis, a 

method such as this might not have such interpretable results (or may at least produce a 

much more complex tree). 



176 
 

The decision tree also provides a method of assigning new families to these clusters, if 

this were to be deemed appropriate in the future.  For instance, if it was felt that 

assigning future families to the cluster most suited to them could aid in understanding a 

family’s particular needs, then their data could be fed into the decision tree and the 

cluster assignment easily determined. 

6.3.4 Geographical Links to Families and Clusters 

All but nine of the TF (2146 out of 2155) could be linked to a Post Code; the nine families 

without a geographical location were excluded from the geographical analysis.  For the 

remaining data, the post code of each family was linked to the Output Area (OA) and 

Lower Super Output Area (LSOA).  Demographic data from the 2011 Census was then 

linked via the OA to each family.  It was therefore possible to analyse the characteristics 

of the areas that each family lived in.  This was important because the ECC felt that where 

a family lived might be a factor in whether a family was classed as a TF and perhaps also 

in any outcome of their treatment.   

Although the ECC data contained information about the events that had happened to a 

family, there was no data pertaining to demographic details such as ethnicity, 

qualifications, religion, etc.  Whilst linking each family (to the Census 2011 data for the 

area they lived in) cannot indicate anything about the family specifically, it can indicate 

that a family lived in, for example, an area with higher levels of unemployment, or an area 

with lower levels of people with no qualifications.  It provides ‘place-based’ context for 

each family.  Figure 50 plots the concentration of TF living in each LSOA, by cluster.  That 

is, for each cluster, it plots the TF living in each LSOA as a percentage of the total number 

of households living there.  For example, if a particular LSOA had two TF from cluster one 

living in it, and there was a total of 400 households altogether in that LSOA, then the 

percentage would be 0.5% (2 divided by 400).  The number of households in each LSOA 

was obtained from the 2011 Census data.  As already highlighted in Figure 8, there were 

particular areas of the city that contained higher percentages of TF generally, however 

Figure 50 highlights that there were subtle differences in TF location where the different 

cluster assignments were taken into consideration.  The smaller clusters (4 to 7) do have 

smaller percentages, as might be expected and so are represented by paler colours, 

nevertheless for all clusters there were particular LSOAs that had higher proportions of 

TF, and these tended to vary by cluster. 
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Figure 50: TF living in each LSOA as a percentage of all households in each LSOA, by cluster assignment (utilising ECC 
data linked to Census 2011 data) 
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As an alternative view Figure 51 plots heatmaps of the concentration of TF by cluster.  For 

the purpose of comparison, no legend was included, as the concentration was different 

for each plot (in order to account for the different cluster sizes); the purpose of the plots 

was simply to provide a visual comparison of the areas with the greatest density of 

families for each cluster.  In each plot, the highest density of families was contained in the 

blue areas, with smaller densities in the yellow areas and red marking the edges.  The 

plots highlight the small size of clusters 4 to 7, with cluster 5 in particular represented 

simply by a circle for each family.  However, it also reinforces Figure 50 which highlighted 

the subtle differences in the location of families from each cluster. 

As a final indication of the location of TF, Figure 52 considers only TF and not the general 

population. For each cluster, it plots the TF living in each LSOA as a percentage of the 

total number of TF in that LSOA.  For instance, if a particular LSOA contained ten TF, and 

five were from cluster 11, then the cluster 11 plot would have a percentage of 50% for 

that particular LSOA.  As indicated in the other plots, for each cluster there appear to be 

unique areas that have higher proportions of TF from particular clusters. 

Each of the plots does not contain any identifying geography (that is, there is no 

underlying map included).  However, this meant that direct comparisons between maps 

could be difficult, therefore the heatmap plots in Figure 51 each contain an identical grid 

in order to allow a direct comparison of the locations.  Since Figures 50 and 52 contain 

the LSOA boundaries, no grid was required, and the boundaries allowed for easy 

comparison. 
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Figure 51: Heatmaps of TF geographical concentration for each cluster (utilising ECC data) 
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Figure 52: TF living in each LSOA as a percentage of the total TF living there, by cluster (utilising ECC data)
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Whilst Figures 50-52 provide visualisations of the location and density of the TF in relation 

to their cluster assignment, Table 21 displays a selection of the demographic data (from 

Census 2011) aggregated by cluster.  This utilised the OA level data, as it provided more 

fine-grained detail than the LSOA level data.  The attributes had different units: ethnic 

group, place of birth and qualifications were compiled as the percentage of people with 

these characteristics in an area; economic activity applies to the household reference 

person for each household; and household deprivation and tenure apply on a household 

level.  In each column, the maximum and minimum values for that characteristic are 

highlighted in bold.  For instance, for the population density attribute, families from 

cluster 3 lived in areas with the highest average population density (83.3 persons per 

hectare) and families from cluster 10 lived in areas with the lowest average population 

density (67.4 persons per hectare).   

Figure 53 plots the data from Table 21 in a parallel points plot, with a line for each cluster 

(each assigned a unique colour to differentiate), this was plotted in order to provide a 

more interpretable comparison of the clusters (so much information in a table can be 

difficult to comprehend).  Figure 53 also contains the long-term health attribute 

(percentage of people who felt their long-term health was limited either a little or a lot), 

which was not contained in the table due to space constraints. 

Table 21: Aggregated demographic data by cluster assignment with interesting characteristics highlighted in bold 
(utilising ECC and Census 2011 data) 

Cluster Population 
Density: 
persons 

per 
hectare 

Economic 
Activity: 

Percentage 
economically 

active 

Ethnic 
Group: 

Percentage 
White 

Place of 
birth: 

Percentage 
born in UK 

Qualifications: 
Percentage 

with no 
qualifications 

Household 
Deprivation: 
Percentage 
deprived in 
at least one 
dimension 

Household 
Tenure: 

Percentage 
that own 

home 

Household 
Tenure: 

Percentage 
renting 
social 

housing 

1 68.8 60.0 69.6 77.8 34.7 73.9 31.7 48.5 

2 78.1 61.5 67.3 76.0 33.0 72.7 31.5 44.3 

3 83.3 62.7 61.5 72.8 31.2 71.9 32.1 42.7 

4 75.4 57.7 63.4 74.9 35.0 75.9 27.6 53.1 

5 70.2 60.0 65.2 73.7 30.2 71.4 29.0 48.6 

6 76.6 61.3 64.6 75.1 33.3 72.3 30.6 47.2 

7 75.2 61.4 66.2 76.2 33.5 72.5 29.2 50.9 

8 73.7 61.2 67.9 77.0 33.6 73.8 31.0 47.6 

9 75.5 62.2 64.7 74.1 32.0 72.5 33.0 41.1 

10 67.4 60.4 68.7 77.4 33.7 73.9 30.3 49.2 

11 68.9 60.2 68.7 77.5 34.2 74.2 30.4 49.7 

 

It is important to consider that since clusters 4 to 7 were relatively small (n < 70), the 

statistics pertaining to them may be less reliable than for the other larger clusters.  

However, given these caveats, perhaps the most notable characteristics apply to cluster 4, 
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which was one of the smaller clusters (n=61) and whose main characteristic was that each 

family had at least one member who was NEET (not in education, employment or 

training).  Families from cluster 4 lived in areas with the highest levels of household 

deprivation of all the clusters, highest levels of people with no qualifications, highest 

levels of people who felt their long-term health was limited, and also the highest levels of 

households living in social housing.  Cluster 4’s families also lived in areas that had the 

lowest levels of economic activity of all the clusters.   

 
Figure 53: Parallel points plot of place-based data (Census 2011 data linked to the Output Area that each TF lived in) 
aggregated by cluster assignment 

Cluster 3, which contained families who all had Looked After Children events, also had 

notable statistics.  In comparison to the other clusters, families in cluster 3 tended to live 

in areas that had higher population density, and the lowest percentages of people with 

‘white’ ethnicity, and people who were born in the UK.  Families from cluster 3 also lived 

in areas that had the highest levels of economic activity, and comparatively high levels of 

home ownership, but lower levels of households living in social housing and the lowest 

levels of people who felt their long-term health was limited.  In contrast, families from 
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cluster 1 lived in areas that had the highest levels (over all 11 clusters) of people of ‘white’ 

ethnicity and people born in the UK.  The average population density for the areas that 

families from cluster 1 lived in was lower than for families in all but two of the other 

clusters, and families from cluster 1 lived in areas that also had higher average levels of 

people with no qualifications.  

Figure 54 plots heatmaps of the locations of families in clusters 1 and 3, together with a 

combined plot in order to highlight the differences in location.  In the third plot, cluster 3 

was layered over cluster 1, therefore it was rendered partially transparent in order to be 

able to visualise cluster 1 underneath; where the colours are muddy is where both 

clusters had a high concentration of families (this is most evident on the right side, 

vertical middle of the plot).  Whilst it should be considered that cluster 1 contained more 

families than cluster 3 (291 compared to 115), and so might have a greater spread, there 

were subtle differences in location hotspots for each cluster.  Since there was no 

identifying geography included in the maps (no underlying map), a grid was included on 

each map in order to be able to compare the locations accurately (the gridlines follow the 

same geographical positions on each map). 

Whilst there were differences between clusters 1 and 3, it was notable, in contrast, that 

families from clusters 10 and 11 lived in areas with very similar characteristics; the two 

lines for these clusters in the parallel points plot follow almost exactly the same course.  

Cluster 1 also follows a similar course, although deviates slightly at certain points. 

Table 21 also highlighted that families from cluster 9 (which contained families who had 

only school absence and CIN events), lived in areas that had the highest levels of home 

ownership and conversely had the lowest levels of households living in social housing of 

all the clusters.  They also lived in areas that had comparatively high levels of people who 

were economically active.  Families from cluster 5, which was the smallest cluster (n=21) 

and contained families who all had at least one adult who had committed a criminal 

offence, lived in areas with the least household deprivation of all clusters, and the lowest 

percentage of individuals with no qualifications. 
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Figure 54: Heatmap comparison of the geographical locations of families in clusters 1 and 3 
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Overall, this section has highlighted that there were subtle differences in the areas that 

families from each cluster lived in.  Whilst there was no magical division of families into 

unique areas by cluster assignment (for example, families from cluster 1 did not all live in 

one small area, and families from cluster 2 in another separate small area, etc.), the 

analysis did indicate subtle differences in location by cluster.  For the most part, families 

from each cluster were spread throughout the city, however the various plots highlighted 

that there were differences in location and concentration of TF by cluster, and the 

statistics compiled for the areas that the families lived in also indicated differences. 

In order to gain a better understanding of the particular factors that might be important 

to these differences (or that are predictors of cluster assignment), the following section 

utilises machine learning methods as a way to identify important ‘place-based’ attributes. 

6.3.4.1 Predictive Modelling to determine whether place-based data might be 

considered predictors of cluster assignment 

Machine learning models (decision trees, random forests and generalized boosted 

models) were built in order to determine whether the place-based data might be utilised 

to predict cluster assignment.  This was performed in order to determine which of the 

place-based attributes were the most important with regards to the clusters.  The focus 

was not prediction, as there was no real necessity to be able to predict cluster assignment 

from the place-based data.  However, these methods each rank the predictor attributes in 

terms of importance to the target, and this can provide useful insight as to whether any 

of the attributes are important.  Decision tree learning, random forests and generalised 

boosted models were chosen specifically because they each produce an importance 

measure for the predictor attributes.   

For comparison purposes (to a more traditional regression method) multinomial logistic 

regression was also performed; this method was chosen as it can deal with an unordered 

categorical target attribute with more than two levels.  However, it should be considered 

that the model was misspecified as many of the predictors were correlated (as 

highlighted previously in Figure 10), and the target attribute (cluster assignment) had two 

levels that were particularly small (clusters 5 and 7).  Small levels such as this can lead to 

unreliable results (Boslaugh, 2013); one solution would be to merge the levels, however it 

made little sense to merge the clusters. 
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The cluster assignment (numbered 1 to 11) was the target attribute.  The various place-

based attributes (taken from the 2011 Census data linked to OA, and 2011 Police data 

linked to LSOA) were the predictor attributes, these are detailed in Appendix A.  The data 

was randomly split into a training (n = 1509) and testing (n = 646) dataset, with a 70:30 

split, and this was applied proportionately to the target attribute.  Each model was built 

upon the training dataset and then a final model evaluation performed using the test 

dataset. 

The baseline accuracy (on the test dataset) for predicting cluster assignments was 

28.02%, therefore any model that performed better than this might be considered useful.  

Baseline accuracy was derived by considering the simplest model possible; i.e., the 

accuracy if the model simply predicted the largest cluster (in this case, cluster 11). 

Various attribute combinations and different weightings were experimented with, 

however none of the models could improve significantly upon the baseline accuracy of 

28.02%.  Table 22 details the best accuracy on the test dataset of each of the models.  The 

decision tree had the highest accuracy overall, which was a tiny improvement upon the 

baseline.  The random forest model had the worst performance, with the accuracy being 

nearly 9% lower than the baseline.  The multinomial logistic regression model had 

accuracy that compared favourably with the boosted model.  However, it would be fair to 

say that none of the models performed better than simply guessing. 

Table 22: Accuracy on test dataset for each of the models predicting cluster membership using place-based attributes 

 Method: 

 
Baseline 
Accuracy 

Decision 
Tree 

Random 
Forest 

Generalized 
Boosted Model 

Multinomial 
Logistic 

Regression 

Accuracy 
on test 
dataset 

28.02% 28.17% 19.06% 26.78% 26.32% 

 

It was noted that the random forest models performed in a different manner to the other 

models.  Whilst the other models essentially just predicted the largest cluster (cluster 11, 

and therefore just about matched the baseline accuracy), the random forest also 

attempted to predict some of the other cluster assignments (albeit with low accuracy), 

and so in some ways might have detected more of an underlying pattern.  However, none 

of the models performed well enough to consider them useful in terms of prediction.  In 

terms of variable importance, all machine learning models chose similar attributes as the 



187 
 

most important; Table 23 lists the top five predictors for each model.  Appendix A 

contains the full list of important predictors for each model, together with the model 

parameters and results.  Overall, attributes relating to housing tenure, health, economic 

activity, household size and qualifications were deemed most important, and despite the 

poor performance of the models, this would appear to reinforce the patterns already 

noticed within the place-based data in the previous sections. 

Table 23: Most important ‘place-based’ attributes for each model to predict cluster assignment 

Decision Tree Random Forest Boosted model 

Tenure – percentage 
households who private rent 

Long-term health –
percentage people that are  
limited 

Tenure – percentage 
households who private rent 

Long-term health –
percentage people that are 
limited 

Economic activity –
percentage people who are 
active 

Long-term health –percentage 
people that are limited 

General health – percentage 
people with bad or very bad 

Place of birth – percentage 
people born in UK 

Household size – percentage 
single person households 

Qualifications – percentage 
people with none 

Household size – percentage 
single person households  

Economic activity –percentage 
people who are active 

Tenure – percentage of 
household who social rent 

Qualifications – percentage 
people with none  

General health – percentage 
people with bad or very bad 

 

The multinomial logistic regression model produced a complex model.  Ideally a smaller 

set of predictors would be utilised, and a dataset with fewer small groups.  However, this 

method was chosen for direct comparison to the machine learning methods, and so 

exactly the same data was utilised for all models.  As already noted, the model was 

misspecified and whilst the model did indicate significant attributes for some of the 

clusters, the results may not be reliable (they are listed fully in Appendix A).  However, it 

did compare favourably with the other methods in terms of predictive accuracy on the 

test dataset. 

A second logistic regression model was built in order to determine if utilising the machine 

learning methods as a form of feature selection (in order to select a smaller number of 

predictors) might improve the model performance.  Only the top five predictors identified 

as most important (listed in Table 23) by each of the machine learning models were 

included; since the lists were very similar, this consisted of 8 predictors.  This model 

produced accuracy on the test dataset of 27.86%, which was an improvement of 1.5% on 

the original regression model, but still below the baseline accuracy.  Full details are 

contained in Appendix A. 
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Overall, this section has shown that it was not possible to predict the cluster assignments 

from the place-based data alone.  This was perhaps a likely outcome as the place-based 

data was somewhat distant from the family itself - it could not say anything specifically 

about an individual family, only that the family lived in an area with particular 

characteristics (for example, low economic activity).  However, prediction was not the 

purpose; identifying the attributes that were predictors of the cluster assignment was.  

Whilst it should be considered that the model performance was generally poor (no 

improvement upon guessing), the identified predictors were similar no matter the 

method, suggesting they may have picked up some underlying pattern, and this may go 

some way toward confirming the findings from the previous sections; that place-based 

characteristics such as housing tenure, health and economic activity had some 

importance to the clusters. 

6.4 SUMMARY 

There follows a final brief summary of the clusters, drawing together the information 

from the previous sections and including the place-based information.  For clusters 1 to 7 

a plot is included that shows the percentage of families in that cluster with each event in 

order to provide a visual reminder of the cluster characteristics. 

6.4.1.1 Cluster 1: School exclusion and criminal offences (n = 291) 

Crime and problems with 

schooling were the main feature 

of this cluster.  Families had high 

levels of criminal offences 

committed by adults and criminal 

offences committed by children, 

although they tended to have one 

or the other, but not both.  The 

families had the highest levels 

(comparably) of school exclusion 

and most of those families with 

school exclusion also had school 

absence, although the levels of absence were relatively low.  It was notable that 
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proportionately more children (than any other cluster) attended schools that were 

classed by OFSTED as requiring improvement or inadequate.  In terms of child 

safeguarding, there were average levels of CIN events, but very low levels of more serious 

events (CPP and LAC).  No family had any NEET members.   

Families from cluster 1 lived in areas that had the highest levels (over all 11 clusters) of 

people of ‘white’ ethnicity and people born in the UK; and lower average population 

density.  There were also higher levels of people with no qualifications.  

This cluster had a fairly low average silhouette value (0.22) and might be considered only 

loosely cohesive; it was likely that some of these families may have been better suited to 

another cluster. 

6.4.1.2 Cluster 2: Child Protection (n = 335) 

Child safeguarding was the main 

feature of this cluster.  All families 

had Child Protection Plans, and 

there were proportionately higher 

levels of CIN events and children 

who had been taken into care 

(LAC) in comparison with other 

clusters.  The families tended to 

have younger children with over 

three quarters aged 11 or under.  

Perhaps because of their younger 

ages, there was very little school 

exclusion and criminal offences committed by children.  However, just under half of 

families had school absence, but the levels of absence were low. 

There was no remarkable aspect where the place-based data was considered, although 

families from cluster 2 lived in areas that on average had higher population density, and 

more economically active people than for most of the other clusters. 

Cluster 2 was a diverse cluster, with 44% of families having 3 or more different types of 

events occur in the year prior to intervention.  This more complex mixture of events was 

reflected in that cluster 2 had the fewest (proportionately) families receiving AO 
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treatment; AO was aimed at families whose needs were at risk of becoming complex, 

therefore it would seem that many of the family’s needs were already judged to be 

complex.  Families in cluster 2 had proportionately more planned endings to their 

intervention treatment than all but one of the other clusters.  The average silhouette 

width of 0.44 was acceptable and it is likely that most families did belong in this cluster. 

6.4.1.3 Cluster 3: Looked after Children (n = 115)  

The main feature of this cluster 

was that all families had a child (or 

children) taken into care at some 

point (LAC events) in the year 

prior to intervention.  A high 

proportion of families also had 

CIN events, but there were almost 

no CPP events.  The other main 

feature was criminal offences 

committed by adults; just over a 

fifth of families had them, which 

was comparably high.  There were 

low levels of school absence and exclusion.  Just under a quarter of children attended 

schools that were classed as ‘Outstanding’ by OFSTED, higher than any other cluster. 

More families in this cluster had address changes than any other cluster, however this 

might be at least partially explained by address changes related to children moving in and 

out of social care.  In comparison to the other clusters, families in cluster 3 tended to live 

in areas that had higher population density, and higher levels of economic activity.  

Conversely, the areas they lived in had lower percentages of people with ‘white’ ethnicity, 

people who were born in the UK, and people who considered their long-term health to be 

‘limited’.   

Cluster 3 had the highest silhouette value (0.56) of all the clusters and so might be 

thought of as the most cohesive cluster.  It is likely that almost all families belonged in 

this cluster.  Half of the families received FF (Families First) treatment, which is aimed at 

keeping families together (where safe), and overall there were proportionately more 

planned endings for treatment than any other cluster. 
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6.4.1.4 Cluster 4: NEET (n = 61) 

The main feature of cluster 4 was 

that all families had at least one 

member who was not in 

employment, education or 

training (NEET).  This cluster 

contained a particularly high 

proportion of children in their late 

teens (aged 16-17), and young 

adults (aged 18-20).  Perhaps 

because of the older ages of the 

children, there were low levels of 

child safeguarding events 

(although LAC events were slightly above average, at 11%).  School absence and exclusion 

levels were average, however a fifth of families had children who had committed criminal 

offences, which was comparatively high. 

In comparison to the other clusters, families from cluster 4 tended to live in areas that 

had higher levels of household deprivation, people with no qualifications, households 

living in social housing, people whose long-term health was ‘limited’, and people who 

were economically inactive.  Cluster 4 had fewest (proportionately) children attending 

schools judged as ‘outstanding’ by OFSTED.  Cluster 4 had an acceptable silhouette value 

(0.44) and appears fairly cohesive. 

6.4.1.5 Cluster 5: Adult criminal offences (n = 21)   

The main feature of cluster 5 was that all families had at least one adult who had 

committed criminal offences.  These were at a high level, with a mean of 4 offences per 

family.  A third of families had events which were classed as domestic abuse; this was 

more than any other cluster.  Half of the families had no children (aged under 18), 

perhaps because of this there were very few child safeguarding (CIN, CPP, LAC) events.  

However, school exclusion levels were high; of those families with children, half had 

children who had been excluded. 
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This cluster was not very diverse, 

with almost two thirds of families 

having just criminal offences 

committed by adults and no other 

type of events.  It was also the 

smallest of all the clusters, with 

only 21 families.  Cluster 5 had a 

good silhouette value of 0.46, and 

it is likely that all families were 

probably best suited to this 

cluster.  The families lived in areas 

with lower levels of household 

deprivation and people with no qualifications, however given the small size of the cluster 

(n=21), a higher sample size would have been desirable to ensure these statistics were 

reliable. 

6.4.1.6 Cluster 6: High levels of school absence (n = 54) 

Whilst the most noticeable 

feature was that all families had 

high levels of unauthorised school 

absence (39% per family on 

average), another aspect of 

cluster 6 was that the occurrence 

of all events was greater than 

average (i.e. for all families).  The 

families generally had a complex 

mixture of events, with three 

quarters having 3 or more 

different types of events.  

Alongside school absence, school exclusion and criminal offences committed by children 

were also high.  Child safeguarding events were also comparatively high. 

There was no particular place-based aspect of the data that stood out for cluster 6, 

although its families tended to live in areas that had comparatively lower levels of 
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household deprivation.  However, the percentage of children from cluster 6 attending 

schools judged as ‘good’ or ‘outstanding’ by OFSTED was lower than for all but one of the 

other clusters. 

The silhouette value of this cluster (0.14) was the lowest of all clusters, and the low value 

implies that this cluster was not very cohesive and that some of its families may have 

been better suited to other clusters.  A high proportion (more than any other cluster) of 

families received FIP (Family Intervention Project) treatment; since this was aimed at 

families with the most complex needs, it reflects the complexity of needs for families in 

this cluster. 

6.4.1.7 Cluster 7: Child criminal offences (n = 25) 

The main feature was that all 

families had criminal offences 

that were committed by children, 

and these were at a high level 

(with a mean of 4 per family).  

However, few families had 

criminal offences that were 

committed by adults.  The other 

notable feature was a 

comparatively high proportion of 

families with Child Protection 

Plans (just under half), and school 

exclusion (just under a quarter).  Those families with CPPs tended to also have school 

absence, although absence levels were fairly low.  The other child safeguarding events 

(CIN and LAC) were comparatively low.  A fifth of families had events classed as domestic 

abuse; only one cluster had a higher proportion than this. 

Families from cluster 7 lived in areas that on average had higher levels of households 

living in social housing.  The percentage of children from cluster 7 attending schools 

judged as ‘good’ or ‘outstanding’ by OFSTED was higher than for all other clusters.  

However, this was a particularly small cluster, with only 25 families, and a higher sample 

size would have been desirable to ensure the reliability of these statistics.  The average 
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silhouette value of the cluster was fairly low (0.20), which indicates a possible lack of 

cohesion. 

6.4.1.8 Cluster 8: School absence only (n = 223)  

The main feature was that all families had school absence and no other events.  The 

average unauthorised absence per family was 6.4% of available sessions; three of the 

other clusters had higher averages.  There was no remarkable aspect of the place-based 

data related to cluster 8, and the percentage of children attending schools judged as 

‘good’ or ‘outstanding’ by OFSTED was average in comparison to the other clusters.  One 

notable aspect was that 13% of families had no adult attached to them, which was the 

highest proportion across all clusters.  A high proportion of families received CFPT 

(Complex Families Parenting Team) treatment; since this is aimed at families with a range 

of complex needs, it may suggest that at least some of these families had other needs 

that were not captured by the available data. 

6.4.1.9 Cluster 9: Children In Need events only (n = 243) 

The main feature was that all families had CIN events and no other events.  A large 

proportion of children in this cluster were aged under 7; a third of all children were too 

young to attend school.  Of those that did attend school, one fifth attended schools 

judged by OFSTED to be ‘outstanding’, this was comparatively high. 

Families from cluster 9 lived in areas that on average had comparatively high levels of 

people who were economically active, and where home ownership was higher.  As noted 

with cluster 8, a high proportion of families received CFPT (Complex Families Parenting 

Team) treatment; since this is aimed at families with a range of complex needs, it may 

suggest that at least some of these families had other needs that were not captured by 

the available data. 

6.4.1.10  Cluster 10: Absence and CIN (n = 182) 

The main feature was that all families had school absence, and at least one CIN event, but 

no other events in the year prior to intervention.  The average percentage of 

unauthorised absence was 10.6% per family, which was relatively high.   

Families from cluster 10 lived in areas that on average had lower population density, and 

comparatively high levels of people who were born in the UK and in the White ethnic 

group.  A comparatively large proportion of families received either CFPT or FIP 
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intervention treatment, which are both aimed at the families with more complex needs, 

suggesting that at least some of these families may have had other problems that were 

not reflected in the available data.  

6.4.1.11  Cluster 11: No events (n = 605)  

All families had none of the events in the year prior to intervention.  The types of families 

in this cluster were somewhat different to the other clusters: 41% of families consisted of 

a single person, this was a far higher percentage than for any other cluster (cluster 5 had 

14%); and half of all families had no children attached to them.  One possible reason for 

so many single person families (which are generally not typical of the TF programme), 

may be errors in the available data, i.e. there may have been missing links between 

individuals in some cases. 

In comparison to the other clusters, families from cluster 11 tended to live in areas with 

higher levels of household deprivation, people born in the UK and those belonging to the 

White ethnic group; and with lower average population density.  The percentage of 

children from this cluster attending schools judged as ‘good’ or ‘outstanding’ by OFSTED 

was high in comparison to the other clusters.  A comparatively large proportion of 

families received AO (Assertive Outreach) treatment, which is aimed at those families 

who are at risk of developing complex needs.  This may indicate that although it is not 

clear from the available data what the family’s problems were, there was concern that 

their problems could escalate. 

6.5 DISCUSSION 

The eleven clusters found in this analysis each had unique characteristics, from those with 

a diverse range of events, to those with few or none.  Some were very cohesive, for 

example, cluster 8 whose families all had only school absence; whereas some were more 

loosely joined together, for example cluster 6, with the lowest silhouette value.  The 

discovery of these clusters means that future analysis might be carried out on the cluster-

level, rather than the global (all families) level, and may mean that separate models (such 

as decision trees or regression analysis, etc.) might perform better than one overall 

model, since the groups should be more heterogeneous.  Analysis in the following chapter 

explores this idea. 
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It should be considered that the clusters found in the analysis were a product of the 

particular data that was available.  The data-driven clustering model utilised only the 

attributes that were considered complete (that is, did not have known missing data) for 

the year before the start of a family’s first intervention.  Therefore, the cluster analysis 

had a focus on child safeguarding (CIN, CPP, LAC), crime (committed by children or 

adults), and education (school absence, exclusion and NEETs).  Had different data been 

available, the focus would have been different, and hence the clusters may have been 

different too.   

The analysis indicated that there was a large proportion of families who did not have a 

diverse mixture of events.  Just over a quarter (28%) of families had none of the listed 

events in the year prior to first intervention (cluster 11), whilst 30% had only one event, 

and 24% had two different events.  Only 19% of families had 3 or more different events 

(the majority of these being 3 events) and so might be considered to have had a wider 

range of complex needs.  Overall, the fact that most of the families did not have a wide 

range of events meant that the families generally fell into clusters that were relatively 

simple to describe (for example, no events, or just school absence), or else had one main 

feature (such as all families with CPPs, or LAC events).  This meant that the decision tree 

analysis was able to provide a set of relatively simple rules to accurately describe the 

cluster assignments.  The decision tree identified Child Protection (CPP) as the most 

important attribute for predicting cluster assignment; perhaps the main reason for this 

was that cluster 2 was the largest cluster (of the 7 clusters produced from the cluster 

analysis; it contained 335 families) and its main feature was that all families had Child 

Protection Plans, therefore it would make sense that the first split in the tree would 

attempt to split the largest group of families off.  The second most important attribute 

was families having looked after children (LAC); together with the CPP attribute, this 

indicated that child safeguarding was a particularly important feature where considering 

clusters 1 to 7.   

However, whilst the decision tree could provide an indication of ‘important’ attributes, it 

should be considered that clusters 8, 9, 10 and 11 were not included in the decision tree 

analysis, as their rules were so simple (that is: just school absence; just CIN events; just 

absence and CIN events; and no events).  Yet they accounted for a large portion of 

families (58%), and so, if the most important attributes were to be considered for these 
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clusters, they would be school absence and CIN events.  However, it should be considered 

that perhaps the most important feature overall was that which characterised the largest 

cluster (11) and hence accounted for the most families; that is, having no events (no child 

safeguarding, crime or school concerns in the year prior to intervention). 

Whilst the families in cluster 11 had none of the eight events considered, it is unlikely that 

they truly had no events in the year prior to intervention.  As already considered, one 

possible reason for the lack of events may be missing data, but this is unlikely to account 

for all families in cluster 11.  The criteria for joining the TF programme indicated that 

families should generally have multiple problems, and the large groups of families within 

the ECC data with no, or few events, indicates that some of these families may well have 

had other problems that were simply not captured by the available data.   

Research into TF generally has found that many have very complex needs, far more than 

could be represented by the available data in this study.  In interviews with 20 families 

Boddy et al. (2016:285) found that families consistently had health problems; they had 

‘unrecognised, unmet, and/or poorly managed health needs, relating to key aspects of 

basic health and significant and chronic physical and mental health problems’.  Similarly 

Wenham (2017) interviewed ten young people involved in the programme and found that 

their problems included bereavement, financial hardship, child abuse and domestic 

violence.  Shildrick et al. (2016) also make the point that in the case of some families the 

sheer number and complexity of their problems was high.   

Another indication of the types of events that some of the families may have is contained 

in the National Evaluation report (Department for Communities and Local Government, 

2017).  This states that, overall for TF in England in the year before intervention, 40% of 

TF had a family member with a mental health issue, 34% had police called out to their 

home, 25% had a member involved in domestic abuse, 12% had an individual dependent 

on drugs or alcohol, and 10% had Anti-Social Behaviour incidents.  Since there was no, or 

incomplete, data in the ECC database regarding these problems, it may be that similar 

proportions of ECC families also had these problems.  This may go some way towards 

explaining at least some of the families with no, or few events; however, it could also 

mean that those families with some events had an even more complex mixture of events. 

Overall, the analysis indicated that TF tend to live in areas with higher percentages of 

lone-parents, higher levels of deprivation, lower educational levels, poor health, less 
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economic activity and higher levels of social housing, as might have been expected.  

These areas were loosely focussed in the North-West and Eastern areas of the city.  

Analysis utilising the different clusters did indicate subtle differences in where families 

lived.  Perhaps most notable was that, in general, families belonging to clusters whose 

main feature was child safeguarding (clusters 2, 3 and 9) tended to live in areas with 

(comparatively) higher levels of economic activity and higher population density, and 

lower levels of social housing.  Families from Clusters 1 (crime and school exclusion), 10 

(school absence and CIN), and 11 (no events) tended to live in areas with (comparatively) 

higher proportions of people born in the UK and in the White ethnic group.  Yet, unlike 

clusters 2, 3 and 9, there was less to tie these three clusters together, aside from the lack 

of the more serious child safeguarding problems (CPP and LAC).   

Families from Cluster 4, which consisted of families with at least one NEET member 

tended to live in areas with (comparatively) high levels of household deprivation, people 

who had limited health and people with no qualifications, together with lower economic 

activity.  This might pose the question of whether NEET status may be related to where 

an individual lives; research indicates that predictors of becoming NEET include growing 

up in areas with poverty, lower socioeconomic status and lacking good schools (Sadler et 

al., 2015), and the place-based analysis also appears to indicate this (but would require 

further research to fully consider this question).  

Another question that was suggested by the analysis was whether having CIN events 

meant that unauthorised school absence levels were higher for some families.  This came 

from considering clusters 8 (just school absence) and 10 (just school absence and CIN 

events).  Families in cluster 8 had an average of 6.4% school absence, whereas families in 

cluster 10 had 10.6% on average.  On the surface, cluster 10 only differed from cluster 8 

in that the families also had at least one CIN event (although of course there may have 

been other underlying factors), therefore it might be considered that the addition of CIN 

events in this cluster could have been a factor in the increased level of unauthorised 

school absence. 

6.6 CONCLUSION 

The extensive practical work in this chapter explored the data pertaining to the Troubled 

Families programme of an English City.  It considered the characteristics of the families 
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and whether there existed different groups, or clusters, of families in the data.  It also 

considered where the families lived and whether there were any demographic patterns, 

and if where a family lived played a part in deciding which cluster they belonged to. 

The data-driven cluster analysis identified eleven clusters of families, all with different 

characteristics.  Whilst some were more cohesive than others, there was no doubting that 

there existed unique groups of families within the data.  The focus of the clusters centred 

on child safeguarding, crime and education.  These particular attributes were chosen as 

they were considered to be complete (that is, had no known missing data).  Data for the 

year prior to a family’s first intervention was utilised in order to represent the events that 

led to a family’s introduction to the TF programme.  Each of the clusters had particular 

characteristics that were unique to them, for instance, cluster 2 contained families who 

all had Child Protection Plans, whereas cluster 11 contained families who all had none of 

the events in the year prior to the start of intervention. 

The available data indicated that, for at least some of the TF, their needs were perhaps 

not as complex as might have been expected when considering the Government criteria 

for entry into the TF programme.  A large proportion of families had no, or few, events in 

the year prior to their introduction to the TF programme.  This appeared to indicate a lack 

of diversity of events for these families, as generally they should have had at least three 

different types of events to qualify.  However, there were various problems with the data, 

and some key attributes that contributed to the definition of a Troubled Family were not 

available or missing (such as, incomplete benefits and anti-social behaviour data, and the 

absence of any data pertaining to health).  Therefore, it was not possible to determine 

whether at least some of the families who appeared to have no (or few) issues might 

have had other issues were more data available, and in such case would have met the 

Government guidelines of belonging to the TF programme. 

In general, this study has highlighted some of the problems with the available ECC data, 

such as: missing data (particularly historical benefit data); duplicate people; and likely 

missing links between family members.  The ECC found this useful as it helped them to 

identify problems in their data and consider ways to fix them. 

This case study has shown that decision tree learning can be employed to derive rules for 

cluster assignments; the tree visualisation and accompanying rules accurately assigned 

families to their particular cluster in a simple manner.  The fact that the tree was easily 
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understandable and quite small indicated that, despite the seemingly complex nature of 

the various clusters (as evidenced by the long cluster descriptions in section 6.3.2), they 

could be described by a set of relatively simple rules.  This work highlighted that decision 

tree learning can be utilised in order to provide clarity to complicated datasets.  It also 

produced a re-usable model which could be utilised (if required) to assign future families 

to the appropriate cluster. 

Data visualisation methods such as t-SNE and Nightingale plots were utilised in order to 

present clustering results in a way that might aid better understanding of the data and 

clusters.  t-SNE was able to represent higher-dimensional data on a two-dimensional plot 

in a way that made sense, but also highlighted that some of the clusters were not neatly 

separated into distinct blocks; it indicated overlaps, and that some of the clusters were 

not as cohesive as others. 

The overall place-based analysis of the families in relation to where they lived at the start 

of intervention indicated that the families tended to live in areas with higher percentages 

of lone-parents, higher levels of deprivation, lower educational levels, poor health, less 

economic activity and higher levels of social housing.  To some degree, results such as this 

might be expected.  It also highlighted that there were two areas of the city that had 

higher proportions of TF; the North-Western corner and the East.  Further detail was 

provided by the place-based analysis of the separate clusters; this indicated that families 

from different clusters were concentrated in subtly different areas of the city and that the 

characteristics of these areas could vary quite widely by cluster.  For instance, families 

whose main problem was child safeguarding (CPP, LAC, CIN, contained in clusters 2, 3 and 

9) appeared to live in areas with higher levels of economic activity and higher population 

density.  And families with NEET members (cluster 4) appeared to live in areas with higher 

levels of deprivation and lower economic activity.  It would seem therefore that the 

cluster assignment did indicate patterns and relationships within the place-based data; 

these patterns would warrant more detailed further research. 

It might be considered that the most important features of the eleven clusters were 

related to child safeguarding, school absence, and the absence of any problems (no 

events).  However, it was highlighted that to really understand the underlying context 

within the data, other attributes should be considered (such as those pertaining to health, 

anti-social behaviour, receipt of benefits, etc.).  If data such as this were to become 
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available in the future, an opportunity for further work would be to analyse the existing 

clusters with reference to this, and also to consider whether different clusters might exist. 

Overall this chapter has highlighted that there existed different groups of families within 

the data and that identifying and analysing each of the groups provided a deeper 

understanding and far more context than could be achieved by simply performing a 

‘global’ analysis of the entire group of families as a whole.  The information gained from 

studying these clusters of families might be used to inform those working with the 

families; the ECC found the study informative and have begun to adopt methods such as 

clustering in their own analysis.  

More broadly, the identification of different clusters (or types or groups) of families may 

mean that it is possible to identify where particular treatments or methods might work 

better (or equally be less likely to succeed) for the different clusters.  A deeper 

understanding of the types of families may mean that the particular treatment received, 

or how it is administered, could correspond to the cluster a family is in; this might lead to 

more effective treatment. 

The work in this chapter created a foundation for the following chapter which explores 

the families and their cluster assignments in the year after their introduction to the TF 

programme and considers the outcome of intervention treatment.  
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7 CASE STUDY PART B: TROUBLED FAMILIES ONE 

YEAR LATER 

7.1 INTRODUCTION 

This continues the analysis of the previous chapter and considers the families in the year 

following their introduction to the TF programme.  The events that occurred for each 

family in the year following the start of intervention were analysed in order to determine 

how the family’s lives had changed in that year, compared to the year before, and to 

determine if it was possible to understand what effect participation in the TF programme 

may have had upon the families.  Analysis was performed on the eleven unique clusters 

identified in the previous chapter and on the data as a whole.   

Consideration was given as to how a family’s first intervention ended, whether they had 

further intervention treatment and the typical length of treatment.  The Government 

guidelines as to what would constitute a family being considered ‘turned around’ where 

examined in relation to the data that was available. 

Machine learning techniques, and regression methods, were performed upon the data in 

order to consider which (if any) factors might help to determine the likely outcome for 

families.  That is, the techniques attempted to identify if there were any attributes that 

might indicate whether a family was likely to have an improvement in their 

circumstances, or whether their interventions might be successful. 

7.2 METHODOLOGY 

Analysis was performed in order to consider the complexity of events for each of the 

families in the year following the start of intervention, compared to the year before.  A 

count of events occurring for each family in the year following the start of intervention 

treatment was compiled, to compare to the data from the previous chapter which 

counted events in the year prior to the start of intervention.  This was performed in order 

to track any changes and in an attempt to detect what effect, if any, joining the TF 

programme had upon the families.  The decision tree compiled in section 6.3.3 (Figure 

49), which assigned each family to their particular cluster was utilised; the data for a 

family’s events one year later were fed through the tree in order to determine whether a 
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family would stay in the same cluster or had changed cluster.  Assignation to the same 

cluster one year later indicated that there was little change in the events that the family 

had; where there was a change, the new cluster assignment provided insight into the type 

of change that had occurred. 

A count of the individual school absence records for each of the TF children before and 

after the start of intervention was compiled.  Since the school absence data was recorded 

at regular intervals (each half-term), it allowed a timeline of school absence to be created 

for each child.  Analysis and visualisations were created in order to determine whether 

there was any detectable change in the levels of school absence surrounding the date of 

the family’s entry into the TF programme.  Analysis was performed on the cluster-level 

data and on the overall group. 

The Government guidelines for what constituted a family to be considered ‘turned 

around’ were analysed.  There was no definitive indication within the database as to 

progress within the programme, or how a family’s treatment was progressing.  Therefore, 

consideration was given to how a family’s first intervention treatment ended, whether 

they received further intervention treatment and whether the frequency of the 

occurrence of events changed following the start of intervention.  Given this and the data 

that was available, an approximation of the Government guidelines was created in order 

to determine which of the families had some improvement following the start of 

intervention. 

Finally, machine learning methods were utilised in order to determine which factors (or 

attributes) were predictors of future improvement for a family.  This analysed whether 

particular attributes (such as, whether a family had CIN events, the cluster they were 

assigned to, or characteristics related to where they lived) that were known when joining 

the TF programme, could indicate whether a family might (or might not) have an 

improvement in their circumstances in the year following their entry into the TF 

programme.  For comparison, regression models were also built, in order to determine 

whether they might have similar accuracy compared to the machine learning methods.  

The decision trees, random forests, generalized boosted models and regression models 

were built using the R programming environment. 



204 
 

7.3 RESULTS 

7.3.1 Intervention Length and Further Referrals 

The average length of a family’s first intervention treatment was 249 days; however, 5% 

(115 out of 2155) of families did not have any end date for their treatment, so it was 

assumed that treatment was ongoing, and they were excluded from statistics pertaining 

to length.  The length of the interventions ranged from 0 to 1503 days.  Just over three 

quarters (77%) of families had first interventions that lasted less than a year; for 42% of 

families their first intervention lasted less than 6 months.  It should be noted that the ECC 

acknowledged that the Intervention records were not all accurate: where end dates were 

missing, it was possible that at least some of the interventions did have end dates that 

were simply not logged; and particularly long interventions may not have been as long as 

they were logged as, some had end dates added long after the intervention had finished.  

However, it was not possible to determine records such as this from the available data. 

Twenty-four families had first interventions that were logged as starting and ending on 

the same date, which would seem to imply that these families did not receive treatment.  

However, five of the families had treatment that was marked as a ‘planned ending’, 

implying that they did receive treatment.  The remaining 19 had ‘unplanned endings’.  

When the data was compiled all families with planned and unplanned endings were 

included, as families with unplanned endings had likely still received some form of 

treatment (even if it ended early).  The families that were excluded were those who had 

definitely not received treatment, i.e., those who had ‘inappropriate referrals’ or simply 

had a status of ‘no intervention’.  Therefore, although there were a small number of 

families with interventions apparently lasting zero days it was felt valid to retain them in 

the data. 

Half of the families (50%) had subsequent referrals for different types of intervention 

treatment, indicating that it was felt that they had more complex needs that could not be 

addressed by one type of intervention treatment alone.  However, a referral did not 

mean that a family actually received any treatment; of those who had further referrals 

just under three quarters (74%) actually received treatment.  This meant that overall, 37% 

of families received more than one intervention treatment; or conversely, that just under 

two thirds of families (63%) received no further treatment after their first intervention.   
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Table 24 details the percentage of families who had further referrals, and the percentage 

who actually received treatment, by cluster.  Clusters 8 and 11, had the lowest 

percentage (44%) of families who were referred for further treatment, and they also had 

the lowest percentages of families who actually received further treatment.  This may be 

because these families had fewer problems (just school absence, or no events at all in the 

year prior to intervention) than those in other clusters and so perhaps had less need for 

further intervention treatment.  Conversely, almost two thirds (64%) of families from 

cluster 7 were referred for further treatment.  However, overall only 40% of families from 

cluster 7 actually received treatment.  Overall, there was a discrepancy between the 

percentage of families who were referred for further treatment and those who actually 

received it; but, as discussed previously, this was because not all referrals result in 

treatment (families might have been referred for treatment that was not appropriate for 

them, or they may simply have not wanted to participate).  Cluster 5 had the highest 

percentage of families who actually received further treatment, with just under half 

(48%).   

Table 24: Percentage of families who had further referrals and treatment, by cluster and overall. From ECC intervention 
data 

Cluster 
Percentage of 

families with further 
referrals 

Overall Percentage of 
families who received 

further treatment 

1 52% 37% 

2 52% 41% 

3 56% 44% 

4 49% 33% 

5 57% 48% 

6 56% 39% 

7 64% 40% 

8 44% 32% 

9 54% 40% 

10 59% 47% 

11 44% 30% 

All data 50% 37% 

   

For those families that had further treatment, just over half (54%) had further treatments 

that overlapped with the first intervention treatment, otherwise there was a gap between 

the end of the first intervention and the start of a different treatment.  Table 25 details 

the percentage of first interventions that resulted in planned or unplanned endings, for 

the different intervention treatment types (this excludes incomplete, or open, 
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interventions).  Excluding open interventions, overall, 79% of first interventions had a 

planned ending and 21% had an unplanned ending. 

Table 25: Percentage of first interventions ending in planned and unplanned ending by treatment type, from ECC 
intervention data 

Intervention Planned Ending Unplanned Ending 

AO 70.1% 29.9% 

CFPT 81.6% 18.4% 

FF 96.3% 3.7% 

FINIS 83.3% 16.7% 

FIP 73.7% 26.3% 

 

The different types of intervention clearly had differing success rates; almost all (96%) of 

Family First (FF) interventions resulted in a planned ending, whereas 70% of AO 

interventions did.  Table 16, in Chapter 6, detailed the treatment types for a first 

intervention by cluster.  Just over half of families in cluster 3 received FF treatment (as 

the main feature of cluster 3 was having Looked After Child events, and FF specifically 

targets families with this problem) and this was reflected by cluster 3 having the highest 

percentage of planned endings over all clusters. 

7.3.2 Counting Events in the Year Following the Start of Intervention 

For each family, a count was made of events occurring in the year following the first 

intervention start date.  This was in order to track any changes and in an attempt to 

detect whether joining the TF programme had any effect upon the families.  Whilst it 

could be argued that counting the events after the interventions had finished would be 

useful, many interventions lasted a long time, and some did not have end dates, 

therefore given the available timeframe of data, many families would not have been 

included in the ‘after’ analysis.  Covering a continuous two-year timeframe (one year 

either side of the start of intervention) allowed more families to be included in the 

analysis, and also allowed the possibility of creating timelines of events.  Much of the 

Government analysis also utilised this two-year timeframe.  However, it should be 

considered (and this was also considered in the National Evaluation report (Day et al., 

2016)) that one year may not be enough time to realistically tackle the problems that 

many of the families had. 

Given the timeframes of the various data, for the ‘after’ analysis, only families who had a 

first intervention date on or before 31/07/2014 could be included, so that there was 

complete data for a year after this point.  For families with an intervention date after this, 
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it would have been disingenuous to claim that they had no events simply because the 

data did not exist fully for a year afterwards.  This left 1668 families with complete data, 

out of 2155, which was 74%.  It should be noted that the two-year timeframes were 

different for all families, dependent upon when their first intervention date was. 

Where a family already had a CPP or LAC event and this was still active a year after the 

first intervention date, this was counted (together with any new CPPs or LACs) as an 

event in the year following intervention.  This was simply to reflect where issues were 

ongoing, and not imply that a family no longer had those issues.  Similarly, if a family still 

had NEET members this was also counted.   

Figure 55 plots a heatmap of the events occurring in the year following a family’s referral 

into the TF programme (i.e. the year following the first intervention date).  For 

comparison, the heatmap of events occurring in the year prior to the first intervention 

date (from Figure 19) is also included in the plot.  As before, the plot provides a binary 

indication of each of the events (i.e. simply whether a family had that event or not), and 

each of the families are represented as a very thin vertical line, running from the top of 

the plot to the bottom (purple indicates the presence of an event, whereas turquoise 

indicates the absence of an event).   

Whilst at first glance the two heatmaps look similar, there are significant differences 

between the two plots.  There were proportionally more families with no events at all in 

the ‘after’ analysis; 34% compared to 28% before.  The group of families with only school 

absence was also larger in the ‘after’ analysis (15% compared to 10% before).  The two 

clusters that contained only CIN events, and only CIN events with School Absence were 

much smaller in the ‘after’ analysis, with 4% of families having just CIN events in the 

‘after’ analysis (compared to 8% before), and 5% of families having CIN and school 

absence in the after analysis (compared to 11% before).   

If the ‘after’ data had been clustered using the same criteria as was used for the ‘before’ 

intervention clustering, there would have now been only two pre-specified clusters; that 

is, the groups with no events, and only school absence.  The groups that had only CIN 

events and only school absence and CIN events were no longer big enough to have been 

counted as a cluster.    
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Figure 55: Comparison of events for each TF in the years prior to and following the first intervention date, utilising ECC data
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Table 26 compares the percentages of families with each event in the year leading up to 

the first intervention date, with the percentage of families with each event in the year 

following the first intervention start date.  Aside from CIN events (which halved), school 

exclusions (which stayed almost the same) and criminal offences committed by adults 

(which decreased slightly), the overall percentages of families having each of the 

individual events increased. 

Table 26: Percentages of families with events in the year prior to and following first intervention date, utilising ECC data 

 
Year before first 

intervention date 
Year following first 
intervention date 

School Absence 40.6% 42.5% 

School Exclusion 11.6% 11.5% 

Children in Need 
events 

40.6% 19.1% 

Child Protection 
events 

16.9% 17.5% 

Looked After 
Children events 

7.7% 9.2% 

NEET 4.5% 5.8% 

Adult Offences 10.3% 9.0% 

Child Offences 7.5% 8.9% 

DWP Benefits 42.7% 51.2% 

No events 28.1% 34.7% 

 

Overall, the decrease in the percentage of families with CIN events was most notable, and 

it is possible that this may be at least partially due to the way that the data was 

maintained and CINs were logged.  Whilst CPP and LAC events had a start and end date 

and could therefore be considered as still continuing where applicable, the CIN events 

data contained very few end dates, and therefore it was treated as a one-off event (as 

there was no way to know if an event had ended, or even whether it was applicable for it 

to have an ‘end’).  However, it is likely that, at least in some cases, a CIN could indicate 

ongoing events, but the available data meant that it could not be treated this way.  

Therefore, for the ‘after’ analysis, only new CIN events could be counted, meaning that it 

was possible this might overlook ongoing issues.  However, given that the same criterion 

was applied to the ‘before’ data (only new events were counted), the significant 

reduction in CIN events cannot necessarily be explained by this, but should be considered. 

The national evaluation of the TF programme (Department for Communities and Local 

Government, 2017) found an overall reduction in children with CIN, CPP or LAC events 

following intervention; however, this considered the families only after they had joined 

the programme (at 6 months after the start of intervention compared to 12 months), and 
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showed relatively small changes (for CIN a reduction of 4.7%, CPP 0.4%, LAC 0.8%).  Table 

26 indicated that for the ECC families overall, comparing the year before to after, there 

were small increases in CPP and LAC events, and a large decrease in CIN events, however 

this is not a direct comparison, but does not necessarily match the national data.  The 

report also noted a reduction (of 1.1%) in adults convicted of crime (in the year before 

compared to the year following intervention); in this case the ECC families had a similar 

reduction (of 1.3%). 

In order to consider whether there might be underlying trends in the event data applying 

to the whole ECC area (as opposed to just the TF), various plots were constructed.  Whilst 

each TF had a different timeline (their first intervention dates varied), it was felt that 

considering the overall trends for the whole population of the city might still provide 

some insight into whether any change occurred overall and not just for the TF.  These 

plots utilised the available data, which generally covered August 2010 up to July 2015.   

Figure 56 plots the monthly count of CIN events for children across the whole ECC area, 

with the count for just the TF children overlaid. 

 

Figure 56: Monthly count of Children In Need (CIN) events for all children in the ECC area, compared to just TF children 
(utilising ECC data) 
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It shows fluctuations in the counts of CIN events over time, and also that the TF CIN count 

tends to follow the trend of the data for the overall population.  However, most 

significantly it illustrates a large drop in CIN events from April 2011 up to December 2011.  

It was considered that this might help explain the difference in prevalence of CIN events 

‘before’ and ‘after’ intervention treatment for the TF, however it did not.  Most families 

did not start their ‘after’ time period in this timeframe (and so could not be affected by 

it), and the few (6%) of families that did, had CIN events both ‘before’ and ‘after’ and so 

were not in the group who had no further CIN events.  TF children accounted for, on 

average, 14% of all CIN events. 

Similar plots were created for Child Protection (CPP) events (Figure 57) and Looked After 

Children (LAC) events (Figure 58).  In particular, the plot for CPP events highlighted that 

the TF children accounted for a large proportion of the overall CPPs in the ECC area, on 

average 32%.  It seems also that the general trend for the TF was of increasing numbers 

of CPPs (albeit with a dip in the second half of 2013), followed by a gradual decrease 

towards the end of 2014.   

 

Figure 57: Monthly count of Child Protection Plan (CPP) events for all children in the ECC area, compared to just TF 
children (utilising ECC data) 
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The LAC data (Figure 58) also appeared to follow a similar trend to the CPP data for the 

TF, with a pattern of gradually increasing events, followed by a drop towards the end of 

2014.  However, in contrast to the CPP events, TF children accounted for a smaller 

proportion of the overall LAC events (on average 19%). 

 

Figure 58: Monthly count of Looked After Children (LAC) events for all children in the ECC area, compared to just TF 
children (utilising ECC data) 

Figure 59 plots the average percentage of unauthorised school absence for all pupils in 

the ECC area, compared to just the TF pupils.  This was calculated for each half-term for 

the school years 2010/11 to 2014/15.  The overall trend, for all pupils, stayed fairly 

constant, albeit with fluctuations; the mean unauthorised absence for the whole time-

period was 1.6%.  However, the general trend for just the TF pupils was of increasing 

school absence, though again with fluctuations. 

Figure 60 plots the count of school exclusions, for each half-term, for all pupils in the ECC 

area compared to just the TF pupils.  The general trend of the TF pupils follows the 

fluctuations of the overall data, but shows more of a constant level (than the decreasing 

trend overall in the first two school years).  TF pupils accounted for, on average, 13% of all 

school exclusions. 
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Figure 59: Half-termly average percentage of unauthorised school absence for all pupils in the ECC area, compared to 
just the TF pupils (utilising ECC data) 

 

Figure 60: Half-termly count of school exclusions for all pupils in the ECC area compared to just the TF pupils (utilising 
ECC data) 
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Figure 61 plots the monthly count of individuals logged as Not in Employment, Education 

or Training (NEET); this counts only new incidences and not ongoing ones.  It shows a 

gradually increasing trend overall, with large fluctuations.  The TF generally follow this 

trend and account for, on average, 7% of all new NEET incidences. 

 

Figure 61: Count of NEET incidence per month, for all individuals in the ECC area compared to just TF individuals (utilising 
ECC data) 

Figure 62 plots the monthly count of criminal offences committed by adults for the ECC 

area, together with those committed by TF adults.  In contrast to the other plots, the TF 

account for a much smaller proportion of the crimes committed overall, on average 3%.  

There is a clear trend overall, of the counts of crime reducing month by month.  The 

counts of crime for TF generally stayed more constant and exhibited less of a reduction. 

Figure 63 plots the monthly count of criminal offences committed by children (aged under 

18) for the whole ECC area, together with those committed by just TF children.  In 

contrast to the plot detailing crimes committed by adults, it shows that TF children were 

responsible for a higher proportion of crimes, on average 11%.  However, similar to the 

adult crimes plot, it highlights that the overall trend was of decreasing numbers of crimes 

being committed by children.  The crimes committed by TF children did not follow this 
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decreasing trend, and instead increased slowly initially, stayed somewhat level, then 

dropped a little towards 2015. 

 

Figure 62: Monthly count of criminal offences committed by adults for the ECC area, compared to just TF adults (utilising 
ECC data) 

 

Figure 63: Monthly count of criminal offences committed by children (aged under 18) for the ECC area, compared to just 
TF children (utilising ECC data) 
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Whilst the plots of trends are useful in providing the context of the underlying data, it 

should be considered that each family had a different timeline (that is, their first 

intervention dates were all different), and so each of their two-year timeframes would be 

located at different points on these plots.  However, the plots provide overall insight.  The 

loose overall trend for CPP, LAC and NEET events was that of fluctuating increase for the 

whole population; referring back to Table 26, these events for the TF also had small 

increases and so might be on trend.  Similarly, the overall trend for crimes committed by 

adults was decreasing, and the TF data also reflected a small decrease.  However, the 

overall trend for crimes committed by children was decreasing, yet the TF data reflected a 

small increase. 

Table 27 details the percentage of families with each event in the years before and after 

the first intervention date for each cluster.   

Table 27: Percentage of families in each cluster with events in the year prior to and following first intervention date (with 
interesting percentage highlighted in bold). Utilising ECC data 

Cluster Absence Exclusion CIN CPP LAC NEET 
Adult 

Offences 
Child 

Offences 

 Before After Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. 

1 66 63 57 32 42 29 1 15 0.3 9 0 7 36 14 27 23 

2 44 46 6 10 58 14 100 38 12 18 2 4 17 16 4 4 

3 30 42 11 14 63 16 2 32 100 42 1 1 21 9 8 8 

4 43 47 16 16 31 29 0 16 10 10 100 63 15 16 21 18 

5 29 36 24 21 10 21 5 0 0 0 0 0 100 36 10 7 

6 100 88 54 30 57 22 22 25 9 8 15 25 13 8 43 30 

7 44 70 24 39 32 30 44 17 4 22 0 13 8 4 100 83 

8 100 79 0 7 0 22 0 8 0 4 0 2 0 4 0 9 

9 0 19 0 7 100 28 0 16 0 4 0 1 0 4 0 5 

10 100 87 0 12 100 22 0 28 0 7 0 6 0 6 0 8 

11 0 9 0 1 0 11 0 6 0 2 0 3 0 6 0 0.4 

All 
data 

41 43 12 12 41 19 17 18 8 9 5 6 10 9 8 9 

 

For those clusters where all families had a particular event, that is, the value was 100%, 

specifically CIN (clusters 9 and 10), CPP (cluster 2), LAC (cluster 3) and NEET (cluster 4), 

there was a significant decrease in the percentages of families with those events in the 

year following the start of intervention.  The drop in the percentage of families having CIN 

events was most notable (clusters 9 and 10).  However, for school absence (clusters 6, 8 

and 10) and child criminal offences (cluster 7) there was a much smaller decrease.  For 
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many of the clusters, where in the before analysis there was a zero for a particular event 

(for example, families in cluster 8 had no school exclusion before the start of 

intervention), in the ‘after’ analysis there was an increase (e.g. 7% of families in cluster 8 

had exclusions in the year after the start of intervention). 

Tables 26 and 27 highlight one of the main benefits of identifying the different clusters in 

the data; if just a ‘global’ overall analysis had been performed, then it showed that in 

general there was a small increase (aside from CIN events) in the percentage of families 

having most of the events in the year after the start of intervention compared to before.  

However, considering the clusters separately provided context; the results showed that 

where considered on the cluster-level, in many cases there was a decrease in the 

percentage of families having the most important events for that cluster. 

Table 28 considers attributes that were contained in the data but were not clustered 

upon; for each cluster, it compares the percentages of families who had the particular 

events in the year prior to and following the start of intervention.  As previously stated, 

the DWP benefits data had missing data, and the address data may also have been 

unreliable, nevertheless they were included for comparison, but with these caveats.  The 

Drug/Alcohol and Domestic Abuse data were thought to be reliable but were not 

clustered upon because they were a subset of the CIN, CPP, and criminal offences data; 

however, they could still provide useful contextual information. 

Table 28: Percentage of families in each cluster with events not clustered upon in the year prior to and following start of 
intervention (with interesting percentages highlighted in bold). ECC data 

Cluster 
Receiving DWP 

benefits 
Changed address at 

least once 
Drug/Alcohol 

Events 
Domestic Abuse 

Events 

 Before After Before After Before After Before After 

1 48% 55% 46% 33% 2% 4% 14% 11% 

2 46% 50% 53% 38% 5% 4% 17% 7% 

3 35% 45% 73% 34% 2% 1% 7% 1% 

4 57% 78% 49% 33% 5% 6% 5% 8% 

5 57% 71% 48% 29% 0 14% 33% 14% 

6 57% 65% 48% 55% 4% 5% 6% 8% 

7 28% 35% 64% 48% 0 0 20% 9% 

8 42% 46% 30% 23% 1% 1% 0 1% 

9 36% 49% 54% 28% 3% 2% 13% 6% 

10 42% 51% 42% 33% 4% 6% 14% 6% 

11 40% 51% 36% 25% 1% 2.% 0 4% 

All data 43% 51% 45% 31% 3% 3% 8% 6% 

 

After the start of intervention, there was an increase in the percentage of families 

receiving DWP benefits for all clusters, with cluster 4 having the largest increase.  
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However, since as previously, discussed there were concerns about the accuracy of the 

DWP benefits data (not all historical records were retained) it is difficult to draw firm 

conclusions from this.  It may be that the missing data distorts these statistics (for 

instance, that there was a greater amount of older data missing than newer and hence 

the ‘before’ analysis was missing more data than the ‘after’ analysis), or it may be that 

entry into the TF programme corresponded with more families applying for state benefits 

(perhaps, once families had a dedicated key worker, they were given more assistance in 

applying for the various benefits that they might qualify for). 

In contrast, aside from cluster 6, the percentage of families who had changed address at 

least once decreased in the year after intervention.  Cluster 3, in particular, had a large 

decrease in the percentage of families who had changed address after the start of 

intervention, compared to before.  Cluster 3 consisted of families who all had Looked 

After Children events before the start of intervention.  However, in the year following 

intervention, only 42% of families had LAC events; it is possible that the reduction in 

families with LAC events also corresponded with the decrease in changes of address (as if 

fewer families had children in care, there would be fewer address changes logged).  Over 

all the clusters, the decrease in address changes may cautiously indicate greater stability 

in the lives of some of the families following the start of intervention treatment. 

The percentage of families with Drug/Alcohol events had very little change in the year 

following the start of intervention, although families in cluster 4 went from having none 

before intervention to 14% of families after the start of intervention.  The percentage of 

families with domestic abuse events decreased for all but four of the clusters, in 

particular cluster 5 had the largest decrease (of 19%), and clusters 7 and 2 also had 

decreases of 11% and 10%. 

In order to compare the cluster characteristics from the year before intervention to the 

cluster characteristics of the families a year later, Figure 64 contains two Nightingale 

plots: the plot on the left contains the original cluster characteristics derived from events 

in the year before intervention; the plot on the right contains the cluster characteristics 

for the families in the year following the start of intervention.  It must be noted that 

whilst the Nightingale plot provides a clear visual aid of the important attributes in each 

cluster, it is very much a tool for comparing cluster characteristics within the particular 

group of 11 clusters.  Direct comparison of, for instance, cluster 1 ‘before’ and cluster 1 
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‘after’ does not necessarily make sense.  This is because the size of the coloured segments 

is derived by considering all 11 clusters together.  For instance, cluster 7 on the ‘after’ plot 

has a full yellow segment, indicating that of all the clusters, cluster 7 had the highest 

proportion of families with CIN events.  The ‘before’ plot for cluster 7 had a much smaller 

yellow segment because six other clusters had higher proportions of families with CIN 

events.  However, when the actual statistics are considered, families in cluster 7 had a 

decrease in CIN events overall (from 32% ‘before’ to 30% ‘after’), yet when comparing the 

two, one would assume that there was a large increase.  This highlights that a direct 

comparison can be dangerous.  However, the two plots are considered together in order 

to highlight the changes that occurred overall and to provide a visualisation of the overall 

change in patterns after one year. 

The plots indicate that the families in cluster 11 went from having no events to having a 

small level of events after the start of intervention.  In many cases the clusters retained 

the primary characteristics (cluster 4 still had the highest percentage of families with 

NEET members, cluster 6 still had the highest absence levels over all the other clusters, 

and cluster 5 still had the highest proportion of families with adults who had committed 

criminal offences.  However, as Table 27 highlighted, these clusters all had great 

decreases in the percentage of families having those events after the start of 

intervention. 
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Figure 64: Nightingale plot comparison of cluster characteristics in the year before and after the start of intervention (Using ECC data) 
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7.3.3 Comparison of cluster assignments one year later 

Table 27 and Table 28 highlighted that there were changes in the types of events that 

families in each cluster had in the year following the start of intervention compared to 

before.  To determine the scale of these changes in terms of the cluster assignments, the 

data compiled for the year following the start of intervention was fed into the decision 

tree model (Figure 49) developed in the previous chapter.  This utilised the decision tree 

rules to assign each family to one of the 11 cluster types, using the data compiled for the 

year following the start of intervention.  This analysis was performed in order to 

determine whether a family still belonged in their original cluster a year later (i.e. that the 

type or frequency of their events had not changed significantly) or whether they now 

belonged to a different cluster (i.e. that there had been a sufficient change in the type or 

frequency of events in the year following the start of intervention to mean they no longer 

belonged in their original cluster). 

An Alluvial plot was created, Figure 65, to indicate which clusters the families were 

assigned to at the start of intervention, and which they were assigned to one year later; it 

highlights the changes from cluster to cluster.  On the left of the plot are the original 

cluster assignments that each family received, utilising the data compiled in the year 

before their first intervention date.  On the right side of the plot are the cluster 

assignments for each of those families utilising the data compiled in the year following 

the start of their first intervention date.  This analysis includes only the 1668 families that 

had complete data for the year following the start of intervention.  On either side of the 

plot are the percentages of families in each cluster. 

Most notable in Figure 65 is that almost three quarters (73%) of the families assigned to 

cluster 11, were still in cluster 11 a year later.  Cluster 11 contained families that had 

none of the specified events, therefore this meant that these families had no events in 

the years prior to and after the start of intervention treatment.  Cluster 11 grew in size 

after the start of intervention (it initially contained 28% of families and this increased to 

34% a year later), and it received families from each of the other ten clusters.  Almost half 

(45%) of cluster 9 (which contained families with just CIN events) were assigned to cluster 

11 a year later, meaning that they went from having just CIN events to having no events.  

And just over a third (36%) of cluster 5, and a fifth (20%) of cluster 2 moved to cluster 11.   
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Figure 65: Alluvial plot showing the change in cluster assignments one year after the start of intervention 

Table 29 details the percentage of families from each cluster who had no further events 

after the start of intervention (i.e. they were assigned to cluster 11). 

Table 29: For each cluster, the percentage of families who had no further events after the start of intervention treatment 

Cluster 1 2 3 4 5 6 7 8 9 10 11 

Percentage of 
families who had 
no further events 
after the start of 
intervention 

15% 20% 12% 10% 36% 3% 9% 13% 45% 8% 73% 

 

Considering Figure 65, aside from cluster 11, clusters 8 (only families with school absence) 

and 4 (families with NEET members) had the highest percentage of families who stayed in 

the same cluster a year later (that is, nothing changed significantly), with both having just 

under half of families remaining (49% and 47% respectively).  In contrast, cluster 10 

(which contained families with just school absence and CIN events) had only 8% of 

families remaining a year later.  The majority of cluster 10 were assigned to cluster 8 

(39%, just school absence) and cluster 2 (27%, families with Child Protection Plans).  This 

would appear to mean that the families from cluster 10 who moved to cluster 8 had an 
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improvement in circumstances, whereas those who moved to cluster 2 had a decline in 

their circumstances, as moving from having just CIN events to having a CPP (Child 

Protection Plan) implies an escalation in child safeguarding issues. 

Just over a third (36%) of families from cluster 3 (those with Looked after Children) 

remained in cluster 3 a year later; however, another third (32%) changed to cluster 2 

(meaning they had a Child Protection Plan issued in the year following intervention).  This 

may imply that there was an improvement in these family’s needs since moving from 

having a child in care to having a CPP would seem to be an improvement. 

Whilst the alluvial plot may look a little complex, as plotting eleven clusters (and eleven 

different colours) produces a somewhat messy image, it does give an overview of the 

type of changes that occurred in the year following the start of intervention.  It highlights 

the increase in families with no events (cluster 11), and those with just school absence 

(cluster 8); and the decrease in families with just CIN events and just school absence and 

CIN (clusters 9 and 10). 

7.3.4 School Attendance Timelines 

Whilst for most of the events, the analysis consisted of simply counting how many 

occurrences there were (or whether there was any occurrence) before and after the start 

of intervention, for the school absence data it was possible to create a timeline.  School 

attendance data was collected every half term, which meant that for each child the data 

could be compiled to create a picture of the trend of their school attendance.  The half-

termly data indicated how many school sessions a child attended, and how many were 

actually available to them; from this, the percentage of unauthorised absence was 

calculated.   

The half term during which a child’s first intervention began was treated as half-term 0; if 

their first intervention date was between half-terms (for example, in the summer 

holidays), then the following half-term was chosen as half-term 0.  Absence data for half-

term 0 and the five half-terms before and after this point were compiled, which covered 

the ‘before’ and ‘after’ the start of intervention timeframe.  In the ECC data, a school year 

was represented by five half-terms, as data was only available for the first five half-terms 

of each school year (there would normally be six).  This was standard across England; 

absence data for half-term 6 only began to be collected from the 2013/14 school year 
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onwards.  However, the ECC data did not receive this data until after the data for this case 

study was collected. 

Approximately 70% (2772 out of 3970) of the TF children were of school age (aged 

between 5 and 16) a year before the first intervention start date, which was where the 

timelines began.  However, a run of eleven consecutive half-terms worth of attendance 

data was required for the analysis, and this filtered out a portion of children.  Complete 

data was compiled for 1092 children, which was approximately 39% of the school-aged 

children overall.  Many children had some school attendance data, but it did not cover a 

consecutive run of half-terms.  It was not clear why there were so many gaps in the 

school absence data; reasons could be children who had moved in and out of area or 

changed schools, or simply missing data.  However, children from each of the eleven 

clusters were represented in the data, as detailed in Table 30, although there were 

particularly small numbers of children from clusters 3 to 7 represented.   

Table 30: Number and percentage of children with absence timeline data from each cluster, utilising ECC data 

Cluster 1 2 3 4 5 6 7 8 9 10 11 

Number of 
children 

230 200 32 40 5 33 17 201 56 181 86 

As a percentage of 
school age 
children in cluster 

47% 44% 21% 32% 24% 32% 35% 49% 21% 52% 24% 

 

Figure 66 visualises the timelines of all 1092 children.  The plot shows a chaotic picture, 

which made it difficult to identify any patterns.  However, when the attendance timelines 

were plotted by cluster (Figure 67) and by the overall trend for each cluster (the average 

percentage of unauthorised school absence, in Figure 68), it was possible to identify 

patterns. 

Overall, the chaos in Figure 66, where no discernible pattern is present, compared to the 

more understandable plots in Figure 67, highlight the advantage of analysing the data on 

the cluster level as opposed to one overall global analysis. 
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Figure 66: Timelines of school absence for the five half-terms before and after the start of intervention for all applicable 
children, ECC data 

 

 

Figure 67: Individual school absence timelines for the five half-terms before and after the start of intervention for 
children in each cluster, ECC data 
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Figure 68: Average percentage of School Absence by Cluster, for the five-half terms before and after the start of 
intervention, ECC data 

Where considering the average percentage of school absence by cluster (Figure 68), the 

plot shows that for cluster 1, absence levels increased overall after the start of 

intervention, and this is reflected by the slight upwards slope.  For cluster 2, the average 

absence levels levelled out where intervention began, but overall the trend was 

decreasing average absence, starting 3 half-terms before the beginning of intervention. 

Clusters 9 and 11, which had no school absence before intervention (represented by flat 

lines), had a small increase after the start of intervention.  Whereas the overall trend of 

cluster 11 was a very slight increase, for cluster 9 absence increased sharply from term 3 

onwards.  However, cluster 9 was represented by a relatively small sample of children 

(56). 

Clusters 8 and 10, which contained families who all had some school absence, both had 

increasing average absence before intervention.  For cluster 10 this began to decrease 
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one half-term before intervention and then began to fluctuate one half-term after 

intervention.  Cluster 8’s average absence decreased a little two half-terms after 

intervention, but then rose again. 

It should be noted that clusters 3 to 7 were each represented by a small number of 

children, and so any trends may not be as reliable as for the larger samples.  However, 

cluster 3 had an overall fluctuating trend, with an increase one half term before 

intervention, and then a decrease at the start of intervention.  Cluster 4 had an overall 

increasing trend before intervention, which then decreased following the start of 

intervention.   

Clusters 5 and 6 were most notable, with the highest levels of average school absence.  

They also both had what appeared to be a sudden change in absence levels 

corresponding to the start of intervention (a sharp drop for cluster 6 and a sharp rise for 

cluster 5).  However, they both also had a noticeable change in absence levels two half 

terms before intervention, and then again two half terms after the start of intervention.  

Cluster 5 was represented by a very small sample of children (n=5) and had a fluctuating 

pattern, but overall, average absence levels increased over the two years.  Cluster 6, 

which had a slightly larger sample of children (n=33) had a noticeable drop in absence 

levels at the start of intervention, lasting until half term 3.  Of all the clusters, cluster 6 is 

the one that had the most change corresponding with the start of intervention treatment. 

Overall, whilst there were differences in the particular timelines for each cluster, it was 

difficult to attribute them to the start of intervention.  There were certainly changes 

around the start of intervention for some clusters, but this was also true after and before.  

It was also perhaps unlikely that any changes would occur immediately, it may be that if 

changes or improvements were likely to occur that these would follow at some point 

after the start of intervention (as it was perhaps unlikely that intervention treatment 

would have an immediate effect).  The overall Government report (Department for 

Communities and Local Government, 2017) into the programme in England also noted 

that school absence generally fluctuated overall, and that it rose and fell in the terms 

following the start of intervention.  It would seem therefore that the ECC data followed a 

similar trend to the national data. 

As an alternative consideration, Figure 69 plots the overall trend of the school absence 

timelines when grouped by the OFSTED rating for each child’s school.  The OFSTED rating 
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to some degree could be thought of as a geographical, or ‘place-based’ attribute, since, in 

general, children attend schools that they live close to.  The sample sizes of each group 

were: 113 children attended ‘Outstanding’ schools; 576 attended ‘Good’ schools; 231 

attended schools that ‘Required Improvement’; and 33 attended ‘Inadequate’ schools.  It 

was noted that the group for children attending ‘Inadequate’ schools was small; however, 

this was likely to be the case as, in general, fewer schools are classed as inadequate. 

 

Figure 69: Absence timelines aggregated by school OFSTED rating, for the five half-terms before and after the start of 
intervention (ECC data linked to Department for Education (2016) data) 

The plot, Figure 69, indicates that children attending schools ranked as ‘Outstanding’ had 

the lowest average levels of school absence in the timeframe surrounding their first 

intervention.  And that the worse the OFSTED rating of the child’s school was, the higher 

the levels of average school absence were.  It was difficult to determine what effect, if 

any, intervention might have had; however, for those attending ‘Inadequate’ schools 

there was a noticeable drop in absence levels one half term after the start of 

intervention.   
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In general, all four groups had increasing average absence levels prior to the start of 

intervention, however they all decreased (or slowed down) between two and three half 

terms before the start of intervention, therefore this would not appear to be an effect 

that could be attributed to the TF programme. 

As with the overall absence data, from the plots alone it was difficult to determine if 

starting intervention treatment had an effect upon the school absence for individuals in 

the families.  The plots did highlight the overall trend for each cluster, and in particular 

the higher levels of absence for clusters 5 and 6.  Grouping the families by school OFSTED 

rating was interesting as it indicated that, at least for the TF, average school absence 

levels followed the school rating; the better the rating the lower the unauthorised 

absence. 

7.3.5 Considering the Families One Year Later 

Analysis was performed in order to determine what change (if any) had occurred in the 

year following a family’s introduction to the TF programme.  There was no indication in 

the database where a family was considered to have been ‘turned around’, or even where 

a family was no longer in the TF programme or likely to still be receiving help.  There was 

no indication even of when a family might have left the area.  The only way to determine 

progress (or whether a family was still receiving treatment) was to analyse the events 

that occurred for them, and to consider whether they were still receiving intervention 

treatment. 

This analysis includes only the 1668 families for whom a years’ worth of data existed after 

the start of intervention, and it considered the Government guidelines of what 

constituted a family being ‘turned around’.  For both Phase 1 and 2, having an adult in the 

family who had moved off out of work benefits and into employment meant that the 

family could be considered ‘turned around’.  However, as previously discussed, this 

particular information on state benefits was missing from the database, therefore 

evaluation of this criterion was not possible.   

The other criteria for Phase 1 specified that a family could also be considered ‘turned 

around’ where each child had fewer than 3 school exclusions and less than 15% school 

absence, there was a 60% reduction in anti-social behaviour for the whole family, and the 

offending rate for all children was reduced by at least a third.  Analysis was performed 

using these criteria, however since there was no anti-social behaviour data available, only 
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school exclusion, absence and criminal offences committed by children could be 

considered.  And since these events pertained only to children, it meant that families 

without children were not considered (since having no school absence, etc. was 

meaningless for families that consisted of only adults).  Table 31 details the number and 

percentage of families from each cluster that met this reduced Phase 1 criteria for being 

‘turned around’ (that, is all children in the family had: school absence less than 15%; 

fewer than 3 school exclusions; and a reduction in criminal offences (or none at all) in the 

year following the start of intervention).  It should be noted that this simply considered 

whether the count of events for each child fell under this threshold in the ‘after’ data 

(they may have had none of these events ‘before’). 

Table 31: Phase 1 reduced criteria - number of families whose children met the criteria in the year following the start of 
intervention, by cluster (with percentages in parentheses). ECC data 

Cluster 
1 

(n=231) 
2 

(n=250) 
3 

(n=93) 
4 

(n=49) 
5 

(n=14) 
6 

(n=40) 
7 

(n=23) 
8 

(n=163) 
9 

(n=189) 
10 

(n=145) 
11 

(n=471) 
Total 
1668 

Number 
of 
families 

115 
(50%) 

229 
(92%) 

80 
(86%) 

28 
(57%) 

5 
(36%) 

11 
(28%) 

8 
(35%) 

128 
(79%) 

174 
(92%) 

109 
(75%) 

212 
(45%) 

568 
(66%) 

 

The percentages vary widely by cluster in Table 31, and the largest percentages of 

families who met the reduced criteria were in clusters 2, 3 and 9.  However, the main 

features of these clusters were child safeguarding issues (CPP, LAC and CIN), which was 

not a criterion; children in these clusters had low levels of school absence, exclusion and 

criminal offences anyway and therefore were likely to fall under the thresholds.  Whilst 

these percentages provide some insight, they do not fully satisfy the Phase 1 criteria, 

given the missing data. 

The Phase 2 guidelines were less specific and simply stated that families could be 

considered ‘turned around’ where there had been significant progress compared to their 

problems at the point of engagement.  This definition was utilised for the following 

analysis, as it allowed consideration of all the available data.  Analysis was performed to 

consider whether a family’s circumstances had improved or worsened.  At the most basic 

level, any families that had no further events after the start of intervention could be 

considered to have had an improvement in their circumstances (or, where they had no 

events before the start of intervention as well, their circumstances had remained the 

same but not worsened).  And families that had a decrease in the number of different 

events they had might also be considered to have had some improvement (for example, if 

before the start of intervention, a family had school exclusion, school absence and CIN 
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events, but after had only school absence, this could be considered an improvement).  In 

contrast, families who had an increase in the number of different events could be 

considered to have had a worsening of their circumstances (for example, where ‘before’ 

they had only school absence, but ‘after’ they had school absence and exclusion, this 

would be considered a worsening in circumstances).   

For each cluster, Table 32 details the number (and percentage) of families who had no 

further events, fewer different types of events or more events after the start of 

intervention; it also includes a total for the whole group of families.   

Table 32: Number (and percentage in parentheses) of families who had no further events, fewer events, or more events 
after the start of intervention. ECC data 

Cluster 
1 

(n=231) 
2 

(n=250) 
3 

(n=93) 
4 

(n=49) 
5 

(n=14) 
6 

(n=40) 
7 

(n=23) 
8 

(n=163) 
9 

(n=189) 
10 

(n=145) 
11 

(n=471) 
Total 
1668 

Families 
with no 
further 
events 

34 
(15%) 

51 
(20%) 

11 
(12%) 

5 
(10%) 

5 
(36%) 

1 
(3%) 

2 
(9%) 

21 
(13%) 

85 
(45%) 

11 
(8%) 

342 
(73%) 

568 
(34%) 

Families 
with 
fewer 
Events 

80 
(35%) 

109 
(44%) 

43 
(46%) 

18 
(37%) 

2 
(14%) 

22 
(55%) 

6 
(26%) 

0 0 
62 

(43%) 
0 

342 
(21%) 

Families 
with 
more 
Events 

51 
(22%) 

33 
(13%) 

10 
(11%) 

12 
(24%) 

1 
(7%) 

6 
(15%) 

11 
(48%) 

52 
(32%) 

42 
(22%) 

31 
(21%) 

129 
(27%) 

378 
(23%) 

 

Table 32 highlights that 34% of families overall had no further events after the start of 

intervention treatment.  However, that figure includes the families from cluster 11 who 

had no events before intervention either.  Overall, 14% of families who had events before 

intervention then had no more after intervention, which represented an improvement in 

their circumstances.  There was wide variation between the clusters, with the clusters 

having between 1 and 85 families who had no further events (excluding cluster 11).  

Setting aside cluster 11, the cluster with the highest percentage of families with no 

further events was cluster 9 (45%).  Families in cluster 9 had only CIN events ‘before’, and 

as has been previously noted, there was an overall reduction in the percentage of families 

with CIN events, so this may explain the high percentage of families from cluster 9 who no 

longer had events.  In contrast, only 1 family (3%) from cluster 6 had no further events 

after the start of intervention.  Cluster 6 represented families with a complex mix of 

issues, therefore it was perhaps unlikely that many of these families would have had no 

further events in the following year. 
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Where the percentage of families with fewer different events after the start of 

intervention was considered, all but clusters but 8, 9 and 11 had families who had fewer 

different events.  Since families from clusters 8 and 9 only had one type of event before 

intervention (school absence and CIN events, respectively), they could not have ‘fewer’ 

events after; if there was a decrease, they had no events.  Similarly, since families in 

cluster 11 had no events, it was not possible to have fewer events after intervention.  

Overall, just over a fifth (21%) of families had fewer different events after the start of 

intervention treatment, which could be considered an improvement in their 

circumstances.  Over half (55%) of families from cluster 6 had fewer events. 

All clusters had a proportion of families who had an increase in the different types of 

events they had following the start of intervention.  Overall, 23% of families had an 

increase.  Where families had an increase, it could be considered that their situations had 

worsened after the start of intervention.  Cluster 7, in particular, had the highest 

percentage of families with an increase, with just under half (48%) of families.  Cluster 5 

had the lowest percentage (7%) of families. 

Overall, considering Table 32, it is clear that there were improvements for some families 

after the start of intervention treatment when compared to before.  34% of families had 

no further events, although it must be considered that 60% of these families had no 

events before either.  21% of families had fewer events; therefore, considered together 

55% of families had no, or fewer different events following the start of intervention, and 

could be considered to have had some improvement in their circumstances.  The 

remaining 45% of families had either no change (50%) or an increase in the number of 

different events that they had.   

However, this analysis did not consider the levels of individual events; that is, it 

considered, whether a family had an event (for example, school absence), but not the 

frequency of this (that is, it didn’t compare how much school absence there was ‘before’ 

and ‘after’ the start of intervention).  As a final analysis, and giving consideration to the 

Government criteria, the analysis already carried out in this section, and the information 

that was actually available in the database, two criteria for ‘improvement’ in a family’s 

circumstances were considered.  A ‘strict’ criteria, and a ‘relaxed’ (and perhaps more 

realistic) criteria were derived. 
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The ‘strict’ criteria considered ‘improvement’ to have occurred where a family had no 

further events after the start of intervention, or where they had events but had a 

reduction in the occurrence of all of those events.  A reduction would be less school 

absence, fewer exclusions and fewer criminal offences (child and adult), plus no further 

CIN, CPP, LAC or NEET events (if a family had any of these to start with).  These criteria 

were strict, as every single event that a family had before intervention would have to 

either have stopped or else had fewer occurrences of, for it to be considered that there 

was an improvement.  Whilst it was possible to consider a reduction in the countable 

events (school absence, exclusion, and criminal offences), it was not possible to do this 

for CIN, CPP, LAC and NEET events as they were counted as a binary ‘yes’ or ‘no’; a 

reduction for them would be zero.  As an example, if a family had school absence, school 

exclusion and CIN events before the start of intervention, an ‘improvement’ would be 

that they had less absence, fewer exclusions and no further CIN events; a decrease in only 

one or two of these events would not count. 

The ‘relaxed’ criteria considered ‘improvement’ to occur where a family had no further 

events after the start of intervention, or where they had events but had a reduction in the 

occurrence of all of the countable events.  That is, less school absence, fewer exclusions 

and fewer criminal offences (child and adult), if a family had these ‘before’.  For the 

relaxed criteria, a family could still have CIN, CPP, LAC or NEET events ‘after’ if they had 

had them ‘before’, as long as there was a reduction in the other countable events.  This 

was still fairly strict, as it required a decrease in all of the countable events, but allowed 

that existing safeguarding, or NEET issues could continue where there had been some 

other reduction.  This is perhaps more in line with the Government guidelines, as it did 

not implicitly consider safeguarding issues in regard to a family being ‘turned around’. 

These criteria were considered more appropriate (given the available data) than the 

attempted approximation of the Government guidelines.  This is because, where the 

Phase 1 guidelines were attempted (Table 31), this considered whether school absence 

was under 15% and whether there were less than 3 exclusions, however, this meant that 

a family could have an increase in absence and exclusion, and as long as it was under 

those thresholds, still be considered to have had an improvement.  Instead, the ‘strict’ 

and ‘relaxed’ criteria derived (and listed in Table 33) consider only actual reductions in 

events (rather than satisfying a threshold) and also consider the Phase 2 guidelines which 
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looked for sustained evidence of improvement (that is, the family have no increase in the 

different types of events that they have).  The families who meet these derived criteria 

are not referred to as ‘turned around’ in this analysis, since it was not possible to fully 

consider the Government guidelines; rather, it is considered that they show some 

evidence of an ‘improvement’ in their circumstances in the year following the start of 

intervention treatment. 

Table 33: Families who had some improvement after the start of intervention, using a combined approximation of the 
Government guidelines with consideration of the available ECC data, by cluster 

Cluster 
1 

(n=231) 
2 

(n=250) 
3 

(n=93) 
4 

(n=49) 
5 

(n=14) 
6 

(n=40) 
7 

(n=23) 
8 

(n=163) 
9 

(n=189) 
10 

(n=145) 
11 

(n=471) 
Total 
1668 

Families 
satisfying 
strict 
criteria 

51 
(22%) 

64 
(26%) 

12 
(13%) 

8 
(16%) 

7 
(50%) 

14 
(35%) 

4 
(17%) 

55 
(34%) 

85 
(45%) 

37 
(26%) 

342 
(73%) 

679 
(41%) 

Families 
satisfying 
relaxed 
criteria 

58 
(25%) 

108 
(43%) 

26 
(28%) 

16 
(33%) 

7 
(50%) 

18 
(45%) 

4 
(17%) 

55 
(34%) 

85 
(45%) 

45 
(31%) 

342 
(73%) 

764 
(46%) 

 

Considering the ‘strict’ criteria, 41% of families overall had ‘improvement’ after the start 

of intervention.  Cluster 11 had the highest percentage of families with improvement; this 

is because, as previously discussed, all families in cluster 11 had no events prior to 

intervention and many (73%) still had no events in the year following the start of 

intervention.  Clusters 5 and 9 had the next highest percentages (50% and 45% 

respectively).  Cluster 5 contained families who all had adults who had committed 

criminal offences before intervention, whereas cluster 9 contained families who all had 

only CIN events before.  Cluster 7 had the lowest percentage of families (17%) who 

showed some improvement after intervention.  However, the families in cluster 7 had a 

diverse mix of events before and many of them could not satisfy the strict criteria, which 

required improvement in all events after the start of intervention. 

Where considering the ‘relaxed’ criteria, 46% of families overall had improvement after 

the start of intervention treatment.  This was not a massive increase over the ‘strict’ 

criteria, but the slight relaxation of the rules allowed an extra 85 families (5%) to be 

considered as having had an improvement in their events after the start of intervention.  

Clusters 5, 7, 8, 9 and 11 had no change in percentages compared to the ‘strict’ criteria.   

Table 34 compares ‘improvement’ (under the ‘relaxed’ criteria) with the prevalence of 

planned and unplanned endings.  The left side of the table considers only those families 

that had an ‘improvement’ and details the percentage of first interventions that ended in 
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planned or unplanned endings, by cluster.  The right side of the table considers the 

families that had no ‘improvement’ under the relaxed criteria (that is, the level of their 

events either stayed the same, or got worse after the start of intervention).  The two 

groups are listed together to enable a direct comparison. 

Table 34: Percentage of first interventions that ended in planned or unplanned endings, by families that had 
‘improvement’ or not, and by cluster 

Families with improvement 

 

Families without improvement 

Cluster 
Planned 
Ending 

Unplanned 
Ending 

Planned 
Ending 

Unplanned 
Ending 

Cluster 

1 (n=58) 84% 12% 74% 20% 1 (n=173) 

2 (n=108) 84% 13% 78% 20% 2 (n=142) 

3 (n=26) 73% 27% 81% 16% 3 (n=67) 

4 (n=16) 81% 19% 70% 27% 4 (n=33) 

5 (n=7) 57% 42% 100% 0 5 (n=7) 

6 (n=18) 89% 11% 72% 23% 6 (n=22) 

7 (n=4) 50% 25% 84% 16% 7 (n=19) 

8 (n=55) 76% 16% 72% 22% 8 (n=108) 

9 (n=85) 72% 21% 76% 20% 9 (n=104) 

10 (n=45) 69% 24% 76% 19% 10 (n=100) 

11 (n=342) 74% 22% 75% 22% 11 (n=129) 

All families 
(n=764) 

76% 20% 76% 20% All families 
(n=904) 

 

Superficially, it might seem logical to imagine that families who had ‘improvement’ would 

have planned endings for their first intervention treatment, however, this was not the 

case.  Overall, just over three quarters of families (76%) who had an ‘improvement’ after 

the start of intervention had a first intervention that concluded as a planned ending; and 

this percentage was the same for the ‘no improvement’ group.  For both groups, a fifth of 

first interventions (20%) had an unplanned ending.  The fact that there was no difference 

overall between groups might suggest that the first intervention did not contribute to the 

family’s ‘improvement’, however, it is important to consider that some families received 

more than one intervention treatment.  And also, that a planned ending might simply 

mean that a family cooperated and met the requirements of their particular treatment 

plan, rather than that it indicated progress in terms of events.  It is possible that planned 

and unplanned endings might be considered a measure of cooperation, or engagement, 

with the TF Programme, but that they (or at least the first intervention) may not provide 

an indication of whether a family showed ‘improvement’ in terms of the occurrence of 

events.  
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Considering both groups in Table 34, the percentages vary by cluster.  For cluster 5, all 

families who showed ‘no improvement’ had planned endings to their first treatment; 

whereas just over half (57%) of the families that showed ‘improvement’ had planned 

endings.  Whilst these percentages were more extreme than for the other clusters, and 

may reflect the small sample size of cluster 5, they do highlight the counter-intuitive 

relationship between planned endings and ‘improvement’ in the frequency of events that 

occurred. 

Table 35 compares the two groups (families with and without ‘improvement’) with the 

percentage of families who received more than one type of intervention treatment, by 

cluster.  Families received more than one type of treatment where their needs were 

complex, and the first intervention treatment was perhaps not enough to help on its own.   

Table 35: Percentage of families who received more than one intervention, for families with and without ‘improvement’ 
and by cluster assignment. ECC data 

Families with improvement 

 

Families without improvement 

Cluster 

Percentage of 
families who 

received further 
treatment 

Percentage of 
families who 

received further 
treatment 

Cluster 

1 (n=58) 28% 42% 1 (n=173) 

2 (n=108) 39% 50% 2 (n=142) 

3 (n=26) 35% 46% 3 (n=67) 

4 (n=16) 19% 42% 4 (n=33) 

5 (n=7) 29% 57% 5 (n=7) 

6 (n=18) 50% 41% 6 (n=22) 

7 (n=4) 25% 47% 7 (n=19) 

8 (n=55) 24% 42% 8 (n=108) 

9 (n=85) 26% 53% 9 (n=104) 

10 (n=45) 31% 58% 10 (n=100) 

11 (n=342) 28% 46% 11 (n=129) 

All families 
(n=764) 

30% 47% All families 
(n=904) 

 

The table highlights that, overall (and for almost all clusters) higher percentages of 

families who showed no improvement had further intervention treatment.  This indicates 

that families with more complex needs (who did not show improvement after a year) 

were more likely to receive further interventions, which would seem logical.  It also 

indicates that, whilst the success (or not) of a first intervention may not aid in indicating 

quantifiable improvement for a family, whether a family had further intervention 

treatment was more closely linked to ‘improvement’. 
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It should be considered that not all families who did not satisfy the criteria for 

‘improvement’ necessarily had any escalation in their issues, they just did not show 

‘improvement’.  Therefore, the data was also analysed in order to consider only families 

who had an escalation in their issues.  That is, they had an increase in school absence, and 

more school exclusions and criminal offences (if they had them ‘before’), and had 

occurrences of CIN, CPP, LAC or NEET events (where they had not had them ‘before’).  

This identified that just over a quarter of families (26%) had more, or greater occurrences, 

of events in the year following the start of intervention. 

7.3.5.1 Summary 

This section considered the Government’s guidelines on what constituted a family being 

‘turned around’.  There was no definitive information regarding this within the database, 

and since the data that was available could not satisfy the Government guidelines, it was 

not possible to determine whether any of the families might have been ‘turned around’ in 

the year following their introduction to the TF programme.  However, in consideration of 

these guidelines, and given the available data, new criteria were derived that attempted 

to indicate where a family had some improvement.  Using the ‘relaxed’ criteria, 

‘improvement’ was classified as having no further events after the start of intervention, 

or having a reduction in all of the countable events (school absence, exclusion and 

criminal offences, if a family had them before), and no increase in CIN, CPP, LAC or NEET 

events.  Overall, just under half of families (46%) had some ‘improvement’ in the year 

following their introduction to the TF programme, and the percentages varied quite 

widely between clusters.  

Where consideration was given to how a family’s first intervention treatment ended 

(planned or unplanned endings), it seemed that the success, or not, of the first 

intervention may have had little impact upon whether a family showed improvement in 

terms of the events that occurred.  However, a greater percentage of families who did not 

show improvement received further intervention treatment (they received more than 

one type), which cautiously indicates that the lack of improvement was recognised in 

some cases and families received further treatment in an attempt to rectify this. 

It should be considered that it was not possible to identify a comparison group from the 

data so that a more thorough analysis could be performed in order to determine whether 

improvement might be directly attributed to the TF programme.  This was because it was 



238 
 

very difficult to identify families with similar needs that were not already receiving 

treatment.  The ECC also had this difficulty and felt that generally most families who had 

needs qualifying them for the TF programme had already been identified and were 

receiving some form of help.  Those few families not receiving treatment, and that might 

form a comparison group, in general, had fewer needs.  Another problem, pertaining to 

this particular analysis, is the notion of having some sort of start date (first intervention 

date) around which to compare events; there may be no equivalent date for comparison 

families.  However, whilst difficult to identify, further consideration of whether it is 

possible to identify any kind of useful comparison group (perhaps if more data were to 

become available in future), could be a useful avenue for future research. 

7.3.6 Detailed Summary of clusters following the start of intervention 

Collecting together the data from the previous sections (school absence, events in the 

year following intervention, and the consideration of the outcome) and the cluster data 

from the previous chapter, there follows a detailed summary of each of the clusters in the 

year following their introduction to the TF programme, in comparison to the year before.  

This is in order to consider any changes that might have occurred for families after joining 

the TF programme 

For each cluster, a Slopegraph was plotted to highlight the changes.  The Slopegraph plots 

the percentage of families with each of the eights event (that were clustered upon) in the 

year before the start of intervention, and also the percentage in the year after the start of 

intervention.  For the ‘before’ data, all 2155 families were included, and for the ‘after’ 

data all 1668 families who had a years’ worth of ‘after’ data available were included.  The 

slopegraph provides a visualisation of the changing trends within each cluster. 

First, to provide contrast, Figure 70 plots the slopegraph for all families (that is, not on the 

cluster-level).  Aside from the decrease in the occurrence of CIN events (which has been 

previously discussed), the plot indicates that there was very little change.  If anything, 

there was an overall slight increase in the occurrence of events for the families where 

comparing ‘before’ and ‘after’.  However, as will be highlighted in each cluster summary, 

on the cluster-level there were significant changes. 
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Figure 70: Percentage of families with events in the years before and after the start of intervention, for all families 

7.3.6.1 Cluster 1: School exclusion and criminal offences 

Cluster 1 contained 291 families, 231 families (79%) had available data for the ‘after’ 

analysis. 

 

Figure 71: Percentage of families with events in the years before and after the start of intervention for cluster 1 

As Figure 71 highlights, the primary features of this cluster, school exclusion and criminal 

offences, decreased in the year following the start of intervention.  Indeed, the five most 

populous events (school absence, exclusion, CIN and criminal offences) all decreased.  
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The percentage of families with school exclusion had the largest decrease (from 57% to 

32%) and whilst ‘before’ two thirds (66%) of all families with school exclusion were 

contained in this cluster, this decreased to 39% ‘after’.  There was a large decrease in the 

percentage of families with adults who committed criminal offences (from 36% to 14%), 

however only a small decrease (of 4%) for criminal offences committed by children. 

Whilst the percentage of families with CIN events dropped (from 42% to 29%), there was 

an increase in families with more serious child safeguarding events after the start of 

intervention (with CPPs increasing from 1% to 15%, and LACs from 0.3% to 9%).   

Whilst there was a small decrease in the percentage of families with school absence, the 

amount of school absence per family increased slightly.  The average levels of 

unauthorised absence per family increased (from an average of 3.9% unauthorised school 

sessions per family, to 7.3%), and the percentage of families that had absence greater 

than 15% increased (from 7% to 13%).  There was also an increase in families with NEET 

members (7% of families compared to none before). 

It was notable that 15% of families in this cluster had no events at all in the year following 

the first intervention date, which would indicate a positive change for these families.  And 

where the cluster rules from the ‘before’ analysis were applied, just under a third of 

families (31%) would have remained in cluster 1, that is, their circumstances remained the 

same.  For those that changed cluster, 15% would be assigned to cluster 11 (no events), 

13% to cluster 2 (Child Protection Plans) and 13% to cluster 8 (just school absence); the 

rest were split over the remaining clusters.  

Three quarters (75%) of first interventions ended in a planned ending, 18% of families had 

an unplanned ending and 7% were still continuing a year later.  A quarter of families had 

an improvement in their circumstances after the start of intervention according to the 

‘relaxed’ criteria; this was low in comparison to the other clusters, only cluster 7 had a 

lower percentage.  Just over a third (37%) of families overall received further intervention 

treatment.  Overall, 42% of families who had shown no improvement received further 

intervention treatment, compared to 28% of families who had shown improvement. 
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7.3.6.2 Cluster 2: Child Protection 

Cluster 2 contained 335 families, 250 families (75%) had available data for the ‘after’ 

analysis. 

 

Figure 72: Percentage of families with events in the years before and after the start of intervention for cluster 2 

Figure 72 highlights the biggest change in the ‘after’ analysis was a large decrease in the 

percentage of families with CPP and CIN events.  The primary feature of this cluster, Child 

Protection Plans, showed a large decrease, from all families having them ‘before’, to just 

over a third of families (38%) ‘after’.  Whereas ‘before’ almost all of the families with CPP 

events (92%) were contained in this cluster, this decreased to only a third (33%) following 

the start of intervention.  The percentage of families with CIN events also decreased.  

Overall, this represented a significant reduction in the percentage of families with child 

safeguarding issues.  However, there was an increase (from 12% to 19%) in the 

percentage of families with LAC events, indicating that a small number of family’s child 

safeguarding needs escalated after the start of intervention. 

Overall, the percentage of families with the other events showed little change.  School 

absence increased slightly (from 44% to 46%), but the average levels of unauthorised 



242 
 

absence decreased (from 3.7% per family on average to 2.6%, and from 15% of families 

with over 15% absence to 4%).  The percentage of families with school exclusion and 

those with NEET members both increased slightly (by 4% and 2% respectively).  The 

percentage of families with criminal offences stayed almost unchanged, for both adult 

and child offences. 

It was notable that 20% of families in this cluster had no events at all in the year following 

the first intervention date, which would seem to indicate a positive change for these 

families.  And where the cluster rules from the ‘before’ analysis were applied, just over a 

third of families (36%) would have remained in cluster 2, that is, their circumstances 

remained the same.  For those that changed cluster, 20% would be assigned to cluster 11 

(no events), 13% to cluster 3 (Looked after Child events) and 10% to cluster 1; the rest 

were split over the remaining clusters.  

80% of first interventions ended in a planned ending (which was high in comparison to 

the other clusters), 17% had an unplanned ending and 4% were still continuing a year 

later.  43% of families had an improvement in their circumstances after the start of 

intervention according to the ‘relaxed’ criteria.  41% of families overall received further 

intervention treatment, of these 62% had shown no improvement.  Overall, where 

families showed no sign of improvement in the year following the start of intervention, 

half received further treatment and half did not. 

7.3.6.3 Cluster 3: Looked After Children 

Cluster 3 contained 115 families, 93 families (81%) were included in the ‘after’ analysis. 

The primary feature of this cluster was that all families had Looked After Children events; 

this decreased to 42% of families following the start of intervention.  Figure 73 highlights 

that there was also a notable decrease in the percentage of families with CIN events 

(from 63% to 16%), however there was a large increase in the percentage of families with 

Child Protection Plans (from 2% to 32%).  This suggests that, overall, child safeguarding 

concerns had been downgraded for many of the families; 58% of families no longer had 

children in care events, but instead just under half of them had Child Protections Plans.  

There was a large decrease in the percentage of families who had changed address at 

least once (from 73% ‘before’ to 34% ‘after’), this might reflect that since there were 

fewer families with children in care, there were therefore fewer address changes (as 

family members were not moving around as much). 
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Figure 73: Percentage of families with events in the years before and after the start of intervention for cluster 3 

There was a decrease in criminal offences committed by adults (from 21% of families to 

9%), although offences committed by children remained the same (8% of families).  

School absence and exclusion both increased (absence from 30% to 42% of families, and 

exclusion slightly from 11% to 14%). 

It was notable that 12% of families in this cluster had no events at all in the year following 

the first intervention date, which would seem to indicate a positive change for these 

families.  And where the cluster rules from the ‘before’ analysis were applied, just over a 

third of families (37%) would have remained in cluster 3, that is, their circumstances 

remained the same.  For those that changed cluster, 32% would be assigned to cluster 2 

(Child Protection Plans), and 12% to cluster 11 (no events); the rest were split over the 

remaining clusters except for clusters 4 and 7.  

81% of first interventions resulted in a planned ending (this was the highest percentage 

over all clusters), 17% had an unplanned ending and 2% were still continuing a year later.  

28% of families had an improvement in their circumstances after the start of intervention 

according to the ‘relaxed’ criteria, which was fairly low compared to the other clusters 
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(only clusters 1 and 7 had lower percentages).  Just under half (44%) of families overall 

received further intervention treatment, of these 78% had shown no improvement.  

Overall, of the families who showed no sign of improvement (72%) in the year following 

the start of intervention, 46% received further treatment.  Where families had shown 

signs of improvement, 35% received further treatment. 

7.3.6.4 Cluster 4: NEETs 

Cluster 4 contained 61 families, 49 families (80%) had available data for the ‘after’ 

analysis. 

 

Figure 74: Percentage of families with events in the years before and after the start of intervention for cluster 4 

The primary feature of this cluster was that all families had members who were Not in 

Employment, Education or Training (NEET), and this decreased to just under two thirds 

(63%) of families a year later.  Figure 74 indicates that there was little change in the 

prevalence of most of the other events, however there was a notable increase in the 

percentage of families with Child Protection Plans (from zero to 16%).  The percentage of 

families receiving DWP benefits increased from 57% ‘before’ to 78% ‘after’.  Whilst, as 

previously mentioned, there was an overall increase in the percentages of families 
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receiving DWP benefits for all clusters, this was the largest increase of all the clusters; it is 

not clear why. 

10% of families in this cluster had no events at all in the year following the first 

intervention date, which would seem to indicate a positive change for these families.  And 

where the cluster rules from the ‘before’ analysis were applied, just under half of families 

(47%) would have remained in cluster 4, that is, their circumstances remained the same.  

For those that changed cluster, 12% would be assigned to cluster 2 (Child Protection 

Plans), and 10% to cluster 11 (no events); the rest were split over the remaining clusters 

except for clusters 5, 6 and 10.  

75% of first interventions resulted in a planned ending, 21% had an unplanned ending and 

3% were still continuing a year later.  A third (33%) of families had an improvement in 

their circumstances after the start of intervention according to the ‘relaxed’ criteria.  Just 

over a third (35%) of families overall received further intervention treatment.  Overall, of 

the families who showed no sign of improvement (67%) in the year following the start of 

intervention, 42% received further treatment.  Where families had shown signs of 

improvement, 19% received further treatment. 

7.3.6.5 Cluster 5: Adult Criminal Offences 

Cluster 5 contained 21 families, 14 families (67%) had available data for the ‘after’ 

analysis. 

The primary feature of this cluster was that all families had at least one adult who had 

committed a criminal offence, this decreased to 36% of families in the ‘after’ analysis.  

Figure 75 highlights that there was also a small reduction in the percentage of families 

with criminal offences committed by children (from 10% to 7%), and in families with 

school exclusions (from 24% to 21%).  

A year later no family had a Child Protection Plan (decreased from 5%), however the 

percentage of families with CIN events had increased (from 10% to 21% of families).  The 

increase in families with CIN events was unusual, as most of the clusters had a decrease.  

This represented an increase in lower-level child safeguarding events in the year following 

the start of intervention, but a decrease in the more serious safeguarding issues (there 

were no families with CPP or LAC events ‘after’).  Families in this cluster had a large 

increase in the percentage of drug/alcohol events (from zero ‘before’ to 14% ‘after’), no 
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other cluster had an increase of more than a couple of per cent.  However, there was a 

large decrease in the percentage of events classed as domestic abuse (from 33% ‘before’ 

to 14% ‘after’). 

 

Figure 75: Percentage of families with events in the years before and after the start of intervention for cluster 5 

It was notable that just over a third (36%) of families in this cluster had no events at all in 

the year following the first intervention date, which would seem to indicate a positive 

change for these families.  And where the cluster rules from the ‘before’ analysis were 

applied, just over a fifth of families (21%) would have remained in cluster 5, that is, their 

circumstances remained the same.  For those that changed cluster, 36% would be 

assigned to cluster 11 (no events), and 29% to cluster 1; the rest were split over the 

clusters 8 and 9.  

57% of first interventions ended in a planned ending, and 43% had an unplanned ending; 

there were no continuing interventions.  This was the highest proportion of unplanned 

endings across all of the clusters (cluster 8, with 24% unplanned endings was the next 

highest).  However, despite this, half of the families (50%) had an improvement in their 
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circumstances after the start of intervention according to the ‘relaxed’ criteria – this was 

a higher percentage than for all clusters but cluster 11 (whose families had no events).  

However, it is important to consider the small size of this cluster when considering the 

data. 

Just under half (48%) of families overall received further intervention treatment, of these 

67% had showed no sign of improvement in the year following the start of intervention.  

Overall, of the families who showed no sign of improvement (50%) in the year following 

the start of intervention, 57% received further treatment.  Where families had shown 

signs of improvement, 29% received further treatment. 

7.3.6.6 Cluster 6: High Levels of School Absence 

Cluster 6 contained 54 families, 40 families (74%) had available data for the ‘after’ 

analysis. 

 

Figure 76: Percentage of families with events in the years before and after the start of intervention for cluster 6 

This cluster’s primary feature was that all families had high levels of school absence.  In 

the year following the start of intervention, the percentage of families with school 

absence decreased from 100% to 88%, a much smaller decrease overall than was 
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recorded with the primary characteristics of the other clusters.  However, where 

previously 98% of families had on average school absence that was greater than 15%, this 

decreased to 55% of families of families in the ‘after’ analysis.  Therefore, although most 

families still had unauthorised school absence, the average amount for each family was 

less (overall it decreased from 38.7% to 21.9%).  Figure 76 highlighted that there was also 

a reduction in the percentage of families with school exclusions (from 54% to 30%). 

Considering child safeguarding, the percentage of families with CIN events decreased 

(from 57% to 22%), LAC events decreased slightly (from 9% to 8%) and CPP events 

increased a little (from 22% to 25%).  There was therefore a decrease in lower-level 

safeguarding events, but the percentage of higher level events remained similar. 

There were decreases in the percentage of families with criminal offences, for both those 

committed by adults and by children.  Perhaps the most notable increase ‘after’ was the 

percentage of families with a NEET member (from 15% to 25% of families). 

This was a diverse cluster, with a variety of events, and remained so a year later.  Only 3% 

of families had no events at all in the year following the first intervention date, which was 

a lower percentage than for any of the other clusters.  Where the cluster rules from the 

‘before’ analysis were applied, only 8% of families would have remained in cluster 6, that 

is, their circumstances remained the same.  For those that changed cluster, 28% would be 

assigned to cluster 8 (just school absence), and 18% to cluster 2 (CPPs); the rest were split 

over the clusters except for 5 and 9. 

70% of first interventions resulted in a planned ending, and 19% had an unplanned 

ending; there were 7% of interventions continuing a year later.  39% of families overall 

received further intervention treatment.  Overall, 45% of families had an improvement in 

their circumstances after the start of intervention according to the ‘relaxed’ criteria, and 

half of these received further intervention treatment.  Of the families who showed no 

sign of improvement (55%) in the year following the start of intervention, 41% received 

further treatment.  This was the only cluster where the percentage of families who 

received more than one intervention treatment was greater for the families who showed 

improvement, compared to those who did not show improvement. 
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7.3.6.7 Cluster 7: Child Criminal Offences 

Cluster 7 contained 25 families, 23 families (92%) had available data for the ‘after’ 

analysis. 

 

Figure 77: Percentage of families with events in the years before and after the start of intervention for cluster 7 

The primary feature of this cluster was that it contained families who all had at least one 

child who had committed criminal offences.  In the year following the start of 

intervention, the percentage of families with criminal offences committed by children 

decreased from 100% to 83%.  There was also a small decrease in the percentage of 

families with criminal offences committed by adults (from 8% to 4%). 

Perhaps the most notable change in Figure 77 was that the percentage of families with 

school absence and school exclusion increased.  In the year before intervention 44% of 

families had school absence, this increased to 70% following the start of intervention; and 

families with school exclusion increased from 24% to 39%.  There was also an increase in 

the percentage of families with NEET members. 
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The percentage of families with CIN events stayed almost the same (from 32% to 30%), 

and there was a decrease in families with Child Protection Plans (from 44% of families to 

17%).  However, the percentage of families with Looked After Children events increased 

from 4% to 22%, indicating an increase in serious child safeguarding issues. 

9% of families had no events at all in the year following the first intervention date, which 

indicated a positive change for these families.  Where the cluster rules from the ‘before’ 

analysis were applied, only 26% of families would have remained in cluster 7, that is, their 

circumstances remained the same.  For those that changed cluster, 30% would be 

assigned to cluster 1, and 22% to cluster 3 (LAC events); the rest were split over clusters 

2, 5, 6, 11. 

72% of interventions ended in planned ending, 20% had an unplanned ending and 8% 

were ongoing a year later.  Whilst only a fifth of families received AO treatment, all of the 

unplanned endings occurred for families receiving AO treatment.  40% of families 

received more than one intervention treatment.  Overall, 17% of families had an 

improvement in their circumstances after the start of intervention according to the 

‘relaxed’ criteria; this was the lowest percentage of all clusters.  However, the slopegraph 

highlights that the overall prevalence of many of the events increased ‘after’, therefore it 

is perhaps unsurprising that so few families showed signs of improvement.  Of the 

families who showed no sign of improvement (83%) in the year following the start of 

intervention, 47% received further intervention treatment. 

7.3.6.8 Cluster 8: School Absence Only 

Cluster 8 contained 223 families, 163 families (73%) had available data for the ‘after’ 

analysis. 

This cluster contained families who all had school absence, but no other events in the 

year prior to intervention.  However, there were a small percentage of families with pre-

existing CPPs (12%) and LAC events (2%).  Figure 78 highlights that the percentage of 

families with any school absence decreased from 100% to 79%.  However, the levels of 

school absence remained the same (6% unauthorised sessions per family on average, and 

12% of families had more than 15% unauthorised sessions). 

The percentage of families with the other events increased (which was perhaps likely 

given they were zero prior to intervention), however the percentage of families with Child 
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Protection Plans decreased slightly (from 12% with pre-existing CPPs, to 8% a year after 

the start of intervention), although in the plot this is represented as an increase as pre-

existing events were not counted.  The greatest increase was for CIN events, with 22% of 

families having them ‘after’.  9% of families had criminal offences that were committed by 

a child, whilst 4% had offences committed by adults.  7% of families had school exclusion 

‘after’.  The percentage of families with LAC events and families with NEET members 

increased slightly (by 2%). 

 

Figure 78: Percentage of families with events in the years before and after the start of intervention for cluster 8 

13% of families had no events at all in the year following the first intervention date, which 

indicated a positive change for these families.  Where the cluster rules from the ‘before’ 

analysis were applied, just under half (49%) of families would have remained in cluster 8, 

that is, their circumstances remained the same, and they only had school absence in the 

year following intervention.  For those that changed cluster, 13% would be assigned to 

cluster 11 (no events), and 12% to cluster 10 (school absence and CIN events only); the 

rest were split over the other clusters. 
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69% of first interventions resulted in a planned ending (which was the second lowest 

percentage of planned endings compared to the other clusters), 24% had an unplanned 

ending and 7% were ongoing a year later.  Just under a third (32%) of families received 

further intervention treatment, this was the second lowest percentage over all clusters.  

Overall, 34% of families had an improvement in their circumstances after the start of 

intervention according to the ‘relaxed’ criteria, and of these 24% received further 

intervention treatment.  Of the families that showed no improvement (66%), 42% 

received further intervention treatment. 

7.3.6.9 Cluster 9: Children in Need only 

Cluster 9 contained 243 families, 189 families (78%) had available data for the ‘after’ 

analysis 

 

Figure 79: Percentage of families with events in the years before and after the start of intervention for cluster 9 

This cluster contained families who all had at least one CIN event, but no other events in 

the year prior to intervention.  However, there were a small percentage of families with 
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pre-existing CPPs (1%) and members who were NEET (1%).  The percentage of families 

with CIN events decreased from 100% to 28%, as shown in Figure 79.  However, there was 

an increase in families with Child Protection Plans, (to 16%) and a small increase in LAC 

events, suggesting that although there were far fewer families with lower-level child 

safeguarding events, there was a small group who changed to having higher-level events. 

There was an increase in school related issues, just under a fifth (19%) of families had 

school absence in the year following the start of intervention, and 7% had school 

exclusions.  There were small increases in the percentage of families with criminal 

offences committed by children (5%), and adults (4%). 

45% of families had no events at all in the year following the first intervention date, which 

indicated a positive change for these families.  This was the largest percentage of families 

(considering all clusters) who had no further events following the start of intervention.  

Where the cluster rules from the ‘before’ analysis were applied, 15% of families would 

have remained in cluster 9, that is, their circumstances remained the same and they only 

had CIN events in the year following intervention.  For those that changed cluster, 45% 

would be assigned to cluster 11 (no events), and 16% to cluster 2 (CPP); the rest were 

split over the other clusters, except cluster 6. 

75% of interventions resulted in a planned ending, 19% had an unplanned ending and 6% 

were ongoing a year later.  40% of families received further intervention treatment.  

Overall, 45% of families had an improvement in their circumstances after the start of 

intervention according to the ‘relaxed’ criteria, and this was the second highest 

percentage across all clusters; of these 26% received further intervention treatment.  Of 

the families that showed no improvement (55%), 53% received further intervention 

treatment. 

7.3.6.10  Cluster 10: School Absence and CIN 

Cluster 10 contained 182 families, 145 families (80%) were included in the ‘after’ analysis. 

This cluster contained families who all had unauthorised school absence and at least one 

CIN event, but no other events in the year prior to intervention.  However, there were a 

small percentage of families (3%) that had pre-existing Child Protection Plans.  As Figure 

80 highlights, the percentage of families with CIN events decreased (from 100% to 22%), 

however the percentage with school absence decreased by a much smaller amount (from 
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100% to 87%).  The amount of school absence that each family had remained the almost 

the same (10.6% average unauthorised sessions per family ‘before’ to 10.1% ‘after’). 

 

Figure 80: Percentage of families with events in the years before and after the start of intervention for cluster 10 

The largest increase in the occurrence of a particular event was for families having Child 

Protection Plans (up to 28%) following the start of intervention.  Looked After Child 

events also increased to 7%, indicating that although there was a decrease in lower-level 

safeguarding events (CIN), there was a small group of families who had an increase in 

higher-level events.  

There was an increase in families with school exclusion (up to 12%).  There were smaller 

increases in the percentage of families with criminal offences committed by adults (6%), 

criminal offences committed by children (8%), LAC events (7%) and NEET members (6%) 

8% of families had no events at all in the year following the first intervention date, which 

indicated a positive change for these families.  Where the cluster rules from the ‘before’ 

analysis were applied 8% of families would have remained in cluster 10, that is, their 

circumstances remained the same, and they only had CIN events and school absence in 
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the year following intervention.  For those that changed cluster, 39% would be assigned 

to cluster 8 (just school absence), which highlights the decrease in CIN events, and 27% to 

cluster 2 (CPP); the rest were split over the other clusters. 

72% of interventions ended in a planned ending, 23% had an unplanned ending and 5% 

were ongoing a year later.  47% of families received further intervention treatment, which 

was the second highest percentage over all clusters.  Overall, just under a third (31%) of 

families had an improvement in their circumstances after the start of intervention 

according to the ‘relaxed’ criteria; of these, 31% received further intervention treatment.  

Of the families that showed no improvement (69%), 46% received further intervention 

treatment. 

7.3.6.11  Cluster 11: No Events 

Cluster 11 contained 605 families, 471 families (78%) were included in the ‘after’ analysis 

 

Figure 81: Percentage of families with events in the years before and after the start of intervention for cluster 11 

All families in this cluster had no events in the year prior to intervention.  However, a 

small proportion had pre-existing CPPs (3%), LAC events (1%) and members who were 

NEET (1%).  In the year following the start of intervention 73% of families still had no 

events at all.  There were only small increases in the percentage of families with any of 

the other events, as shown in Figure 81.   

In terms of child safeguarding, 11% of families had CIN events, the percentage of families 

with CPPs increased slightly to 6%, and LAC events increased to 2%.  The percentage of 

families with adult criminal offences was 6%, and 0.4% for child criminal offences.  

Families with NEET members increased to 3%, and school exclusion was 1%. 

73% of families had no events at all in the year following the first intervention date, 

indicating no change for these families; they had no events in the year before or after the 

start of intervention.  Where the cluster rules from the ‘before’ analysis were applied, for 
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those that changed cluster, 6% would be assigned to cluster 8 (just school absence), and 

6% to cluster 2 (CPP); the rest were split over the other clusters, except 6 and 7. 

75% of interventions ended in a planned ending, 20% had an unplanned ending and 5% 

were ongoing a year later.  30% of families received further intervention treatment, which 

was the lowest percentage over all clusters.  Overall, almost three quarters (73%) of 

families had an improvement in their circumstances after the start of intervention 

according to the ‘relaxed’ criteria; of these, 28% received further intervention treatment.  

Of the families that showed no improvement (27%), 47% received further intervention 

treatment.  Cluster 11 consisted of many single person families (just under half were), and 

almost all of them (94%) had ‘improvement’. 

7.3.6.12  Summary 

Overall, this section has shown that, in the year following the start of intervention, a 

percentage of families in each of the clusters had some improvement in their 

circumstances.  Where the primary characteristic of each cluster was considered, there 

was a decrease in the occurrence of those particular events for all clusters (for instance, 

cluster 2’s primary characteristic was that all families had Child Protection Plans; this 

reduced to 38% of families in the year following the start of intervention treatment).  

Where the ‘relaxed’ criteria for ‘improvement’ (derived from considering the Government 

guidelines for being ‘turned around’) were considered, all clusters had families whose 

lives showed ‘improvement’ in the year following the start of intervention. 

Where the plot for all families (Figure 70) is considered alongside the eleven cluster-level 

plots, it highlights the extra information gained from analysing the clusters separately.  If 

this plot (and data) alone had been considered, rather than the eleven cluster-level plots, 

it would have been far less informative, and could not have indicated the underlying 

complexity of the data.  In general, on the ‘global’ level there appeared to be little change 

in the percentage of families with events ‘before’ and ‘after’, aside from the occurrence 

of CIN events.  Yet, the individual cluster plots highlighted significant changes, with some 

clusters changing from having all families with particular events ‘before’, to having very 

few ‘after’ (such as cluster 2’s change from all families with CPPs ‘before’ to just over a 

third of families ‘after’).  In the overall plot, these significant cluster-level changes were 

just not visible. 
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It seems, therefore, that analysing the dataset as a whole had an averaging effect; the 

large changes that occurred on the cluster-level were simply not represented in Figure 70.  

This highlights one of the benefits of identifying clusters of similar groups in the data; it 

allowed a more detailed and insightful analysis of the groups. 

7.3.7 Prediction of outcome for families 

Machine learning methods were utilised in order to predict the outcome, a year later, for 

the families.  This utilised the data that was known about a family at the start of 

intervention, that is: the events occurring in the year prior to intervention; any other 

available data about the family (e.g. family size and type of first intervention treatment 

received); and the ‘place-based’ data linked to where a family lived on their first 

intervention date (as derived in Chapter 6).  The models were built in order to identify 

those factors (or attributes) that had an impact upon the future outcome for a family, and 

also to determine whether it was possible to predict the outcome, with any level of 

accuracy, at the start of intervention.  For comparison purposes, logistic regression was 

also utilised in order to determine if it could provide useful information. 

Two different sets of models were built: Set 1 considered planned and unplanned endings 

and whether a family had further treatment as an indication of outcome; Set 2 considered 

the events occurring before and after the start of intervention for each family and utilised 

the ‘relaxed’ criteria of improvement (derived in section 7.3.5) as an alternative indication 

of outcome. 

Decision trees, random forests, generalized boosted models and logistic regression 

models were built, using the R programming language.  The machine learning methods 

were chosen particularly because they all provide an indication of which attributes are 

important to a model, and therefore may provide insight into what might be considered a 

useful predictor of outcome one year after joining the TF programme.  They also do not 

place assumptions upon the data, and many predictor attributes may be utilised if 

required.  Comparing the results of all methods meant that it might be possible to 

determine if any perform better, or are more suitable, than others.  

For each Set, one overall model was built (for all data/families); and separate cluster-level 

models were also built in order to determine whether model performance might be 

better on the cluster-level compared to one overall ‘global’ model.  The records in the 

dataset were split into a training and testing dataset using a 70:30 split; and this split was 
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also utilised for the cluster-level models.  Utilising training and testing datasets provided 

an extra level of validation as it meant that various settings and different predictors could 

be experimented with, and the resulting models could be directly compared (as they all 

utilised the same testing dataset).   

Clusters 4 to 7 were excluded from the cluster-level models as it was felt that they 

contained so few records (each less than 50) that their results may not be useful.  This left 

clusters 1 to 3 and 8 to 11 for analysis.  Three sets of predictor attributes were utilised: a 

large set (Set A) which contained place-based data, event data and anything else that was 

known about the family at the start of intervention; a smaller set (Set B) which contained 

fewer attributes; and an even smaller set (set C) with fewer attributes that utilised the 

cluster assignment (rather than the counts of events).  Set C was only utilised for the 

overall models, not on the cluster level models (as cluster assignment was not relevant 

here).  The largest set (A) was utilised to allow consideration of a wide range of 

predictors; however, a more parsimonious group of attributes may be easier to 

understand and so the smaller sets (B and C) were also utilised in order to determine 

whether they might have similar accuracy.  The full list of attributes utilised as predictors 

is contained in Appendix B, together with model parameters and the full results. 

For each model, the baseline accuracy was calculated in order to provide a benchmark; 

any model that performed with an accuracy on the test dataset that was better than the 

baseline accuracy might be considered ‘good’.  Baseline accuracy was calculated by simply 

considering the accuracy when the most populous category was chosen as the prediction 

(for example, if 70% of all families had planned endings with further interventions, an 

accuracy of 70% could be achieved simply by predicting this without even building a 

model).  There were 8 records with missing values (those families that did not link to a 

postcode); they were excluded from the random forest model and logistic regression 

models, as the algorithms could not deal with missing values.  This meant that the 

baseline accuracy for these models occasionally differed slightly compared to the other 

models.  

7.3.7.1 Set 1: Predicting planned and Unplanned Endings 

This considered planned and unplanned endings, together with whether a family received 

more than one intervention treatment, as an indication of progress.  The previous section 

(7.3.5) highlighted that the outcome of the first intervention alone did not necessarily 
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indicate whether a family had shown any improvement with regards to reducing the 

levels of events that they had, however, it was likely that the outcome of a first 

intervention may at least be an indicator of cooperation with the TF programme.  Also, if 

a family was referred for more than one treatment type it may imply that they had 

ongoing or complex issues.  The outcome of interventions was considered as there were 

no other attributes in the data that could indicate participation (or compliance, or 

progress) with the TF programme; planned or unplanned endings were the only way to 

confirm that families had actually received some kind of treatment.   

The target attribute that was to be predicted therefore had four levels:  

 planned ending with no further treatment 

 planned ending with further treatment 

 unplanned ending with no further treatment 

 unplanned ending with further treatment 

Where the planned/unplanned ending refers to the first intervention treatment.  Since 

records could only be included that had an outcome for the first intervention (i.e. they 

had a planned or unplanned ending, and were not still ongoing), this left 2040 records for 

analysis (or 2032 for the random forest and logistic regression models, excluding records 

with missing values). 

All models were judged by the prediction accuracy on the test dataset.  Table 36 details 

the baseline accuracy compared to the best test set accuracy for each type of model and 

by cluster assignment.  The three different combinations of predictor attributes were 

utilised (datasets A, B, C) for each model; the model that resulted in the highest accuracy 

is listed in the table.  Highlighted in bold are the models that had a test set accuracy 

greater than the baseline accuracy, and therefore might be considered ‘good’.  That is, 

they picked up some pattern in the data and had accuracy that was better than simply 

guessing. 

Table 36 highlights that none of the models that utilised the full data (i.e. that were not 

split into clusters) could beat the baseline accuracy.  However, there was some success in 

predicting the outcome for clusters 2, 3, 8, 9 and 10.  The boosted models had the most 

success, followed by the decisions trees and random forests.  The logistic regression 

models did not beat baseline accuracy, although it must be noted that they were 

misspecified, as many of the predictors were correlated.  Overall none of the models had 
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very high accuracy; most got under half of the predictions correct.  And in some cases, the 

improvement over the baseline accuracy was very small.  The models for cluster 10 had 

the clearest indication of detecting a genuine pattern (both the random forest and 

boosted model had an improvement over the baseline accuracy of around 10%). 

Table 36: Results of models predicting planned/unplanned endings with/without further treatment (with models that 
beat baseline accuracy highlighted in bold) 

 Decision Tree Random Forest Boosted model Logistic Regression 

Cluster Baseline 
accuracy 

Test 
accuracy 

Baseline 
accuracy 

Test 
accuracy 

Baseline 
accuracy 

Test 
accuracy 

Baseline 
accuracy 

Test 
accuracy 

1 48.8% 41.5% 48.8% 39.0% 48.8% 41.5% 47.7% 44.2% 

2 44.3% 38.1% 44.3% 43.3% 44.3% 48.5% 42.4% 42.4% 

3 41.2% 44.1% 41.2% 41.2% 41.2% 50.0% 48.5% 48.5% 

8 45.2% - 45.2% 48.4% 45.2% 43.6% 41.9% 31.2% 

9 45.6% - 45.6% 44.1% 45.6% 48.5% 46.9% 29.7% 

10 38.5% 46.2% 38.5% 48.1% 38.5% 50.0% 37.2% 32.6% 

11 54.7% - 54.7% 50.0% 54.7% 54.7% 56.1% 51.1% 

All data 47.1% 46.5% 47.1% 43.6% 47.1% 46.8% 47.1% 45.7% 

 

Appendix B contains details of the full results.  The following paragraphs summarise the 

key points for each of the clusters where the models had some success: 

Cluster 2: contained 323 families overall, with 97 in the test dataset.  Only the generalized 

boosted model had prediction accuracy (48.5% on the test dataset) that was better than 

the baseline (by 2.9%).  47 out of 97 records in the test dataset were predicted correctly.  

The number of families in the test dataset with each outcome, together with the number 

of correct predictions by the boosted model (in parentheses) was: 

Planned ending, no 
further interventions: 

Planned ending, 
further interventions: 

Unplanned ending, no 
further interventions: 

Unplanned ending, 
further interventions: 

43 (31) 37 (15) 13 (1) 4 (0) 
  

Whilst the model appears to have picked up some pattern surrounding planned endings, 

it struggled to predict unplanned endings, getting only one correct.  The most important 

predictor to the model was the first intervention treatment type a family received, 

followed by the levels of crime in the area that a family lived.  Whilst the model 

performed a little better than guessing, given it could not accurately predict unplanned 

endings it may not be very useful. 

Cluster 3: contained 113 families overall, with 34 in the test dataset.  Both the decision 

tree (44.1%) and the generalized boosted model (50.0%) had prediction accuracy better 

than the baseline (41.2%).  The boosted model had the best accuracy (just under 9% 

improvement over baseline) and predicted 17 out of 34 records in the test dataset 
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correctly.  The number of families in the test dataset with each outcome, together with 

the number of correct predictions by the boosted model (in parentheses) was: 

Planned ending, no 
further interventions: 

Planned ending, 
further interventions: 

Unplanned ending, no 
further interventions: 

Unplanned ending, 
further interventions: 

14 (5) 14 (10) 5 (2) 1 (0) 
 

Much like the model for cluster 2, the boosted model appears to have picked up some 

pattern surrounding planned endings, but struggled to predict unplanned endings.  

However, it must be noted that there were very few unplanned endings and so these may 

be more difficult to predict.  The most important predictor to the model was the first 

intervention treatment type a family received, followed by the percentage of single 

person households in the area a family lived. 

The decision tree model, which got 15 out of 34 predictions correct (41.2%), produced a 

tree with one split: whether a family had the FF intervention treatment type or not.  If 

they did a planned ending with further intervention was predicted, if not a planned 

ending with no further interventions was predicted.  The tree could not predict 

unplanned endings.  The most important predictor to the model was the intervention 

type. 

Both models detected that almost all families who received FF treatment had a planned 

ending.  However, the boosted model had a little more success in terms of further 

interventions and unplanned endings. 

Cluster 8: contained 206 families overall, with 62 in the test dataset.  Only the random 

forest model had prediction accuracy (48.4% on the test dataset) that was better than the 

baseline (by 3.2%).  30 out of 62 records in the test dataset were predicted correctly.  The 

number of families in the test dataset with each outcome, together with the number of 

correct predictions by the model (in parentheses) was: 

Planned ending, no 
further interventions: 

Planned ending, 
further interventions: 

Unplanned ending, no 
further interventions: 

Unplanned ending, 
further interventions: 

28 (20) 18 (7) 14 (3) 2 (0) 
  

Again, the model appears to have picked up some pattern surrounding planned endings, 

and did predict a few unplanned endings correctly.  The most important predictor to the 

model was the percentage of people born in Europe living in the family’s area, followed 

by the number of address changes the family had in the year prior to intervention.  In 

contrast to many of the other models, the intervention type had no importance. 
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Cluster 9: contained 228 families overall, with 68 in the test dataset.  Only the generalized 

boosted model had prediction accuracy (48.5% on the test dataset) that was better than 

the baseline (by 3.1%).  33 out of 68 records in the test dataset were predicted correctly.  

The number of families in the test dataset with each outcome, together with the number 

of correct predictions by the model (in parentheses) was: 

Planned ending, no 
further interventions: 

Planned ending, 
further interventions: 

Unplanned ending, no 
further interventions: 

Unplanned ending, 
further interventions: 

31 (26) 23 (7) 9 (0) 5 (0) 
  

The model appears to have picked up some pattern surrounding planned endings, but did 

not predict any unplanned endings.  The important predictors were all place-based, and 

the most important predictor was the percentage of households that were owned in the 

area the families lived in, followed by the percentage of people who were Christian in the 

area, and the percentage who were economically active. 

Cluster 10: contained 172 families overall, with 52 in the test dataset.  Each of the 

machine learning models had prediction accuracy that was better than the baseline.  The 

boosted model had the best performance, predicting 26 out of 52 records in the test 

dataset correctly (50% accuracy, which was an improvement of 11.5% over than the 

baseline).  The number of families in the test dataset with each outcome, together with 

the number of correct predictions by the boosted model (in parentheses) was: 

Planned ending, no 
further interventions: 

Planned ending, 
further interventions: 

Unplanned ending, no 
further interventions: 

Unplanned ending, 
further interventions: 

19 (14) 20 (11) 8 (1) 5 (0) 
  

Again, the model appears to have picked up some pattern surrounding planned endings, 

but could only predict one unplanned ending correctly.  The most important predictor to 

the model was the first intervention type, followed by the percentage of single person 

households in the area the family lived, and the percentage of households that were not 

deprived. 

The random forest model had accuracy of 48.1% (almost 10% better than baseline).  

Again, it mostly predicted planned endings, but got one unplanned ending correct.  The 

most important predictor was the percentage of lone-parent households in the area the 

family lived, followed by the percentage of people born in the UK.  Intervention type had 

very little importance. 
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The decision tree model had accuracy of 46.2% (almost 8% better than baseline).  It 

predicted only unplanned endings.  The most important predictor was the percentage of 

households that were owned in the area the family lived, followed by the percentage that 

were socially rented, and percentage of lone-parent households. 

Summary: There was no success in predicting outcome for the global (all data) models, 

however there was some for the cluster-level models.  Whilst some of the machine 

learning models produced accuracy on the test dataset that was an improvement over 

the baseline accuracy, most of them had only a small improvement (of just a few 

percent), and so might not be deemed very useful.  However, the models predicting 

outcome for cluster 10 did perform relatively well.  It was clear that most of the models 

that had some success detected a pattern around planned endings, and were able to 

distinguish to some degree between those with and without further interventions.  

However, there was little success in predicting unplanned endings; the random forest and 

boosted models did manage to predict some without further interventions, but no model 

could predict those with further interventions.  One reason for this may simply be that 

they were scarce in the dataset. 

For some models, the first intervention type that a family received was very important 

(clusters 2, 3 and 10); aside from this, the over-riding pattern for the models with better 

performance was that the most important predictors were almost exclusively ‘place-

based’.  That is, they referred to the characteristics of the area that the family lived in, 

rather than to the family’s particular characteristics.  This cautiously implies that the 

events occurring in the year before a family’s first intervention (e.g. school absence, CIN 

events, etc.) did not appear to provide much information as to whether the first 

intervention would have a planned/unplanned ending with/without further treatment.  

The higher importance of the ‘place-based’ attributes suggests that there were at least 

weak patterns overall regarding where the families lived and the outcome of their 

interventions.  

7.3.7.2 Set 2: Predicting whether a family would have ‘improvement’ 

An alternative method of analysis was to utilise the criteria from section 7.3.5 which 

considered the outcome for each family in reference to the Government’s guidelines on 

what constituted being ‘turned around’.  This considered the events occurring in the 

years before and after the start of intervention treatment.  Where a family had a 
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reduction in the events after the start of intervention, compared to before, it was 

considered that there had been ‘improvement’.  The models were therefore built to 

predict whether or not a family would have ‘improvement’, and utilised only what was 

known about the family on the first intervention start date.   

Considering ‘improvement’ was thought a more tangible indication of some sort of 

progress for the family (compared to the Set 1 predictions), since as noted previously, 

planned endings did not necessarily correlate with a reduction in the number of events 

that a family had.  The criteria derived for ‘improvement’ specifically considered the 

frequency of events.  The target attribute utilised the relaxed criteria (defined in section 

7.3.5) and had two levels: ‘improvement’; or ‘no improvement’.  There were 1668 records 

available for analysis (or 1660 for the random forest and logistic regression models, 

excluding missing values), since only records with one years’ worth of available data after 

the start of intervention could be utilised.   

The models were judged by prediction accuracy on the test dataset.  Table 37 details the 

baseline accuracy compared to the test set accuracy for each type of model, and by 

cluster assignment.  Various combinations of predictor attributes were utilised (datasets 

A, B, C) for each model; the model that resulted in the highest accuracy is listed in the 

table.  Highlighted in bold are the models that had a test set accuracy greater than the 

baseline accuracy, and therefore might be considered ‘good’.  That is, they picked up 

some pattern in the data and had accuracy that was better than simply guessing. 

Table 37: Baseline accuracy compared to test set accuracy for models predicting 'improvement'. Models with test set 
accuracy better than the baseline are highlighted in bold 

 Decision Tree Random Forest Boosted model Logistic Regression 

Cluster 
Baseline 
accuracy 

Test 
accuracy 

Baseline 
accuracy 

Test 
accuracy 

Baseline 
accuracy 

Test 
accuracy 

Baseline 
accuracy 

Test 
accuracy 

1 75.4% 53.6% 75.4% 76.8% 75.4% 75.4% 68.7% 68.7% 

2 57.3% - 57.3% 57.3% 57.3% 64.0% 53.1% 51.9% 

3 71.4% 67.9% 71.4% 67.9% 71.4% 71.4% 81.3% 68.8% 

8 65.3% 53.1% 65.3% 61.2% 65.3% 51.0% 51.2% 48.8% 

9 54.4% 40.4% 54.4% 50.9% 54.4% 49.1% 63.0% 61.1% 

10 68.2% - 68.2% 65.9% 68.2% 63.6% 68.9% 64.4% 

11 72.5% 73.2% 72.5% 74.3% 72.5% 76.1% 68.6% 70.0% 

All data 54.2% 67.0% 54.4% 62.5% 54.2% 65.8% 54.2% 64.0% 

 

Table 37 highlights that there was some success in predicting ‘improvement’ for clusters 

1, 2 and 11.  However, the models that had the greatest improvement over baseline 

accuracy were the ones that utilised the whole dataset (rather than the separate cluster-

level models); for all methods, these had test set accuracy that was at least 7% higher 
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than baseline.  Appendix B contains full details of the models that had some success.  The 

following paragraphs summarise the key points for each: 

Cluster 1: contained 231 families overall, with 69 in the test dataset.  Only the random 

forest model had prediction accuracy (76.8% on the test dataset) that was better than the 

baseline (by 1.4%).  53 out of 69 records in the test dataset were predicted correctly.  The 

number of families in the test dataset with each outcome, together with the number of 

correct predictions by the model (in parentheses) was: 

Improvement: No improvement: 
17 (2) 52 (51) 

  

The most important predictor to the model was the number of children in the family. 

However, it was clear that the model struggled to predict ‘improvement’ and with such a 

small improvement over the baseline accuracy, the model performance was only a little 

better than guessing. 

Cluster 2: contained 250 families overall, with 75 in the test dataset.  Only the generalized 

boosted model had prediction accuracy (64% on the test dataset) that was better than 

the baseline (by 6.7%).  48 out of 75 records in the test dataset were predicted correctly.  

The number of families in the test dataset with each outcome, together with the number 

of correct predictions by the model (in parentheses) was: 

Improvement: No improvement: 
32 (13) 43 (35) 

  

The most important predictor to the model was the percentage of lone-parent 

households in the area the family lived in, followed by the percentage of privately rented 

households in the area, and the number of females in the family.  Only these three 

attributes had any importance.  It seems the model did detect some pattern, as it 

managed to correctly predict a proportion of records with both improvement and no 

improvement. 

Cluster 11: contained 471 families overall, with 142 in the test dataset.  All the models 

had prediction accuracy that was better than the baseline, however only by a small 

margin (all less than 4%).  The boosted model had the best performance, predicting 108 

out of 142 records correctly (76.1%).  The number of families in the test dataset with each 

outcome, together with the number of correct predictions by the model (in parentheses) 

was: 
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Improvement: No improvement: 
103 (99) 39 (9) 

  

The most important predictor to the model was the number of children in the family, 

followed by the number of people overall in the family.  It seems the model did detect 

some pattern, as it managed to correctly predict records with both improvement and no 

improvement.  Both the decision tree and random forest models also had number of 

children and the number of people in the family as the most important predictors.  The 

logistic regression model had no significant predictors (p < 0.05). 

All data: contained 1668 families overall, with 500 in the test dataset.  All the models had 

prediction accuracy that was better than the baseline.  The decision tree model had the 

best performance, predicting 335 out of 500 records correctly (67%, an improvement of 

12.8% over the baseline accuracy).  The number of families in the test dataset with each 

outcome, together with the number of correct predictions by the model (in parentheses) 

was: 

Improvement: No improvement: 
229 (74) 271 (261) 

  

The decision tree had only one split, which was whether a family had children or not.  If 

they did not have children, improvement was predicted; if they did, no improvement was 

predicted.  All the machine learning models identified the number of children in the 

family, and the number of people overall as the most important predictors.  The logistic 

regression model did not identify these attributes as significant, but did find particular 

cluster assignments significant.  It seems that all the models did detect some pattern, as 

each managed to correctly predict records with both improvement and no improvement.   

Overall, the models picked up that where families had no children, they were more likely 

to have had ‘improvement’ (87% of families without children had improvement, 

compared to 37% of families with children).  Equally, where there was only one person in 

a family, they too were more likely to have ‘improvement’ (83% of families with one 

member had ‘improvement’, compared to 38% with more than one family member). 

Summary: Whilst there was some success in predicting ‘improvement’ for families in 

clusters 1, 2 and 11, the most notable result was for the models utilising all the data (i.e., 

all clusters together).  All models had test set accuracy that was at least 7% higher than 

the baseline, indicating that they had detected patterns in the data that were more than 
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just noise.  The most important attributes to the models were the number of children in 

the family, family size and cluster assignment.  Whilst, the ‘place-based’ attributes still 

had importance in most of the models overall, they were not considered as important for 

the Set 2 predictions as they were for Set 1. 

7.3.7.3 Predicting whether families with/without children have improvement 

Since family size had such importance to the models predicting ‘improvement’ further 

experiments were performed where the data was split into those families with children 

and those without children.  It was thought that this might provide further insight into the 

data.  However, whilst a couple of the models had a marginal improvement over the 

baseline accuracy (around 1%) it would seem that the models were not very useful and 

could not substantially beat the accuracy attained simply from guessing.  The results are 

contained in Appendix B, part 4. 

7.3.7.4 Summary of predictions 

The analysis in this section has shown that, overall, whilst it was difficult to predict the 

future outcome for families, there was some success.  Predicting planned/unplanned 

endings with/without further intervention had some success on the cluster-level, but 

none on the global level.  Whereas, in contrast, predicting ‘improvement’ had little 

success on the cluster-level, but some on the global level. 

In terms of the Set 1 predictions (planned/unplanned endings), the important factors 

were the type of intervention treatment a family received, and the data pertaining to 

where they lived (place-based); the models placed little importance upon the family’s 

characteristics (events, etc.).  This partially reflected that different types of intervention 

treatment had differing success rates, and that the different clusters had varying 

concentrations of families receiving them. 

In terms of the Set 2 predictions, the important factors pertained to family size and the 

cluster a family belonged in; the place-based attributes had less importance (although still 

featured heavily).  This reflected that, since so much of the data pertains to children, not 

having children (or having only one member in a family) meant that these families would 

likely have ‘improvement’. 
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Whilst the importance of the place-based data in many of the models appears to indicate 

at least weak patterns, this is an area that would warrant further research to more closely 

consider these patterns. 

In terms of the methods employed, the decision tree, random forest and boosted 

methods each had some success (in terms of test set accuracy); and together helped to 

confirm the important attributes for some of the models.  The logistic regression models 

had least success, with only two producing accuracy greater than baseline. 

7.3.8 Final Summary of clusters 

This section (Table 38) draws together the work in the previous chapters and provides a 

brief summary of the important events for families ‘before’ and ‘after’ the start of 

intervention, for each cluster. 

Table 38: Brief comparison of the key characteristics of families in the clusters before and after the start of intervention 

Cluster Year before the start of intervention Year after the start of intervention 

1 
(n=291) 

High levels of school exclusion and 
criminal offences (committed by adults 
and children).  Low levels of child 
safeguarding (CPP, LAC and CIN) events.  
Lowest level of children attending 
good/outstanding schools of all the 
clusters. 
Families lived in areas with the highest 
levels (of all clusters) of people born in 
the UK and of white ethnic group 

Decrease in exclusions and criminal 
offences committed by adults.  Decrease 
in CIN events, however an increase in 
higher-level child safeguarding issues (CPP 
and LAC events). 
15% of families had no further events 
after the start of intervention, and overall 
a quarter of families were considered to 
have had an ‘improvement’ 

2 
(n=335) 

Child safeguarding was the main 
feature. All families had Child Protection 
events, and there were high levels of 
CIN and LAC events.  Very little school 
exclusion and criminal offences 
committed by children.  Families tended 
to have younger children with most 
aged under 11.  

Large decrease in CPPs (down to 38% of 
families) and CIN events, however a small 
increase in LAC events.  Very little change 
for the other events.   
One fifth of families had no further events 
following the start of intervention, and 
43% overall were considered to have had 
an ‘improvement’ 

3 
(n=115) 

All families had Looked after Children 
events.  High levels of adult criminal 
offences compared to other clusters, 
however low levels of school absence 
and exclusion.  A high proportion of 
children attended good/outstanding 
schools compared to other clusters.  
Families lived in areas with higher levels 
of economic activity and high 
population density 

Large decrease in LAC events (down to 
42% of families) and CIN events, however 
an increase in CPPs.  This suggested 
serious child safeguarding concerns had 
decreased for many families.  There was 
an increase in school absence, however 
the percentage of families with adult 
criminal offences decreased. 
12% of families had no further events 
after the start of intervention, and 28% 



269 
 

overall were considered to have had an 
‘improvement’ 

4 
(n=61) 

All families had members who were 
NEET, and just under a third had 
criminal offences committed by minors.  
Low levels of child safeguarding. 
Compared to other clusters, the families 
lived in areas that had high levels of 
household deprivation, social housing 
and people with no qualifications 

Decrease in families with NEET members 
(down to 63%).  Very little change for the 
other events, although there was an 
increase in families with CPPs. 
10% of families had no further events 
after the start of intervention, and 35% 
overall were considered to have had an 
‘improvement’ 

5 
(n=21) 

All families had criminal offences 
committed by adults, and these were at 
a high level (with a mean of 4 per 
family).  A third of families had domestic 
abuse events.  There were few child 
safeguarding (CIN, CPP, LAC) issues 

Large decrease in families with adult 
criminal offences (down to 33%), and a 
decrease in domestic abuse events.  There 
was an increase in CIN events (which was 
unusual compared to other clusters), but 
no high-level safeguarding issues (CPP or 
LAC). 
36% of families had no further events 
after the start of intervention, and 50% 
overall were considered to have had an 
‘improvement’ (a higher percentage than 
all but cluster 11) 

6 
(n=54) 

All families had school absence, at high 
levels, with families having 39% 
unauthorised absence on average. 
There were high levels of school 
exclusion, and criminal offences 
committed by children, compared to 
other clusters. And fewer children 
attended schools considered as 
good/outstanding. 
High levels of child safeguarding issues 
compared to other clusters 

Whilst most (88%) families still had school 
absence, the average levels were lower 
(22% unauthorised sessions on average).  
There was a decrease in the percentage of 
families with school exclusion, CIN events 
and criminal offences committed by 
children. However, an increase in families 
with NEET members. The prevalence of 
higher level safeguarding issues remained 
almost the same. 
Only 3% of families had no further events 
after the start of intervention, and 45% 
overall were considered to have had an 
‘improvement’ 

7 
(n=25) 

All families had criminal offences 
committed by children, and these were 
at a high level (mean of 4).  Just under 
half had school absence (but at low 
levels), and most of those with absence 
also had CPPs.  
Families lived in areas with higher levels 
of social housing compared to other 
clusters. Proportionately more children 
attended good/outstanding schools 
than for any other cluster. 

Small decrease in percentage of families 
with child offences (to 83%).  There was 
an increase in the percentage of families 
with school absence, exclusion and NEET 
members.  Decrease in CPPs, but increase 
in LACs, indicating more high-level child 
safeguarding events. 
9% of families had no further events after 
the start of intervention, and 17% overall 
were considered to have had an 
‘improvement’.  This was the lowest 
percentage of all clusters, and reflects 
that there was an increase in the 
occurrence of events for many families 
after intervention 
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8 
(n=223) 

All families had school absence but no 
other events.  The average 
unauthorised school sessions per family 
was 6%. 

Decrease in percentage of families with 
absence (to 79%), but average levels of 
absence remained the same (6%).  There 
was an increase in CIN events, and small 
increases in the other events. 
13% of families had no further events 
after the start of intervention, and 34% 
overall were considered to have had an 
‘improvement’ 

9 
(n=243) 

All families had CIN events but no other 
events. 
The families lived in areas that had the 
lowest levels of social housing of all 
clusters, and higher levels of 
economically active people 

Large decrease in the percentage of 
families with CIN events (to 28%).  
However, a small increase in CPPs and LAC 
events, suggesting that although far fewer 
families had low-level child safeguarding 
events, a small group had moved to 
higher-level events. 
Increase in families with school absence 
(to 19%) small increases of the other 
events 
45% of families had no further events 
after the start of intervention, and 45% 
overall were considered to have had an 
‘improvement’ 

10 
(n=182) 

All families had school absence and at 
least one CIN event, but no other 
events.  Average percentage of 
unauthorised absence was 10.6%, a 
little higher than for most other 
clusters. 
The families lived in areas that had the 
lowest population density, and higher 
levels of people born in the UK and 
belonging to the white ethnic group, 
compared to the other clusters 

Large decrease in the percentage of 
families with CIN events (to 22%), but a 
much smaller decrease in school absence 
(to 87%).  The average percentage of 
unauthorised absence per family 
remained almost the same (10.1%). 
Increase in families with CPPs, indicating 
that although there was a decrease in 
lower-level safeguarding events, a quarter 
of families (28%) moved to higher-level 
events.  There were small increases in all 
of the other events. 
8% of families had no further events after 
the start of intervention, and 31% overall 
were considered to have had an 
‘improvement’ 

11 
(n=605) 

All families had none of the events.  
41% of families consisted of single 
people, a far higher percentage than 
any other cluster. Half of the families 
had no children. 
Families lived in areas with higher levels 
of household deprivation, and higher 
levels of people born in the UK and 
belonging to the white ethnic group, 
compared to the other clusters 

There were small increases in all of the 
events.  11% of families had CIN events 
and 9% had school absence. 
73% of families had no further events 
after the start of intervention, meaning 
that they had no events in the years 
before and after the start of intervention. 
73% overall were considered to have had 
an ‘improvement’ 
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7.4 DISCUSSION 

Overall, all of the clusters exhibited change in some aspect in the year following the start 

of intervention, compared to before.  For most clusters, this change was generally 

positive; each had a group of families who had no further events following the start of 

intervention.  However, for the clusters with no events (cluster 11), one main event (8, 9) 

and two of the same events (10), there were increases in some events following the start 

of intervention.  This was perhaps inevitable, as in the case of cluster 11, any change 

could only be negative (there is no improvement upon having no events).  However, 

almost three quarters (73%) of families in cluster 11 had no change; they had no events in 

the year before or following the start of intervention.  Of the families who did have 

events following the start of intervention, most had only one type of event.  Therefore, 

even where they did develop further issues, they were generally not as complex as those 

for families in other clusters.  As considered in the previous chapter, there may well have 

been missing data that might explain the families in cluster 11 better, but this analysis 

could only utilise the available data. 

Of all the clusters, the one where many of the families generally appeared to be in a 

worse situation one year later was cluster 7.  The main characteristic of cluster 7 was that 

all families had criminal offences committed by adults.  Whilst there was a reduction in 

adult criminal offences ‘after’ (to 83% of families having them), most families had 

increases in the occurrence of school absence, school exclusion, LAC events and NEET 

members.  However, it should be considered, that cluster 7 was very small, and 

represented only 1% of families overall. 

For the other clusters (1 to 6), all experienced some improvement overall following the 

start of intervention.  The percentage of families with the main characteristics of each 

cluster (such as CPPs for cluster 2, or LAC events for cluster 3) reduced by a large margin 

after the start of intervention.  Conversation with the ECC suggested that they suspected 

this effect may have been due to treatment, or keyworkers, focusing closely on the main 

problem a family had; this was then reduced, but may have in some cases led to other 

problems receiving less focus. 

It is difficult to consider these changes compared to the overall trend of events in the ECC 

area (Figure 56 to Figure 63) because each family followed a different timeline (that is, 

they started intervention on different dates).  However, over the whole population of the 
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city from mid-2011 to mid-2015: crimes (committed by adults and children) were 

generally decreasing; CPP, LAC and NEET events were loosely increasing; school 

exclusions were decreasing (but increasing from mid-2014); and school absence stayed 

roughly the same.  The CIN events fluctuated, as discussed in section 7.3.2.  One could 

argue that changes that went against these trends (such as the decrease in CPP and LAC 

events for clusters 2 and 3) might be indicative of the effect of treatment, however, this 

would require far more detailed analysis of the individual timelines of each family and 

also a consideration of how previous events might affect future events.  In general, close 

consideration of each family’s particular timeline of events may make a useful avenue for 

future research. 

Overall there appears to be no academic literature on applying data mining methods to 

the TF data; this may be because it is unusual to have access to so much of the underlying 

data.  Much of the existing academic research into the TF programme utilises the overall 

statistics supplied by the Government (or local councils), or else utilises qualitative data, 

such as interviews. 

However, there are examples of the use of machine learning methods on this data from 

within some of the Councils involved.  At least five local authorities in England have been 

utilising machine learning methods in order to try and predict children at risk of child 

abuse (Adams, 2018; McIntyre and Pegg, 2018).  A private company called Xantura 

provides this service for at least two of the Councils; the company also provide a software 

product, to over 70 Councils across the UK, that utilises data sharing, visualisation and 

predictive analytics (Xantura, 2018a).  As part of this, their software is used to inform the 

TF programme, although it is not clear how many Councils utilise the software for this 

purpose.  Xantura claim that the software can: identify potential TF and ‘maximise 

claiming’ for the Payment by Results scheme; predict how quickly families will be ‘turned 

around’ and identify those who will take longest; help with allocation of staff and 

strategic need priorities; provide greater understanding of the TF generally, and provide 

insight into where treatment is helping families and where families struggle to meet 

outcomes (Xantura, 2018b).  

McIntyre and Pegg (2018) make the point that at a time when there are large decreases in 

funding (government funding for local councils will have been cut by £16 billion by 2020), 

Councils may be adopting predictive systems in order to save money.  This may cause 
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concerns in terms of data privacy and ethical implications over how decisions are made 

(Pegg and McIntyre, 2018).  Xantura provide little detail of their methods, therefore it is 

not clear what kind of predictive analytics, or data mining, methods that they might be 

utilising.  This lack of transparency underlines the importance of academic work in this 

area, which may, in contrast, be more transparent and accountable.  It may also be 

subject to more rigorous ethical procedures.   This also relates to the wider point made in 

section 5.2, which was that social scientists might be at risk of being left behind where 

these large, and socially important, sources of data are concerned; it may be only those 

with ‘data’ or machine learning expertise that are asked to analyse them. 

Something that was missing from this data (and therefore the analysis) was data around 

how the families felt, or what they might think of their experience in the TF programme.  

As considered in section 6.1.3 families may not know they are classed as ‘troubled’, or 

that they have been ‘turned around’.  Data on how the families felt, and what they 

thought of their time on the TF programme could provide an interesting avenue for 

further research.  It may also be interesting to consider the keyworker opinions.  If such 

data were available, and could be joined to the type of data utilised in this analysis, it 

could be contrasted (with the counts of events, etc.) to determine whether how families 

felt had any relation to or effect on their situation.  Something that would also be very 

useful for any future analysis is a definitive attribute detailing where the families had 

been ‘turned around’. 

As considered in section 7.3.5.1, the identification of a comparison group in order to 

consider whether any changes could be directly attributed to the TF programme would be 

useful.  Discussion with ECC found that identification of a comparison group was difficult; 

the ECC felt that families that were considered in need of help were generally identified 

and provided with help.  Therefore, there was not an obvious large existing group of 

families in the data with similar needs to the TF who had not received treatment, and so 

who could be utilised as a comparison group.  The previous chapter considered that there 

was much underlying data missing from this analysis (pertaining to health, anti-social 

behaviour, receipt of benefits, police call-outs, etc.) which may have helped explain some 

of the underlying contexts of the families (and clusters); it is possible that were some of 

this data to become available and aid greater understanding of the families, it might also 

aid in identifying some kind of comparison group. 
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The government report into Phase II of the programme also notes difficulties nationally in 

selecting a comparison group (Department for Communities and Local Government, 

2017).  It states that as each Local Authority is responsible for selecting their own 

comparison sample, there can be wide variability in how this is performed (and therefore 

in how complex the needs of comparison families are) as there is no standardised 

approach.  As of December 2017, work was still ongoing to identify a matched 

comparison group that was not biased (i.e. that consisted of families not already receiving 

a similar intervention type of service, and that was random). 

7.5 CONCLUSION 

This chapter built upon the analysis of the previous chapter, which had explored the 

Troubled Families data and discovered eleven different clusters of families based upon 

the events happening in the year prior to first intervention.  The clusters had a focus on 

child safeguarding, education and crime, as this was the data that was available.  This 

chapter considered the events that happened to the TF in the year following the start of 

their first intervention treatment.   

The analysis highlighted that there were changes in the occurrence and types of events 

for many of the families in the year following their introduction to the TF programme.  

Analysis on the cluster-level indicated great change within many of the clusters.  

However, had the analysis been performed only on the ‘global’ level, it would have 

seemed that very little had changed, as the overall average of the occurrence of many of 

the events stayed almost the same ‘after’ compared to ‘before’.  This effect underlined 

the importance of the cluster-level analysis and the extra information that was gained by 

identifying the clusters of families within the data 

Consideration was given to the Government’s criteria of what constituted a family to be 

considered ‘turned around’.  However, the relevant data was not available to accurately 

evaluate these criteria, therefore a new set of criteria were derived by considering the 

data that was available for analysis.  These criteria considered a family to have had 

‘improvement’ where they had a decrease in countable events, and had not had any new 

(different) events occur after the start of intervention.  Overall, just under half of families 

(46%) had ‘improvement’ in the year following their introduction to the TF programme.  

The percentages varied widely by cluster, underlining the diversity of the clusters (only 
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17% from cluster 7 had ‘improvement’, whereas 73% from cluster 11 did).  Overall, the 

analysis found that having a Planned Ending for a first intervention treatment was not 

indicative of whether a family had shown any ‘improvement’, however proportionately 

more families who did not have ‘improvement’ were referred for further intervention 

treatments.  It seemed, therefore, that receiving more than one intervention treatment 

was representative (at least in some cases) of ongoing problems.  

Machine learning and regression methods were utilised to determine whether it was 

possible to predict the outcome for families (that is, whether or not they would have 

‘improvement’ in the year following the start of intervention) given only what was known 

about them at the start of intervention.  If it was possible, it might aid in identifying the 

important factors, and so provide some understanding of what could lead to families 

having a good outcome.  The models had a little success, and indicated that family size 

and where a family lived were important.  More particularly, that families with children 

were less likely to have ‘improvement’; this is because the focus of the data was on 

attributes that generally pertained to children (safeguarding and school issues).  In terms 

of accuracy, the machine learning methods consistently outperformed the regression 

methods; it is likely that this is because they were better suited to the data (which had 

many predictors, and some correlated attributes). 

More broadly the work in this chapter has shown that an averaging effect does exist 

where analysing the data as a whole.  Given that this is just one local authority’s data, this 

suggests there could be wider implications for the analysis of the programme across the 

whole country.  It is likely that this too will be subject to an averaging effect.  The 

Evaluation report (Day et al., 2016) did make the point that there could be an averaging 

effect; that is, poorer-performing Councils may cancel out well-performing Councils.  But 

this also applies on the family level; families that show no improvement may cancel out 

those that do show improvement.  Identifying clusters, or groups of similar families, 

across the whole programme may aid in identifying pockets of families where significant 

positive (or negative) changes have occurred.  Identification of these groups might 

provide deeper insight into their particular problems and aid in understanding what is 

working within the Programme and what is not. 

Overall, the analysis in Chapters 6 and 7 has highlighted that utilising machine learning 

techniques on this complex, interlinked social data allowed a more detailed analysis and a 
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far greater understanding than might have been achieved had these methods not been 

employed.  The discovery of the hidden groups within the data meant that each cluster 

could be explored individually, providing deeper insight into the types of families that 

existed.  The analysis has also highlighted that visualisation techniques frequently utilised 

in data mining, such as heatmaps, alluvial plots and slopegraphs can further aid in 

understanding the data and the results of models. 
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8 CONCLUSION 

8.1 INTRODUCTION 

This chapter summarises the work contained in this thesis, and considers the research 

questions that were posed, the contributions to knowledge and ideas for future research. 

8.2 SUMMARY OF THE WORK 

The main aim of this work was to understand how machine learning techniques might be 

optimally utilised on the complex, interlinked ‘real-life’ data that is often used in social 

science research.  The work attempted to understand whether machine learning 

techniques could effectively facilitate the analysis and comprehension of large social 

science datasets, and it also aimed to determine which methods were most effective for 

discovering hidden patterns within these complex, and often noisy, datasets. 

In considering this, the more established methods that are arguably most commonly 

employed in social science research, OLS linear regression and Null Hypothesis 

Significance Testing, were examined.  Linear regression can be an intuitive and powerful 

tool for social science research in that results are relatively easy to understand and 

relationships within the data may be identified and quantified.  However, linear 

regression’s use in social science research has received sustained criticism over the years, 

with much of the criticism concerning misuse of the method, and the various 

misconceptions around its usage (the method itself is not criticised).  Many of the 

concerns centre upon the fact that to be effective, linear regression relies upon strict 

statistical assumptions.  These assumptions can be so difficult to satisfy that they are 

frequently not adhered to.  This may be a particular problem for social science research 

because the complexity of much social data is difficult to account for; there may be many 

interactions or hidden groups in the data that are hard to identify.  The literature 

indicated that difficulties satisfying regression assumptions are often not acknowledged.  

Yet, if a model is misspecified and regression assumptions are not satisfied, the resulting 

models may not capture the relationships in the data; this can lead to errors and mean 

that wider inferences made from the models may not be accurate.  Overall this may result 

in inconsistent research.  Whilst there are more robust methods that might address some 

of the problems, the literature indicated that they are frequently not employed. 
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The research also highlighted that, whilst NHST plays a crucial role in social science 

research, it is often misunderstood and misapplied, and that placing too much 

importance upon the results of NHST can distract from providing statistically sound 

analysis.  In particular, the critics of NHST emphasised that the dichotomous nature of the 

test (accept or reject), based upon an arbitrary significance level could encourage 

complacency in research.  The emphasis upon achieving ‘significance’ (a statistically 

significant result is often seen as a pre-requisite for research publication), together with 

misspecified regression models can lead to research that is unreliable.  This might mean 

that results are not replicated, or that many conflicting results are produced.  Overall, this 

means that research results as a whole are less trusted, and may undermine research 

quality.   

However, this does not mean that the answer to these problems should simply be to stop 

utilising NHST, or regression methods, rather it indicates that, given some of the 

weaknesses and misuses of these methods, a wider range of methods should be 

considered.  Greater focus should be placed upon choosing methods that suit the data 

and the research question.  Many data mining methods are non-parametric and allow the 

use of more diverse data (such as that with different distributions, missing values, mixed 

data, and ‘big’ data).  In particular, the use of cluster analysis and decision tree analysis 

was explored; these methods may be utilised to identify hidden groups, interactions and 

important predictors in data.  More generally, machine learning methods also tend to 

outperform more established methods in terms of predictive ability. 

One method that should be adopted from data mining methodology (whether or not the 

algorithms themselves are adopted) is the idea of testing a predictive model on previously 

unseen data; this is fundamental to any data mining project.  It would be unthinkable in 

the field of data mining, not to validate a model in this way; it provides confirmation (or 

not) that any patterns detected are not simply confined to the data sample (or due to 

random noise) and that they will generalise to the wider population.  Yet, as the literature 

indicated, most social science research does not employ any kind of cross-validation or 

out of sample testing.  In many cases there is no technical reason why it could not be 

applied (for example, linear regression models could easily be utilised with cross-

validation, or a test dataset).  The growing availability of ‘big’ data also means that model 

validation is increasingly important, as traditional statistical methods and sample sizes are 
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not necessarily suited to these large datasets.  With a large enough sample, there will be 

many ‘significant’ results at the p < 0.05 level; however, the use of model validation might 

mean that spurious relationships are easier to identify.  In general, if model validation 

were utilised more frequently it may help to identify any problems early on in an analysis 

and could provide an extra layer of credibility to research. 

Whilst data mining has historically been viewed with suspicion by some within the social 

sciences, the research on the history and development of data mining highlighted that 

some of its techniques (such as decision trees) were originally developed by social 

scientists.  They were developed with the aim of providing methods that could enable 

better understanding of complex data, and that required fewer statistical assumptions, as 

it was felt that existing regression methods were not suitable for the types of problems 

and the complex, inter-related data that social scientists frequently dealt with.   

One of the reasons that data mining has been viewed with suspicion over the years is the 

idea of data dredging; that is, searching through the data with no hypothesis and finding 

misleading results.  However, this is not unique to data mining (it is equivalent to p-

hacking) and can be a problem with all methods of analysis.  Because data mining 

methods are varied and flexible, they might be utilised to analyse data in order to suggest 

hypotheses (that is, for exploratory data analysis), and then also to test these hypotheses.  

As long as research is conducted rigorously (for example, carefully satisfying any 

parameters and utilising model validation), this need not be a problem. 

Another reason that data mining methods have not been widely adopted in social science 

research is the fact that there are so many algorithms, and no over-riding framework of 

how to do things.  This may mean that it is difficult to know which method is best, and so 

it may require some experimentation.  In any field there is always a learning curve, 

however, this may be steeper in data mining (simply because of the breadth of methods 

available).  Examining how other (similar) research has been carried out may help with 

this problem.  Other problems relate to improper model validation, poor implementation, 

or misinterpretation of results, but this may happen in any field; misuse of methods is not 

unique to data mining.  Another concern is that whilst some data mining methods can 

produce very high predictive accuracy, the results are not always understandable; 

however, the results of single decision trees and cluster analysis can be easier to interpret 

and therefore these methods may be of more use to social scientists. 
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The work in this thesis identified that although there are examples of the use of machine 

learning techniques within the social sciences, their usage is not widespread and there 

are large gaps in the literature.  However, there is some evidence of the growing use of 

these methods, for example, in the field of Computational Social Science (CSS).  In 

general, CSS tends to focus on ‘big data’; less research is performed on the ‘smaller’ data, 

such as social survey data which is synonymous with social science research.  Yet there is 

no technical reason for this, machine learning methods perform well on small datasets.  

Where machine learning methods have been utilised in social science research, the 

general consensus was that these methods could provide a useful complement to 

existing, more established, methods such as regression, and that the non-parametric, 

flexible nature of the methods meant that problems could be considered from a different 

perspective. 

However, despite the increasing adoption of machine learning methods, this still accounts 

for only a small portion of social science research overall, and the point was made in the 

literature that much of this research does not appear in the more traditional social 

science journals.  The point was also made that by not exploring machine learning and 

more data-driven methods, social scientists are in danger of being left behind, and their 

research being deemed less relevant.  Those who are proficient in machine learning 

techniques (such as computer or data scientists) may be the ones who are generating 

social theory and interesting research, because they are taking advantage of new ‘big’ 

datasets and utilising the full range of methods that can be applied to them.  Yet they 

may lack the expert knowledge that social scientists have in terms of understanding 

findings, or in generating relevant research questions.  It is vitally important therefore 

that social scientists are fully involved in this research. 

The work carried out in the Case Study chapters aimed to understand whether a data-

driven approach, which utilised machine learning methods (such as cluster analysis and 

decision trees) could effectively analyse and understand a large, complex interlinked 

social dataset.  The dataset was obtained from an English City Council (ECC) and pertained 

to the Troubled Families Programme in that city.  The analysis aimed to determine: 

 Whether there existed unique groups (clusters) of families within the Troubled 

Families data 
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 Whether the identification of these groups provided deeper insight than one 

overall analysis of the data might have provided 

 How the lives of the families in each cluster changed following their introduction 

to the TF programme, and whether it was possible to predict, or identify 

important factors, that may indicate where positive future outcomes would occur 

The analysis identified 11 clusters of families, all with different characteristics.  The data-

driven clustering model utilised only the attributes that were considered complete (that 

is, did not have known missing data) for the year before the start of a family’s first 

intervention.  Therefore, the cluster analysis had a focus on child safeguarding (Children 

in Need, Child Protection Plans, and Looked After Children), crime (committed by children 

under 18, or adults), and education (school absence, school exclusion and individuals who 

were Not in Education, Employment or Training).  Some of the clusters were more 

cohesive than others, but each cluster had their own particular characteristic (such as all 

families with high levels of school absence, or with CPPs, or no events, etc.).  

Geographical analysis of the families in relation to where they lived at the start of 

intervention indicated that they tended to live in areas with higher percentages of lone-

parents, higher levels of deprivation, lower educational levels, poor health, less economic 

activity and higher levels of social housing.  To some degree this might have been 

expected, but the analysis also indicated subtle patterns on the cluster level.  Families 

whose main issue was child safeguarding tended to live in areas with higher economic 

activity and higher population density; whereas families with NEET members tended to 

live in areas with lower economic activity and higher deprivation.  Patterns such as this 

would warrant more detailed further research. 

The work showed that decision tree analysis can be effectively utilised to provide 

understanding of data.  Where employed to describe the cluster assignments, the 

resulting tree visualisation and rules were understandable and also produced a re-usable 

model that could be used to assign future families to clusters (if necessary).  The cluster 

and tree analysis indicated that child safeguarding issues and school absence were most 

‘important’ to the data; they characterised the clusters.  This is likely because they were 

the most prevalent issues. 

The identification and analysis of the clusters showed that, where focussing on child 

safeguarding, school issues and crime, there were some very cohesive groups in the data.  
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For instance, those families with just school absence, or no events at all.  This indicated 

that, in terms of just those issues (the eight events considered) many families did not 

have a wide range of problems.  Just over a quarter (28%) had none of the events and 

81% had two or fewer different types of events.  This lack of diversity of events for many 

families, and the fact that families must have multiple different events to qualify for the 

TF programme (according to the Government guidelines) indicated that there were other 

underlying problems that were simply not represented by the available data.  The 

literature indicated these were likely to be health problems, police call-outs, anti-social 

behaviour, domestic abuse, and drug/alcohol dependency.   

The fact that some of this data was not available meant that it was difficult to analyse the 

data in relation to the Government guidelines of what constituted a TF, and also in terms 

of whether a family could be considered ‘turned around’.  However, the data for the 

families in the year following their introduction to the TF programme was also analysed.  

This compared the events a family had in the year prior to joining the programme to the 

events they had in the year following their introduction to it.  Overall, all of the clusters 

exhibited change in some aspect in the year following the start of intervention.  However, 

had the families been considered as one large group, the averaging effect meant that it 

was not evident that much change had occurred; on the cluster level it was clear that 

there were large changes for some families.   

Since it was not possible to assess the data in terms of the Government guidelines for 

being ‘turned around’, a new criterion of ‘improvement’ was created utilising the 

available data.  These criteria considered a family to have had ‘improvement’ where they 

had a decrease in countable events, and had not had any new (different) events occur 

after the start of intervention.  Overall, just under half of families had ‘improvement’ in 

the year following the start of intervention.  And ‘improvement’ varied widely by cluster.  

In many cases, the event that was the main feature of the cluster had a large reduction 

one year later (for instance, all families in cluster 2 had child protection plans; one year 

later just over a third did).  However, just over a quarter of families had more, or an 

increase in events following the start of intervention, and the other quarter had little 

change.   

Overall, the analysis found that having a Planned Ending for a first intervention treatment 

was not indicative of whether a family had ‘improvement’.  However, proportionately 
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more families who did not have ‘improvement’ were referred for further intervention 

treatments.  It seemed, therefore, that receiving more than one intervention treatment 

was representative (at least in some cases) of ongoing problems.  It is likely that a year 

may not be a long enough period of time to realistically consider the effect of the 

programme on the families; many of the problems they face may take a longer period 

than this to resolve.  Further research might consider a longer time-frame. 

There was a little success in predicting the outcome (‘improvement’) for families one year 

later, given only what was known about them at the start of intervention treatment.  The 

particular machine learning methods were chosen because they can identify attributes 

that are important to a prediction, and therefore might indicate the factors that are 

important to families making progress.  Various models were built, utilising different 

methods (decision trees, random forests, boosted models and regression), and on the 

whole dataset and cluster-level data.  In general, the tree-based models performed better 

(in terms of predictive accuracy) than the regression models; this may be because they 

were more suited to the data (which contained correlated attributes, and many 

predictors).  For some of the models there were small improvements upon baseline 

accuracy (that is, they were better than guessing).  Where there was success, the models 

indicated that family size and where a family lived were important.  They also indicated 

that families with children were less likely to have ‘improvement’; this is most likely 

because the focus of the data was on events that generally pertained to children (child 

safeguarding and school issues).  Overall, this part of the analysis highlighted that it is 

difficult to predict, with a great degree of accuracy, how joining the TF programme might 

turn out for families, which was not surprising.  However, the machine learning methods 

identified attributes which were important to these predictions; in particular, the fact 

that the demographic details of where a family lived consistently had importance to the 

models was interesting and may warrant further research. 

Overall, this analysis of the TF data highlighted the difficulties in analysing such complex 

interlinked data (such as dealing with missing data and hidden underlying contexts), but it 

also indicated the difficulties in determining the effect of intervention treatment (such as 

identifying a valid comparison group).  However, even with these difficulties the analysis 

has shed some light on the families and the problems that they face, together with the 

various issues with the data itself. 
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8.3 THE RESEARCH QUESTIONS 

The following sections consider the research questions that were posed for this thesis: 

Can machine learning techniques be effectively utilised or adapted to facilitate 

the analysis and comprehension of large social science data sets?  

The case study work illustrated that machine learning methods can be effectively utilised 

on large social science datasets.  Whilst the TF data itself contained only a few thousand 

families and so might be considered fairly small, the overall database was large 

(pertaining to the population of the whole city) and the data was also very wide (in that it 

contained many attributes).  The cluster analysis identified unique groups of families, 

each with their own particular characteristic.  Identifying these groups meant that far 

greater understanding was provided than would have been were the data considered as a 

whole.  The use of decision trees and visualisation methods meant that the complex data 

could be presented in a comprehensive and understandable way. 

Which data mining methods are most effective for discovering otherwise hidden 

patterns within complex and often noisy social data? 

The analysis showed that cluster analysis and tree-based methods can be effective.  The 

cluster analysis discovered hidden groups of families, and the decision tree analysis 

provided a set of clear rules to define the clusters.  Whilst there were mixed results in 

terms of utilising the machine learning methods for predictions, this stemmed from the 

fact that what the models were asked to predict was difficult.  However, it was still 

possible to gain insight into the predictions by considering the important predictors.  

Tree-based methods are particularly useful because they provide information as to which 

are the most important factors to a target attribute; this makes them ideally suited for 

usage in social science research compared to the more ‘black-box’ machine learning 

algorithms (such as neural networks).  The research highlighted that although ‘black-box’ 

or ensemble methods might provide better predictive accuracy, it may be difficult to 

understand how predictions are made and therefore what is important to the model. 

Can data mining methods provide a detailed picture of trends and patterns within 

a dataset? 

The case study analysis included many visualisations in order to indicate the trends and 

patterns that had occurred within the dataset.  Visualisation methods commonly 
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associated with data mining, such as t-SNE, slopegraphs, heatmaps, alluvial plots and 

nightingale plots were utilised to illustrate the various patterns around the cluster 

assignments, and to demonstrate the changes that occurred whilst the families were on 

the TF programme.  The use of visualisations, both on the cluster-level and on the overall 

data, allowed insight and understanding that may not have been achieved by simply 

considering summary statistics. 

Can machine learning methods be utilised to suggest new hypotheses and 

research questions? 

The analysis of the TF data was far-ranging, considering not only the events that had 

occurred for a family and what was known about them, but also the characteristics of 

where they lived.  This meant that new research questions were suggested by the data 

throughout the analysis.  Many of these pertained to whether the ‘place-based’ data 

(where the families lived) had any effect on the families.  Therefore, the most obvious 

research questions pertain to the place-based data, such as: do families with child-

safeguarding events tend to live in areas with higher economic activity and population 

density?  However, other research questions were also suggested by the analysis, such as: 

where school absence and CIN events are concerned, does having CIN events mean that 

some families are more likely to have higher levels of school absence?  This was 

suggested from considering clusters 8 (just school absence) and 10 (just school absence 

and CIN events).  Cluster 10 had higher average levels of school absence than cluster 8, 

and on the surface the only difference between the two was that families in cluster 10 

had at least one CIN event (although there may well have been other underlying factors). 

8.4 SUMMARY OF CONTRIBUTIONS 

Perhaps the most significant contribution of this research is that it has shown that 

machine learning techniques can be effectively utilised on a complex, interlinked social 

data set.  It has shown that it is possible to utilise a data-driven approach, with methods 

such as cluster analysis, decision tree methods and visualisation to gain a better 

understanding of complex data. 

The following summarises the other original contributions of the research: 

 Utilising data mining methods on the TF data was unique; there appears to be no 

academic research that has utilised these methods on the TF data 
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 The research illustrated that there are large gaps in the existing literature and that 

machine learning methods are not frequently utilised by social scientists in many 

subject areas.  Yet, this thesis has shown that they can be effectively applied to 

social data and may also provide a different perspective to a research problem 

and data 

 Provided an in-depth analysis of the available TF data for a particular English City, 

and identified clusters of families with different characteristics.  It illustrated that 

had all these families simply been analysed as one large group, an averaging effect 

would have occurred, and many changes and patterns would not have been 

evident.  More broadly, this may have implications for the overall analysis of the 

TF programme in England; if an averaging effect is present for just one city, this 

also likely to be present where the data is analysed for the whole country.  It may 

be that identifying clusters of similar families could aid in analysis of the overall TF 

data, this may uncover patterns that were not evident on the global level 

 The research highlighted that visualisation methods more closely associated with 

data mining, such as t-SNE, alluvial diagrams, heatmaps, slopegraphs and 

nightingale plots can be effectively utilised to display complex social data 

 The research discovered problems with the available ECC data, such as missing 

data, duplicate people, and likely missing links between people.  The ECC found 

this useful as they had not been aware of some of these problems and it helped 

them consider how to fix them, what might have been causing them, and any 

effect it had on their own analysis 

 Informed the ECC of the clusters and patterns in their own data, and more 

generally, the exposure to methods such as clustering means that the ECC now 

utilise them in their own research  

8.5 DIRECTIONS FOR FUTURE WORK 

Considering the case study, there would certainly be much further work in exploring the 

Troubled Families data.  It was clear that many families may have had other problems 

that were simply not represented by the available data (such as health problems, police 

call-outs, anti-social behaviour, etc.), were any of this data to become available it could 

be added to the analysis to consider how it affects the existing clusters, or whether new 

clusters might exist.  In general, the analysis generated questions that could be 
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investigated were further data made available.  These might include: analysis using a 

control group of families in order to determine whether any improvement could be 

directly attributed to the TF programme; a closer focus on the ‘place-based’ element of 

the data in order to understand how where a family lived may have affected future 

outcome; the consideration of a longer timeline after the start of intervention treatment; 

consideration more generally of complete timelines of events for families, to determine 

whether there were any patterns or particular recurrent sequences of events for them. 

More broadly, this thesis has shown that machine learning methods, such as clustering 

and decision tree learning, can be effectively applied to social data.  These methods were 

particularly chosen because they are interpretable; clusters can be described, and trees 

can (generally) be plotted.  Future work might also include analysis using the methods 

that are considered ‘black box’, such as neural networks.  That is, methods that are 

considered less interpretable; analysis would consider whether such methods can also 

provide some kind of useful explanatory power in social science research.   

8.6 FINAL THOUGHTS 

In conclusion, this thesis has shown that machine learning methods can be effectively 

utilised on social science datasets and that these methods can be used for far more than 

just prediction.  They offer ways to identify important predictors in a dataset, provide a 

better understanding of the structure of the data, identify hidden groups and 

relationships and aid in generating research questions and hypotheses.  However, this 

need not mean that machine learning methods should replace the more established 

methods, rather their use alongside these methods may provide enhanced 

understanding, model validation, and deeper perspective.  Perhaps in future years, 

machine learning methods will be considered a standard part of the wider toolkit of social 

science methods. 
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APPENDICES 

APPENDIX A 

A1: Attributes utilised as predictors for the models predicting cluster 

assignment from place-based data 

This section details the set of attributes that were utilised as predictors in section 6.3.4.1, which 

used ‘place-based’ attributes to predict cluster assignment.  Data was obtained from: the 2011 

Census data (UK Data Service, 2011), and linked to each family via the Output Area (OA) they lived 

in at the start of intervention; and Police crime data (Home Office, 2016) for the year 2011, and 

linked to each family via the LSOA area they lived in.  Whilst experiments were performed using a 

larger set of attributes (for instance, including all religion and all ethnic group attributes), these 

were reduced down to a smaller set since the inclusion of all attributes did not increase accuracy, 

and in order to potentially obtain a more understandable model.  The smaller set of 22 attributes 

included the most populous values; for instance, the ‘white’ ethnic group, was the largest overall 

so that was included, but in some areas the ‘Asian/Asian British’ population was larger, so this too 

was included.  The table details the attributes utilised in the final models: 

Attribute Description Source 

Population Density of OA Census, 2011 

Ethnic Group – Percentage ‘white’ people in OA Census, 2011 

Ethnic Group – Percentage ‘Asian/Asian British’ people in OA Census, 2011 

Household Deprivation – Percentage households not deprived in OA Census, 2011 

Place of Birth – Percentage of people born in the UK in OA Census, 2011 

Place of Birth – Percentage of people born in Asia/Middle East in OA Census, 2011 

Qualifications – Percentage of people with no qualifications in OA Census, 2011 

Religion – Percentage of people who are Christian in OA Census, 2011 

Religion – Percentage of people who are Muslim in OA Census, 2011 

Religion – Percentage of people who have no religion in OA Census, 2011 

Tenure – Percentage of households that are owned in OA Census, 2011 

Tenure – Percentage of households that are privately rented in OA Census, 2011 

Tenure – Percentage of households that are social rented in OA Census, 2011 

Economic Activity – Percentage of economically active people in OA Census, 2011 

Language – Percentage of households in OA where English is first language of all adults Census, 2011 

Household Size – Percentage of single-person households in OA Census, 2011 

Household Composition – Percentage of lone-parent households in OA Census, 2011 

General Health – Percentage of people in OA with ‘bad’ or ‘very bad’ general health Census, 2011 

Long-term Health – Percentage of people in OA with limited long-term health Census, 2011 

Police – Anti-social behaviour – Percentage of crimes in the LSOA that were anti-social 
behaviour (as a percentage of total number crimes in LSOA), 2011 

Police Data, 
2011 

Police – Burglary – Percentage of crimes in the LSOA that were burglary (as a 
percentage of total number crimes in LSOA), 2011 

Police Data, 
2011 

Police – Violent crime – Percentage of crimes in the LSOA that were violent (as a 
percentage of total number crimes in LSOA), 2011 

Police Data, 
2011 
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A2: Full Variable Importance scores for each model, with model details 

Decision tree 

The model had a test set accuracy of 28.17%, which was almost the same as the baseline accuracy 

(28.02%).  The tree was pruned with a CP value of 0.0033 and utilised equal weights.  The table 

contains the full Variable Importance scores: 

Attribute 
Variable 

Importance 
Score 

Tenure – Percentage of households that are privately rented in OA 19 

Long-term Health – Percentage of people in OA with limited long-term health 13 

General Health – Percentage of people in OA with ‘bad’ or ‘very bad’ general health 12 

Qualifications – Percentage of people with no qualifications in OA 11 

Tenure – Percentage of households that are social rented in OA 11 

Household Size – Percentage of single-person households in OA 10 

Economic Activity – Percentage of economically active people in OA 7 

Place of Birth – Percentage of people born in the UK in OA 7 

Household Composition – Percentage of lone-parent households in OA 3 

Household Deprivation – Percentage households not deprived in OA 2 

Religion – Percentage of people who have no religion in OA 2 

Religion – Percentage of people who are Muslim in OA 1 

Language – Percentage of households in OA where English is first language of all adults 1 

 

Random forest 

The model had a test set accuracy of 19.06%, which was lower than the baseline accuracy 

(28.02%).  The forest contained 1150 trees, and tried 4 attributes at each split.  The full Variable 

Importance scores are contained in the table, in order and in terms of mean decrease in accuracy: 

Attribute 
Variable 

Importance 
Score 

Long-term Health – Percentage of people in OA with limited long-term health 9.04 

Economic Activity – Percentage of economically active people in OA 7.50 

Place of Birth – Percentage of people born in the UK in OA 6.83 

Household Size – Percentage of single-person households in OA 6.63 

Qualifications – Percentage of people with no qualifications in OA 6.42 

Ethnic Group – Percentage ‘Asian/Asian British’ people in OA 5.72 

Household Deprivation – Percentage households not deprived in OA 5.64 

Place of Birth – Percentage of people born in Asia/Middle East in OA 5.42 

General Health – Percentage of people in OA with ‘bad’ or ‘very bad’ general health 5.33 

Religion – Percentage of people who are Christian in OA 5.27 

Tenure – Percentage of households that are privately rented in OA 5.25 

Ethnic Group – Percentage ‘white’ people in OA 4.77 

Household Composition – Percentage of lone-parent households in OA 4.22 

Tenure – Percentage of households that are social rented in OA 4.13 

Religion – Percentage of people who are Muslim in OA 3.82 

Language – Percentage of households in OA where English is first language of all 
adults 

3.53 

Police – Violent crime – Percentage of crimes in the LSOA that were violent (as a 
percentage of total number crimes in LSOA), 2011 

2.51 

Population Density of OA 2.25 
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Police – Anti-social behaviour – Percentage of crimes in the LSOA that were anti-social 
behaviour (as a percentage of total number crimes in LSOA), 2011 

2.11 

Police – Burglary – Percentage of crimes in the LSOA that were burglary (as a 
percentage of total number crimes in LSOA), 2011 

1.04 

Tenure – Percentage of households that are owned in OA 1.00 

Religion – Percentage of people who have no religion in OA 0.48 

 

Generalized boosted model 

The model had a test set accuracy of 26.78%, which was lower than the baseline accuracy 

(28.02%).  A model with 3000 trees was built, with shrinkage value of 0.001, and depth of 1; the 

best cross-validation iteration was 2275.  The full Variable Importance scores are in the table: 

Attribute 
Variable 

Importance 
Score 

Tenure – Percentage of households that are privately rented in OA 11.38 

Long-term Health – Percentage of people in OA with limited long-term health 8.47 

Household Size – Percentage of single-person households in OA 6.85 

Economic Activity – Percentage of economically active people in OA 6.52 

General Health – Percentage of people in OA with ‘bad’ or ‘very bad’ general health 6.18 

Ethnic Group – Percentage ‘white’ people in OA 5.14 

Religion – Percentage of people who have no religion in OA 4.93 

Population Density of OA 4.86 

Tenure – Percentage of households that are social rented in OA 4.86 

Tenure – Percentage of households that are owned in OA 4.40 

Police – Violent crime – Percentage of crimes in the LSOA that were violent (as a 
percentage of total number crimes in LSOA), 2011 

4.20 

Police – Anti-social behaviour – Percentage of crimes in the LSOA that were anti-social 
behaviour (as a percentage of total number crimes in LSOA), 2011 

3.75 

Police – Burglary – Percentage of crimes in the LSOA that were burglary (as a 
percentage of total number crimes in LSOA), 2011 

3.60 

Religion – Percentage of people who are Muslim in OA 3.38 

Place of Birth – Percentage of people born in Asia/Middle East in OA 3.28 

Language – Percentage of households in OA where English is first language of all adults 3.12 

Ethnic Group – Percentage ‘Asian/Asian British’ people in OA 3.12 

Place of Birth – Percentage of people born in the UK in OA 2.87 

Household Deprivation – Percentage households not deprived in OA 2.52 

Qualifications – Percentage of people with no qualifications in OA 2.36 

Religion – Percentage of people who are Christian in OA 2.14 

Household Composition – Percentage of lone-parent households in OA 2.08 

 

Multinomial logistic regression 

The model had a test set accuracy of 26.32%, which was lower than the baseline accuracy 

(28.02%).  The reference level for the target attribute was set to cluster 11, as this was the largest 

group and contained families with no events, so could be thought of as a baseline to some 

degree.  The residual deviance was 5972.846, Akaike Information Criterion was 6432.846, and the 

effective degrees of freedom were 230.  The table contains the intercept coefficients together 

with their standard errors in brackets.  Values that were significant at the p < 0.1 (*), p < 0.05 (**) 

and p < 0.01 (***) are labelled. 
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Predictors: 
Target Attribute (cluster assignment): 

1 2 3 4 5 6 7 8 9 10 

Population Density of OA -0.416 
(0.826) 

0.147 
(0.745) 

1.914* 

(1.031) 
0.371 

(1.376) 
-1.275 
(2.909) 

0.892 
(1.530) 

1.345 
(2.242) 

0.923 
(0.866) 

0.432 
(0.819) 

0.394 
(0.947) 

Ethnic Group – Percentage ‘white’ people in OA 0.504 
(1.752) 

-1.748 
(1.646) 

-0.661 
(2.479) 

0.355 
(3.486) 

5.516 
(5.227) 

-4.924 
(3.594) 

-1.651 
(4.897) 

-3.587* 
(1.943) 

-0.274 
(1.822) 

0.234 
(2.066) 

Ethnic Group – Percentage ‘Asian/Asian British’ 
people in OA 

-2.430 
(2.859) 

-3.261 
(2.685) 

0.916 
(3.691) 

-2.030 
(4.904) 

2.369 
(9.909) 

-6.066 
(5.659) 

4.420 
(8.611) 

-4.004 
(3.118) 

-2.360 
(2.897) 

3.724 
(3.420) 

Household Deprivation – Percentage households 
not deprived in OA 

3.282 
(1.996) 

2.723 
(1.904) 

4.741* 

(2.735) 
1.410 

(3.954) 
5.521 

(6.575) 
8.126** 

(3.931) 
1.008 

(5.918) 
-0.414 
(2.226) 

1.760 
(2.081) 

-0.548 
(2.339) 

Place of Birth – Percentage of people born in the 
UK in OA 

-1.282 
(2.815) 

1.919 
(2.698) 

-2.854 
(3.924) 

-1.478 
(5.481) 

-15.889* 

(8.463) 
-0.232 
(5.717) 

-2.913 
(8.471) 

4.780 
(3.223) 

-0.926 
(2.904) 

-1.789 
(3.279) 

Place of Birth – Percentage of people born in 
Asia/Middle East in OA 

5.105 
(4.415) 

6.731 
(4.104) 

-5.465 
(5.852) 

5.502 
(7.801) 

2.428 
(14.146) 

19.160** 
(8.903) 

2.217 
(12.488) 

9.106* 
(4.867) 

2.292 
(4.436) 

-6.112 
(5.414) 

Qualifications – Percentage of people with no 
qualifications in OA 

2.641 
(2.007) 

2.241 
(1.911) 

2.053 
(2.848) 

4.213 
(3.821) 

-5.976 
(6.061) 

7.161* 
(3.870) 

1.881 
(5.579) 

1.567 
(2.173) 

1.544 
(2.156) 

-0.728 
(2.356) 

Religion – Percentage of people who are Christian 
in OA 

1.636 
(3.505) 

0.227 
(3.326) 

-10.400** 
(4.716) 

-0.498 
(6.902) 

8.088 
(11.472) 

-4.213 
(6.702) 

0.968 
(9.725) 

-4.228 
(3.674) 

-5.983* 
(3.595) 

-6.763* 
(3.941) 

Religion – Percentage of people who are Muslim 
in OA 

1.460 
(3.647) 

-2.662 
(3.438) 

-8.223* 
(4.898) 

3.021 
(6.920) 

9.266 
(11.569) 

-2.903 
(6.757) 

-2.900 
(9.809) 

-6.424* 
(3.860) 

-7.183* 
(3.704) 

-5.923 
(4.092) 

Religion – Percentage of people who have no 
religion in OA 

4.369 
(3.850) 

0.855 
(3.663) 

-7.264 
(5.159) 

3.382 
(7.440) 

4.833 
(12.929) 

-3.934 
(7.401) 

0.990 
(10.904) 

-2.661 
(4.005) 

-6.130 
(3.981) 

-4.512 
(4.310) 

Tenure – Percentage of households that are 
owned in OA 

-1.700 
(4.171) 

0.012 
(4.147) 

16.105* 
(8.290) 

3.628 
(8.749) 

-8.032 
(11.583) 

-4.452 
(8.025) 

-11.657 
(9.067) 

4.450 
(5.252) 

-4.746 
(4.209) 

-4.015 
(4.847) 

Tenure – Percentage of households that are 
social rented in OA 

-2.236 
(4.126) 

-0.329 
(4.103) 

14.877* 
(8.216) 

0.952 
(8.516) 

-3.956 
(11.333) 

-2.842 
(7.903) 

-11.043 
(8.805) 

3.931 
(5.188) 

-6.087 
(4.175) 

-4.099 
(4.780) 

Tenure – Percentage of households that are 
privately rented in OA 

-2.459 
(4.187) 

1.325 
(4.154) 

15.907* 
(8.329) 

0.687 
(8.578) 

-6.184 
(11.585) 

-1.408 
(8.025) 

-13.139 
(9.239) 

4.404 
(5.270) 

-5.429 
(4.240) 

-3.327 
(4.863) 
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Economic Activity – Percentage of economically 
active people in OA 

0.291 
(1.876) 

-0.825 
(1.771) 

0.630 
(2.627) 

-0.161 
(3.531) 

-12.116** 
(5.944) 

-0.923 
(3.764) 

2.025 
(5.566) 

1.836 
(2.055) 

0.568 
(1.978) 

-0.200 
(2.190) 

Language – Percentage of households in OA 
where English is first language of all adults 

-2.120 
(2.607) 

-2.750 
(2.459) 

-0.026 
(3.453) 

0.313 
(4.394) 

16.140* 
(8.858) 

14.040*** 
(5.414) 

7.121 
(7.978) 

0.031 
(2.971) 

-2.015 
(2.658) 

2.435 
(3.106) 

Household Size – Percentage of single-person 
households in OA 

-2.566** 
(1.289) 

-2.881** 
(1.225) 

0.720 
(1.786) 

0.085 
(2.570) 

-3.047 
(3.715) 

-3.410 
(2.603) 

1.579 
(3.607) 

-2.251 
(1.410) 

-1.657 
(1.356) 

-2.243 
(1.500) 

Household Composition – Percentage of lone-
parent households in OA 

-0.885 
(2.382) 

-0.178 
(2.227) 

4.070 
(3.376) 

-0.505 
(4.970) 

-1.989 
(7.000) 

-2.222 
(4.618) 

3.267 
(6.868) 

-1.056 
(2.549) 

-0.209 
(2.521) 

-0.786 
(2.734) 

General Health – Percentage of people in OA with 
‘bad’ or ‘very bad’ general health 

-1.195 
(5.107) 

3.918 
(5.059) 

0.216 
(7.710) 

11.689 
(8.888) 

1.412 
(16.797) 

12.393 
(10.616) 

-0.247 
(15.368) 

-0.459 
(5.767) 

11.600** 
(5.691) 

-1.614 
(6.348) 

Long-term Health – Percentage of people in OA 
with limited long-term health 

6.786* 
(3.497) 

0.911 
(3.528) 

4.961 
(5.123) 

1.382 
(6.332) 

-12.138 
(12.347) 

-4.339 
(7.533) 

-4.497 
(11.246) 

3.485 
(3.891) 

-4.260 
(4.062) 

2.810 
(4.242) 

Police – Anti-social Behaviour – Percentage of 
crimes in the LSOA that were anti-social 

behaviour (as a percentage of total number 
crimes in LSOA), 2011 

-0.231 
(1.482) 

0.531 
(1.464) 

-0.521 
(2.191) 

-2.573 
(2.587) 

-2.891 
(4.520) 

1.445 
(3.069) 

-3.799 
(4.326) 

-1.778 
(1.634) 

-0.031 
(1.610) 

-0.647 
(1.749) 

Police – Violent Crime – Percentage of crimes in 
the LSOA that were violent crime (as a 

percentage of total number crimes in LSOA), 2011 

-3.913 
(2.571) 

-0.221 
(2.461) 

-1.435 
(3.660) 

-2.715 
(4.600) 

-4.542 
(8.156) 

-3.539 
(5.386) 

-2.484 
(7.425) 

-0.331 
(2.738) 

-5.772** 
(2.803) 

-4.121 
(3.022) 

Police – Burglary – Percentage of crimes in the 
LSOA that were burglary (as a percentage of total 

number crimes in LSOA), 2011 

-0.656 
(2.375) 

0.801 
(2.290) 

-2.870 
(3.462) 

-12.099** 
(5.198) 

-1.099 
(7.590) 

3.695 
(4.790) 

3.679 
(6.229) 

-2.018 
(2.629) 

1.771 
(2.471) 

-2.393 
(2.813) 

Constant 
-0.089 
(5.846) 

0.313 
(5.639) 

-9.503 
(9.640) 

-5.375 
(11.724) 

3.339 
(17.319) 

-8.448 
(11.370) 

3.357 
(14.822) 

-3.446 
(6.796) 

12.257** 
(6.007) 

9.202 
(6.722) 

 

significance levels: p < 0.1 (*), p < 0.05 (**) and p < 0.01 (***)
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A3: Simpler Multinomial Logistic Regression Model 

The top five most important predictors for the three machine learning models (in Table 23) were 

collated to produce a list of 8 predictors in order to produce a simpler logistic regression model.  

Whilst these predictors are still generally correlated (as indicated in Figure 10), it was felt that a 

smaller set might provide a more understandable model.  Utilising the machine learning methods 

as a form of feature selection provided a data-driven method of feature reduction.  The predictors 

were: 

Attribute  Source 

Place of Birth – Percentage of people born in the UK in OA Census, 2011 

Qualifications – Percentage of people with no qualifications in OA Census, 2011 

Tenure – Percentage of households that are privately rented in OA Census, 2011 

Tenure – Percentage of households that are social rented in OA Census, 2011 

Economic Activity – Percentage of economically active people in OA Census, 2011 

Household Size – Percentage of single-person households in OA Census, 2011 

General Health – Percentage of people in OA with ‘bad’ or ‘very bad’ general health Census, 2011 

Long-term Health – Percentage of people in OA with limited long-term health Census, 2011 

  

The resulting multinomial logistic regression model had a test set accuracy of 27.86%, which was 

an improvement of 1.54% over the first model (which had accuracy of 26.32%).  This was still 

lower than the baseline accuracy (28.02%).  The reference level for the target attribute was set to 

cluster 11, as this was the largest group and contained families with no events, so could be 

thought of as a baseline to some degree.  The residual deviance was 6097.708, Akaike Information 

Criterion was 6277.708, and the effective degrees of freedom were 90.  The table contains the 

intercept coefficients together with their standard errors in brackets.  Values that were significant 

at the p < 0.1 (*), p < 0.05 (**) and p < 0.01 (***) are labelled. 
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Target Attribute (cluster assignment): 

Predictors: 1 2 3 4 5 6 7 8 9 10 

Place of Birth – Percentage of people born in the UK in OA 
-1.042 
(0.886) 

-0.217 
(0.815) 

-1.802 
(1.152) 

-5.144*** 
(1.633) 

0.835 
(2.379) 

-1.680 
(1.675) 

-0.816 
(2.467) 

0.202 
(0.979) 

-1.239 
(0.890) 

0.329 
(1.012) 

Qualifications – Percentage of people with no qualifications 
in OA 

0.044 
(1.667) 

0.818 
(1.551) 

-0.436 
(2.305) 

2.237 
(3.292) 

-6.287 
(4.746) 

2.035 
(3.300) 

2.061 
(4.692) 

0.496 
(1.812) 

0.354 
(1.738) 

-1.512 
(1.908) 

Tenure – Percentage of households that are social rented in 
OA 

-0.535 
(0.673) 

-0.085 
(0.643) 

-0.129 
(0.950) 

-2.483* 
(1.361) 

1.133 
(2.118) 

-0.282 
(1.394) 

-0.066 
(1.925) 

0.273 
(0.745) 

-1.338* 
(0.699) 

0.046 
(0.781) 

Tenure – Percentage of households that are privately 
rented in OA 

-0.452 
(1.037) 

1.685* 
(0.939) 

0.482 
(1.360) 

-3.643* 
(2.145) 

0.116 
(2.972) 

0.013 
(2.049) 

-1.855 
(2.991) 

0.477 
(1.128) 

-0.179 
(1.020) 

1.067 
(1.146) 

Economic Activity – Percentage of economically active 
people in OA 

1.319 
(1.724) 

0.308 
(1.637) 

1.470 
(2.432) 

-0.031 
(3.235) 

-9.136* 
(5.316) 

1.254 
(3.448) 

1.635 
(5.077) 

2.108 
(1.902) 

0.838 
(1.817) 

-0.694 
(2.018) 

Household Size – Percentage of single-person households in 
OA 

-1.769* 
(1.013) 

-2.513** 
(0.989) 

-0.439 
(1.409) 

0.364 
(1.831) 

-0.270 
(2.963) 

-0.952 
(2.009) 

1.385 
(2.738) 

-1.747 
(1.119) 

-1.138 
(1.094) 

-1.731 
(1.202) 

General Health – Percentage of people in OA with ‘bad’ or 
‘very bad’ general health 

-0.805 
(5.041) 

3.875 
(5.027) 

2.914 
(7.627) 

12.628 
(8.396) 

-0.116 
(15.927) 

11.920 
(10.069) 

-3.321 
(15.116) 

-0.872 
(5.656) 

11.123** 
(5.626) 

-2.258 
(6.189) 

Long-term Health – Percentage of people in OA with 
limited long-term health 

5.822* 
(3.231) 

-0.323 
(3.289) 

-0.559 
(5.040) 

0.301 
(5.715) 

-6.891 
(11.045) 

-5.686 
(7.009) 

-4.227 
(10.169) 

3.339 
(3.641) 

-4.574 
(3.808) 

3.337 
(3.979) 

Constant 
-1.015 
(1.740) 

-0.632 
(1.689) 

-1.103 
(2.479) 

1.233 
(3.133) 

4.553 
(5.507) 

-2.010 
(3.499) 

-3.114 
(5.125) 

-2.885 
(1.956) 

0.387 
(1.849) 

-0.687 
(2.081) 

 

Significance levels: p < 0.1 (*), p < 0.05 (**) and p < 0.01 (***) 
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APPENDIX B 

B1: Attributes utilised as predictors for the machine learning models 

This section details the full set of attributes that were utilised as predictors in section 7.3.7.  In 

general, three datasets were used: set A, which consisted of all the attributes in the table (below); 

a smaller set (B), and an even smaller set where the clustering attributes were replaced by the 

cluster assignment (C).  The larger set (A) was utilised in order to make no assumptions about the 

data and allow a wide variety of attributes to be considered as predictors.  However, a more 

parsimonious set (B) was also utilised to see if that made any difference; this excluded some of 

the more repetitive attributes.  The smaller set of attributes included the most populous values; 

for instance, the ‘white’ ethnic group, was the largest overall so that was included, but not the 

attributes detailing all the other ethnic groups.  And substituting the cluster assignment for the 

clustering attributes (for example, school absence, CIN events, etc.) meant an even simpler 

dataset (set C).  However, dataset C was not utilised for the cluster-level models, as in this case 

the cluster assignment was irrelevant. 

Data from the ECC database and pertaining directly to the family was included, together with 

attributes that were linked to the area that a family lived in at the start of intervention treatment.  

The Census 2011 data (UK Data Service, 2011) linked via the family’s Output Area code, and the 

Police data (Home Office, 2016) linked via the family’s LSOA code.  All attributes, together with 

which dataset they were in, are detailed below: 

Description Type Source Set 

Intervention type Categorical ECC A, B, C 

Number of people in the family Integer ECC A, B, C 

Number of females in the family Integer ECC A 

Number of males in the family Integer ECC A 

Number of children in the family Integer ECC A, B, C 

Number of adults in the family Integer ECC A, B, C 

Percentage of unauthorised absence for the previous year, for 
the family 

Count ECC A, B 

Number of school exclusions for the previous year, for the 
family 

Integer ECC A, B 

Number of criminal offences committed by adults for the 
previous year, for the family 

Integer ECC A, B 

Number of criminal offences committed by children for the 
previous year, for the family 

Integer ECC A, B 

Family had one or more NEET members in the previous year Binary ECC A, B 

Family had one or more CIN events in the previous year Binary ECC A, B 

Family had one or more CPPs in the previous year Binary ECC A, B 

Family had one or more LAC events in the previous year Binary ECC A, B 

Family had one or more events classed as domestic abuse in 
the previous year 

Binary ECC A 

Family had one or more drug/alcohol events in the previous 
year 

Binary ECC A 
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Number of changes of address for the previous year, for the 
family 

Integer ECC A 

Cluster assignment Categorical Derived A, C 

Population Density of OA Numerical Census, 2011 A 

Ethnic Group – Percentage ‘white’ people in OA Numerical Census, 2011 A, B, C 

Ethnic Group – Percentage ‘Asian/Asian British’ people in OA Numerical Census, 2011 A 

Ethnic Group – Percentage ‘Black/African/Caribbean/Black 
British’ people in OA 

Numerical Census, 2011 A 

Ethnic Group – Percentage ‘Mixed/Multi Ethnic group’ people 
in OA 

Numerical Census, 2011 A 

Ethnic Group – Percentage ‘Other’ people in OA Numerical Census, 2011 A 

Percentage of households in OA not deprived Numerical Census, 2011 A, B, C 

Percentage of people born in the UK in OA Numerical Census, 2011 A, B, C 

Percentage of people born in the Europe in OA Numerical Census, 2011 A 

Percentage of people born in the Africa in OA Numerical Census, 2011 A 

Percentage of people born in the Middle East and Asia in OA Numerical Census, 2011 A 

Percentage of people born in the Americas and Caribbean in 
OA 

Numerical Census, 2011 A 

Percentage of people born in the Antarctica and Oceania in OA Numerical Census, 2011 A 

Percentage of people born in Other place in OA Numerical Census, 2011 A 

Percentage of people with no qualifications in OA Numerical Census, 2011 A, B, C 

Religion – Percentage of people who are Christian in OA Numerical Census, 2011 A, B, C 

Religion – Percentage of people who are Muslim in OA Numerical Census, 2011 A 

Religion – Percentage of people who have no religion in OA Numerical Census, 2011 A 

Tenure – Percentage of households that are owned in OA Numerical Census, 2011 A, B, C 

Tenure – Percentage of households that are privately rented in 
OA 

Numerical Census, 2011 A 

Tenure – Percentage of households that are social rented in OA Numerical Census, 2011 A, B, C 

Economic Activity – Percentage of economically active people 
in OA 

Numerical Census, 2011 A, B, C 

Percentage of households in OA where English is first language 
of all adults 

Numerical Census, 2011 A, B, C 

Percentage of single-person households in OA Numerical Census, 2011 A, B, C 

Percentage of lone-parent households in OA Numerical Census, 2011 A, B, C 

Percentage of people in OA with ‘bad’ or ‘very bad’ general 
health 

Numerical Census, 2011 A 

Percentage of people in OA with limited long-term health Numerical Census, 2011 A, B, C 

Police – Anti-social behaviour – Percentage of crimes in the 
LSOA (as a percentage of total number of anti-social behaviour 
crimes in whole city), 2011 

Numerical Police database 
(Home Office, 
2016) 

A, B, C 

Police – Burglary – Percentage of crimes in the LSOA (as a 
percentage of total number of burglaries in whole city), 2011 

Numerical Police database 
(Home Office, 
2016) 

A, B, C 

Police – Violent crime – Percentage of crimes in the LSOA (as a 
percentage of total number of violent crimes in whole city), 
2011 

Numerical Police database 
(Home Office, 
2016) 

A, B, C 

 

B2: Set 1 Results for Predicting planned/unplanned endings 

Results from the Set 1 models detailed in section 7.3.7.1.  The models predicted 

planned/unplanned endings with/without further treatment for each family.  The target attribute 

was therefore a categorical attribute with four possible values (planned ending with further 

interventions, planned ending with no further interventions, unplanned ending with further 

interventions, unplanned ending with no further interventions).  For each method (decision tree, 
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random forest, generalized boosted models, and logistic regression) a model was built that 

utilised all the data, and also separate models for each cluster.  For each of these, the three 

different datasets (A, B, C) were utilised where appropriate (only A and B for the cluster-level 

models).  The results of these models, in terms of their accuracy on the test dataset, together 

with any model parameters are contained in the following section. 

Decision Tree models 

Built utilising the ‘rpart’ R package, with 10-fold cross-validation on the training dataset.  A 

complete tree was built (CP=0), which was then pruned to the lowest cross-validated error rate.  

Models were built utilising each of the three datasets (A, B, C).  The performance of each pruned 

model was tested on the test dataset.  The best model performance, which dataset this came 

from and the CP value, is listed in the table.  In some cases, each dataset had the same result, so 

all are listed.  For some clusters the algorithm could not find a useful model, this is denoted by a 

dash.  The size of the test dataset is listed in the first column. 

 
Baseline 
accuracy 

Test set 
accuracy 

Dataset CP value 

All data 
(n=611) 

47.1% 46.5% A, B, C 0.0075, 0.0067, 0.00991 

Cluster 1 
(n=82) 

48.8% 41.5% A 0.024 

Cluster 2 
(n=97) 

44.3% 38.1% B 0.032 

Cluster 3 
(n=34) 

41.2% 44.1% B 0.089 

Cluster 8 
(n=62) 

45.2% - - - 

Cluster 9 
(n=68) 

45.6% - - - 

Cluster 10 
(n=52) 

38.5% 46.2% B 0.055 

Cluster 11 
(n=172) 

54.7% - - - 

 
The models predicting outcome for clusters 3 and 10 had an improvement over baseline accuracy, 

and as such might be considered an improvement over guessing.  For each of these, the variable 

importance scores are listed: 

Cluster 3: Dataset B produced the best performance.  The model indicated that the type of 

intervention a family received was most the important factor overall.  More specifically, there was 

one split in the tree: which was whether a family received FF intervention treatment.  If they did, 

a planned ending with further interventions was predicted, if not a planned ending with no 

further interventions was predicted.  The model did not predict unplanned endings (with/without 

further interventions), and so despite having a small improvement over baseline accuracy may 

not be very useful.  
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Attribute 
Variable importance 

score 

Intervention type 48 

Percentage of people with no qualifications in OA 12 

Religion – Percentage of people who are Christian in OA 12 

Number of people in the family 11 

Economic Activity – Percentage of economically active people in OA 9 

Percentage of households in OA not deprived 8 

 
Cluster 10: Dataset B had the best performance.  The model indicated that the housing situations 

in the area where a family lived (percentage of households that were owned and socially rented, 

together with the prevalence of lone-parent households) was the most important factor overall.  

However, despite having a decent improvement over the baseline accuracy (just under 8%), the 

model only predicted planned endings (with/without further interventions).  

Attributes 
Variable 

importance score 

Tenure – Percentage of households that are owned in OA 33 

Tenure – Percentage of households that are social rented in OA 26 

Percentage of lone-parent households in OA 23 

Percentage of people with no qualifications in OA 6 

Percentage of households in OA not deprived 5 

Ethnic Group – Percentage ‘white’ people in OA 4 

Percentage of unauthorised school absence for the previous year, for the family 1 

Percentage of people born in the UK in OA 1 

 

Random Forest models 

Built using the ‘randomForest’ R package, with 10-fold cross-validation on the training dataset.  A 

forest with 1000 trees was built, and then the optimal number of trees selected using the cross-

validated error rate.  Models were built utilising each of the three datasets (A, B, C).  For each the 

optimal model was tested on the test dataset.  Any records with missing values were removed 

from the training dataset, as the particular algorithm cannot deal with them (this accounted for 

only 4 records).  The best model performance (in terms of accuracy on the test dataset), which 

dataset this came from and the number of trees, together with the number of records in the test 

dataset, is listed below: 

 
Baseline 
accuracy 

Test set 
accuracy 

Dataset 
Number of 

trees 

All data 
(n=608) 

47.1% 43.6% B 175 

Cluster 1 
(n=82) 

48.8% 39.0% B 100 

Cluster 2 
(n=97) 

44.3% 43.3% B 25 

Cluster 3 
(n=34) 

41.2% 41.2% A 240 

Cluster 8 
(n=62) 

45.2% 48.4% A 145 

Cluster 9 45.6% 44.1% A 100 
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(n=68) 

Cluster 10 
(n=52) 

38.5% 48.1% B 30 

Cluster 11 
(n=172) 

54.7% 50.0% B 300 

 

The models predicting outcome for clusters 8 and 10 had an improvement over baseline accuracy.  

For each of these, the variable importance scores, in terms of mean decrease in accuracy, are 

listed: 

Cluster 8: This utilised dataset A and indicated that, aside from the number of address changes a 

family had, it was mostly place-based data that had higher importance to the model.  The model 

accuracy was only a small improvement over baseline (just over 3%), however, unlike many of the 

other models, it did predict 3 unplanned endings (without further interventions), together with 

planned endings (with/without further intervention). 

Attribute 
Variable 

importance score 

Percentage of people born in the Europe in OA 2.46 

Number of changes of address for the previous year, for the family 1.69 

Ethnic Group – Percentage ‘Other’ people in OA 1.49 

Ethnic Group – Percentage ‘Black/African/Caribbean/Black British’ people in OA 1.49 

Percentage of households in OA where English is first language of all adults 1.25 

Religion – Percentage of people who are Christian in OA 1.09 

Percentage of unauthorised absence for the previous year, for the family 1.09 

Police – Burglary – Percentage of crimes in the LSOA (as a percentage of total 
number of burglaries in whole city), 2011 

1.02 

Percentage of people born in the UK in OA 0.61 

Ethnic Group – Percentage ‘Asian/Asian British’ people in OA 0.57 

Police – Anti-social behaviour – Percentage of crimes in the LSOA (as a percentage 
of total number of anti-social behaviour crimes in whole city), 2011 

0.55 

Percentage of people in OA with limited long-term health 0.53 

Percentage of people born in the Middle East and Asia in OA 0.48 

Number of females in the family 0.39 

Percentage of people in OA with ‘bad’ or ‘very bad’ general health 0.39 

Number of people in the family 0.34 

Number of children in the family 0.33 

Tenure – Percentage of households that are privately rented in OA 0.30 

Religion – Percentage of people who are Muslim in OA 0.22 

Percentage of households in OA not deprived 0.10 

Percentage of people born in the Americas and Caribbean in OA 0.03 

 
Cluster 10: This utilised dataset A and indicated that it was mostly place-based data that had 

higher importance to the model.  The model accuracy was a decent improvement over baseline 

(just under 10%); it did predict 1 unplanned ending (without further interventions), but in general 

predicted only planned endings (with/without further intervention). 

Attribute 
Variable 

importance score 

Percentage of lone-parent households in OA 2.15 

Percentage of people born in the UK in OA 2.14 
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Tenure – Percentage of households that are social rented in OA 2.10 

Economic Activity – Percentage of economically active people in OA 1.73 

Percentage of households in OA not deprived 1.54 

Percentage of people in OA with limited long-term health 1.51 

Percentage of unauthorised absence for the previous year, for the family 1.34 

Religion – Percentage of people who are Christian in OA 0.97 

Ethnic Group – Percentage ‘white’ people in OA 0.96 

Tenure – Percentage of households that are owned in OA 0.83 

Police – Anti-social behaviour – Percentage of crimes in the LSOA (as a percentage 
of total number of anti-social behaviour crimes in whole city), 2011 

0.61 

Number of children in the family 0.26 

Percentage of people with no qualifications in OA 0.14 

Intervention type 0.12 

Percentage of households in OA where English is first language of all adults 0.09 

 

Generalized Boosted models 

Built utilising the ‘gbm’ R package, with 10-fold cross-validation on the training dataset.  Each 

model built had 3000 trees; the best iteration of these was selected using the lowest cross-

validated error rate.  Models were built utilising each of the three datasets.  For each the 

performance of the optimal model was tested on the test dataset.  The best model performance, 

which dataset this came from and the best iteration, is listed in the table.  The table also details 

the size of the test dataset. 

 
Baseline 
accuracy 

Test set 
accuracy 

Dataset 
Number of 

trees 

All 
data 
(n=611) 

47.1% 46.8% B 32 

Cluster 
1 
(n=82) 

48.8% 41.5% B 12 

Cluster 
2 
(n=97) 

44.3% 48.5% B 22 

Cluster 
3 
(n=34) 

41.2% 50.0% B 16 

Cluster 
8 
(n=62) 

45.2% 43.6% A 12 

Cluster 
9 
(n=68) 

45.6% 48.5% B 14 

Cluster 
10 
(n=52) 

38.5% 50.0% B 14 

Cluster 
11 
(n=172) 

54.7% 54.7% B 20 
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The models predicting outcome for clusters 2, 3, 9 and 10 had performance on the test dataset 

that was better than the baseline accuracy. For each of these the variable importance scores are 

listed: 

Cluster 2: This utilised dataset B and indicated that the type of intervention a family received was 

most important, followed by levels of crime in the area that a family lived.  The model accuracy 

was a small improvement over baseline (just over 4%); it predicted mostly planned endings 

(with/without further interventions) but did pick up on one unplanned ending (without further 

interventions). 

Attribute 
Variable 

importance score 

Intervention type 23.98 

Police – Anti-social behaviour – Percentage of crimes in the LSOA (as a percentage 
of total number of anti-social behaviour crimes in whole city), 2011 

17.54 

Police – Burglary – Percentage of crimes in the LSOA (as a percentage of total 
number of burglaries in whole city), 2011 

14.06 

Police – Violent crime – Percentage of crimes in the LSOA (as a percentage of total 
number of violent crimes in whole city), 2011 

9.12 

Percentage of people born in the UK in OA 8.54 

Percentage of unauthorised absence for the previous year, for the family 6.85 

Percentage of households in OA where English is first language of all adults 5.84 

Economic Activity – Percentage of economically active people in OA 5.17 

Tenure – Percentage of households that are owned in OA 4.46 

Percentage of households in OA not deprived 1.27 

Ethnic Group – Percentage ‘white’ people in OA 1.13 

Percentage of single-person households in OA 1.06 

Number of adults in the family 0.98 

 
Cluster 3: This utilised dataset B and indicated that the first intervention type was most 

important, followed by mostly place-based data.  The model accuracy had a good improvement 

over the baseline accuracy (just under 9%); it predicted mostly planned endings (with/without 

further interventions) but did pick up two unplanned endings (without further interventions). 

Attribute 
Variable 

importance score 

Intervention type 46.82 

Percentage of single-person households in OA 13.57 

Police – Anti-social behaviour – Percentage of crimes in the LSOA (as a percentage 
of total number of anti-social behaviour crimes in whole city), 2011 

7.35 

Religion – Percentage of people who are Christian in OA 7.32 

Percentage of households in OA not deprived 6.57 

Police – Violent crime – Percentage of crimes in the LSOA (as a percentage of total 
number of violent crimes in whole city), 2011 

6.57 

Percentage of people with no qualifications in OA 5.87 

Ethnic Group – Percentage ‘white’ people in OA 3.43 

Family had one or more CPPs in the previous year 2.52 

 
Cluster 9: This utilised dataset B and used only place-based data in the model (nothing pertaining 

directly to the family itself had importance).  The model accuracy was a small improvement over 
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baseline (just under 3%); however, it only predicted planned endings (with/without further 

interventions). 

Attribute 
Variable 

importance score 

Tenure – Percentage of households that are owned in OA 21.37 

Religion – Percentage of people who are Christian in OA 13.95 

Economic Activity – Percentage of economically active people in OA 13.94 

Police – Anti-social behaviour – Percentage of crimes in the LSOA (as a percentage 
of total number of anti-social behaviour crimes in whole city), 2011 

13.54 

Police – Burglary – Percentage of crimes in the LSOA (as a percentage of total 
number of burglaries in whole city), 2011 

12.57 

Tenure – Percentage of households that are social rented in OA 12.54 

Percentage of people with no qualifications in OA 10.50 

Percentage of lone-parent households in OA 1.59 

 
Cluster 10: This utilised dataset B and identified the intervention type as most important, 

followed by place-based data.  The model accuracy was a good improvement over baseline (just 

under 11%); even so, the model mostly predicted planned endings (with/without further 

interventions), and only detected one unplanned ending (without further interventions). 

Attribute 
Variable 

importance score 

Intervention type 19.33 

Percentage of single-person households in OA 19.24 

Percentage of households in OA not deprived 14.42 

Police – Violent crime – Percentage of crimes in the LSOA (as a percentage of total 
number of violent crimes in whole city), 2011 

11.40 

Tenure – Percentage of households that are social rented in OA 8.70 

Tenure – Percentage of households that are owned in OA 7.85 

Percentage of households in OA where English is first language of all adults 7.43 

Police – Burglary – Percentage of crimes in the LSOA (as a percentage of total 
number of burglaries in whole city), 2011 

5.07 

Police – Anti-social behaviour – Percentage of crimes in the LSOA (as a percentage 
of total number of anti-social behaviour crimes in whole city), 2011 

3.61 

Religion – Percentage of people who are Christian in OA 2.94 

 

Logistic Regression models 

Built using the ‘nnet’ R package.  Multinomial logistic regression was performed, as this is suitable 

for a categorical target attribute.  The data was scaled to between zero and one and records with 

missing values removed.  It should be noted that the models were misspecified as some of the 

predictors were correlated; and generally, it might not be helpful to use so many predictors with a 

regression model, but for a direct comparison the same dataset was utilised for all methods.  

Models were built utilising each of the three datasets (A, B, C).  Each model was tested on the test 

dataset.  The best model performance, in terms of test set accuracy, which dataset this came from 

and the Aikaike Information Criterion, is listed the table.  In some cases, each dataset had the 

same test set accuracy, so all are listed.  The size of the test dataset is included in the first column. 
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 Baseline accuracy Test set accuracy Dataset AIC 

All data 
(n=611) 

47.1% 45.7% B 3272.7 

Cluster 1 
(n=86) 

47.7% 44.2% B 476.9 

Cluster 2 
(n=99) 

42.4% 42.4% A 590.8 

Cluster 3 
(n=33) 

48.5% 48.5% A 294.0 

Cluster 8 
(n=61) 

41.9% 31.2% A, B 433.0, 385.1 

Cluster 9 
(n=64) 

46.9% 29.7% A 527.1 

Cluster 10 
(n=43) 

37.2% 32.6% A 412.3 

Cluster 11 
(n=180) 

56.1% 51.1% B 907.1 

 

Overall, none of the logistic regression models could beat the baseline accuracy, however a few 

matched it.  This meant that none of the models were considered useful. 

 

B3: Set 2: Results for Predicting ‘improvement’ 

Results from the Set 2 models detailed in section 7.3.7.2.  The models predicted whether or not a 

family would have an ‘improvement’.  That is, whether the events that they had in the year prior 

to intervention would have stopped or decreased in the year following the start of intervention.  

The target attribute was therefore a dichotomous attribute with two possible values 

(improvement, or no improvement). 

For each method (decision tree, random forest, generalized boosted models, and logistic 

regression) a model was built that utilised all the data, and also separate models for each cluster.  

For each of these, the three different datasets (A, B, C) were utilised where appropriate (only A 

and B for the cluster-level models).  The results of these models, in terms of their accuracy on the 

test dataset, together with any model parameters are contained in the following tables. 

Decision Tree models 

Built utilising the ‘rpart’ R package, with 10-fold cross-validation on the training dataset.  A 

complete tree was built (CP=0), which was then pruned to the lowest cross-validated error rate.  

Models were built utilising each of the three datasets (A, B, C).  The performance of each pruned 

model was tested on the test dataset.  The best model performance, which dataset this came 

from and the CP value, is listed in the table.  In some cases, each dataset had the same result, so 

all are listed.  For some clusters the algorithm could not find a useful model, this is denoted by a 

dash.  The size of the test dataset is listed in the first column. 
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Baseline 
accuracy 

Test set 
accuracy 

Dataset CP value 

All data 
(n=500) 

54.2% 67.0% A, B, C 
0.017, 0.0067, 

0.015 

Cluster 1 
(n=69) 

75.4% 53.6% A 0.02 

Cluster 2 
(n=75) 

57.3% - - - 

Cluster 3 
(n=28) 

71.4% 67.9% A 0.013 

Cluster 8 
(n=49) 

65.3% 53.1% B 0.06 

Cluster 9 
(n=57) 

54.4% 40.4% B 0.009 

Cluster 10 
(n=44) 

68.2% - - - 

Cluster 11 
(n=142) 

72.5% 73.2% B 0.0 

 

The models that had a test set accuracy greater than the baseline were those which utilised the 

whole dataset and the cluster 11 model.  The details for each are: 

All data: the accuracy was the same for each set of attributes used (A, B, C).  No matter the set of 

attributes, the tree produced was the same (although there was a little variation in the surrogate 

values).  The tree had only one split, which was whether a family had children or not.  If they did 

not have children, improvement was predicted; if they did, no improvement was predicted.  The 

variable importance scores are listed below: 

Set A Set B Set C 

Attribute Score Attribute Score Attribute Score 

Number of children in 
family 

66 Number of children in 
family 

66 Number of children in 
family 

60 

Number of people in 
family 

34 Number of people in 
family 

34 Number of people in 
family 

31 

    Cluster assignment 9 

 
Cluster 11: this utilised dataset B and had a very small improvement over baseline accuracy (less 

than 1%).  The most important attributes pertained to family size; how many children there were 

in the family, and how many people overall.  The variable importance scores are listed below: 

Attribute Variable 
importance score 

Number of children in the family 21 

Number of people in the family 15 

Religion – Percentage of people who are Christian in OA 6 

Tenure – Percentage of households that are owned in OA 6 

Number of adults in the family 5 

Intervention type 5 

Percentage of households in OA not deprived 5 

Tenure – Percentage of households that are social rented in OA 5 

Percentage of people with no qualifications in OA 5 

Percentage of lone-parent households in OA 4 

Percentage of single-person households in OA 4 
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Police – Anti-social behaviour – Percentage of crimes in the LSOA (as a percentage 
of total number of anti-social behaviour crimes in whole city), 2011 

4 

Economic Activity – Percentage of economically active people in OA 3 

Police – Burglary – Percentage of crimes in the LSOA (as a percentage of total 
number of burglaries in whole city), 2011 

3 

Percentage of households in OA where English is first language of all adults 3 

Police – Violent crime – Percentage of crimes in the LSOA (as a percentage of total 
number of violent crimes in whole city), 2011 

3 

Ethnic Group – Percentage ‘white’ people in OA 2 

Percentage of people born in the UK in OA 1 

Percentage of people in OA with limited long-term health 1 

 

Random Forest models 

Built using the ‘randomForest’ R package, with 10-fold cross-validation on the training dataset.  A 

forest with 1000 trees was built, and then the optimal number of trees selected using the cross-

validated error rate.  Models were built utilising each of the three datasets (A, B, C).  For each the 

optimal model was tested on the test dataset.  Any records with missing values were removed 

from the training dataset, as the particular algorithm cannot deal with them (this accounted for 

only 4 records).  The best model performance (in terms of accuracy on the test dataset), which 

dataset this came from and the number of trees, together with the number of records in the test 

dataset, is listed in the table: 

 
Baseline 
accuracy 

Test set 
accuracy 

Dataset Number of trees 

All data 
(n=500) 

54.4% 62.5% A, C 145,230 

Cluster 1 
(n=69) 

75.4% 76.8% A 80 

Cluster 2 
(n=75) 

57.3% 57.3% B 80 

Cluster 3 
(n=28) 

71.4% 67.9% B 40 

Cluster 8 
(n=49) 

65.3% 61.2% A 50 

Cluster 9 
(n=57) 

54.4% 50.9% B 180 

Cluster 10 
(n=44) 

68.2% 65.9% A 140 

Cluster 11 
(n=142) 

72.5% 74.3% B 50 

 

The models predicting outcome for all the data, and cluster 1, had an improvement over baseline 

accuracy.  For each of these, the variable importance scores, in terms of mean decrease in 

accuracy, are listed: 

All data: The models utilising datasets A and C both had the same prediction accuracy on the test 

dataset, although they produced different models.  For each, the model accuracy was an 

improvement over baseline accuracy of just over 8%.  The number of children in the family, and 
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number of people overall, had high importance to both models.  The cluster assignment was most 

important to the set C model, whereas the attributes that contribute to cluster assignment 

(pertaining to events) were more important to the set A model (as this did not have the cluster 

assignment attribute).  The full list of variable importance scores, for sets A and C are listed:  

Set A Set C 

Attribute Variable 
importance 

score 

Attribute Variable 
importance 

score 

Number of children in the family 13.89 Cluster assignment 24.50 

Percentage of unauthorised absence 
for the previous year, for the family 

9.02 Number of children in the 
family 

21.44 

Number of people in the family 8.20 Number of people in the family 15.07 

Number of males in the family 6.86 Percentage of single-person 
households in OA 

4.79 

Family had one or more CIN events in 
the previous year 

5.58 Intervention type 4.52 

Number of females in the family 5.43 Economic Activity – Percentage 
of economically active people in 
OA 

4.17 

Number of criminal offences 
committed by children for the 
previous year, for the family 

3.88 Tenure – Percentage of 
households that are owned in 
OA 

3.58 

Percentage of people in OA with 
limited long-term health 

3.66 Percentage of people born in 
the UK in OA 

3.56 

Family had one or more CPPs in the 
previous year 

3.63 Percentage of people in OA 
with limited long-term health 

3.22 

Number of school exclusions for the 
previous year, for the family 

3.43 Ethnic Group – Percentage 
‘white’ people in OA 

3.15 

Percentage of people born in the UK in 
OA 

2.22 Tenure – Percentage of 
households that are social 
rented in OA 

2.74 

Intervention type 1.87 Percentage of people with no 
qualifications in OA 

2.15 

Economic Activity – Percentage of 
economically active people in OA 

1.77 Percentage of households in OA 
not deprived 

1.98 

Family had one or more events classed 
as domestic abuse in the previous year 

1.77 Percentage of lone-parent 
households in OA 

1.86 

Religion – Percentage of people who 
are Muslim in OA 

1.50 Percentage of households in OA 
where English is first language 
of all adults 

1.21 

Number of criminal offences 
committed by adults for the previous 
year, for the family 

1.50 Religion – Percentage of people 
who are Christian in OA 

0.97 

Ethnic Group – Percentage 
‘Black/African/Caribbean/Black British’ 
people in OA 

1.46 Police – Violent crime – 
Percentage of crimes in the 
LSOA (as a percentage of total 
number of violent crimes in 
whole city), 2011 

0.67 

Tenure – Percentage of households 
that are owned in OA 

1.46 Number of adults in the family 0.31 

Tenure – Percentage of households 
that are social rented in OA 

1.39   

Percentage of households in OA where 
English is first language of all adults 

1.35   
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Percentage of people with no 
qualifications in OA 

1.32    

Number of changes of address for the 
previous year, for the family 

1.30   

Ethnic Group – Percentage ‘white’ 
people in OA 

1.27   

Family had one or more LAC events in 
the previous year 

0.95   

Percentage of people in OA with ‘bad’ 
or ‘very bad’ general health 

0.85   

Religion – Percentage of people who 
have no religion in OA 

0.84   

Police – Violent crime – Percentage of 
crimes in the LSOA (as a percentage of 
total number of violent crimes in 
whole city), 2011 

0.46   

Percentage of people born in the 
Middle East and Asia in OA 

0.37   

Percentage of people born in the 
Africa in OA 

0.16   

Percentage of lone-parent households 
in OA 

0.12   

 
Cluster 1: This utilised dataset A and indicated that the number of children in the family was most 

important.  The model accuracy was only a small improvement over baseline (just over 1%).  The 

variable importance scores were: 

Attribute 
Variable 

importance 
score 

Number of children in the family 2.89 

Percentage of households in OA where English is first language of all adults 2.33 

Percentage of single-person households in OA 2.16 

Percentage of people born in the UK in OA 2.09 

Police – Anti-social behaviour – Percentage of crimes in the LSOA (as a percentage of total 
number of anti-social behaviour crimes in whole city), 2011 

2.09 

Ethnic Group – Percentage ‘Other’ people in OA 1.45 

Number of females in the family 1.44 

Tenure – Percentage of households that are social rented in OA 1.42 

Number of males in the family 1.41 

Number of criminal offences committed by children for the previous year, for the family 1.23 

Percentage of people in OA with limited long-term health 1.14 

Percentage of people born in the Africa in OA 1.05 

Percentage of lone-parent households in OA  0.84 

Number of adults in the family 0.71 

Number of people in the family 0.47 

Number of school exclusions for the previous year, for the family 0.39 

Religion – Percentage of people who are Muslim in OA 0.36 

Religion – Percentage of people who are Christian in OA 0.36 

Percentage of people born in the Antarctica and Oceania in OA 0.26 

Tenure – Percentage of households that are privately rented in OA 0.16 

 
Cluster 11: This utilised dataset B and indicated that attributes pertaining to family size were most 

important, together with place-based attributes.  The model accuracy was a small improvement 

over baseline (just under 2%). 
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Attribute 
Variable 

importance score 

Number of children in the family 7.11 

Number of people in the family 4.84 

Police – Anti-social behaviour – Percentage of crimes in the LSOA (as a percentage 
of total number of anti-social behaviour crimes in whole city), 2011 

3.94 

Number of adults in the family 3.33 

Tenure – Percentage of households that are owned in OA 1.92 

Percentage of single-person households in OA 1.65 

Economic Activity – Percentage of economically active people in OA 1.43 

Intervention type 0.95 

Percentage of people with no qualifications in OA 0.78 

Percentage of households in OA where English is first language of all adults 0.66 

Religion – Percentage of people who are Christian in OA 0.58 

Percentage of people in OA with limited long-term health 0.53 

Tenure – Percentage of households that are social rented in OA 0.51 

Percentage of lone-parent households in OA 0.26 

Ethnic Group – Percentage ‘white’ people in OA 0.13 

 

Generalized Boosted models 

Built utilising the ‘gbm’ R package, with 10-fold cross-validation on the training dataset.  Each 

model built had 3000 trees; the best iteration of these was selected using the lowest cross-

validated error rate.  Models were built utilising each of the three datasets.  For each the 

performance of the optimal model was tested on the test dataset.  The best model performance, 

which dataset this came from and the best iteration, is listed in the table.  The table also details 

the size of the test dataset. 

 
Baseline 
accuracy 

Test set 
accuracy 

Dataset 
Number 
of trees 

All data 
(n=611) 

54.2% 65.8% A 17 

Cluster 1 
(n=82) 

75.4% 75.4% A 17 

Cluster 2 
(n=97) 

57.3% 64.0% A 5 

Cluster 3 
(n=34) 

71.4% 71.4% A 8 

Cluster 8 
(n=62) 

65.3% 51.0% A, B 18, 11 

Cluster 9 
(n=68) 

54.4% 49.1% B 1 

Cluster 10 
(n=52) 

68.2% 63.6% A 9 

Cluster 11 
(n=172) 

72.5% 76.1% A 22 

 

The models predicting outcome for all the data, and clusters 2 and 11 had performance on the 

test dataset that was better than the baseline accuracy. For each of these the variable importance 

scores are listed: 
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All data: This utilised dataset A and only four attributes had any importance, with the number of 

children in the family being most important.  The model accuracy was a good improvement over 

baseline (just over 11%). 

Attribute Variable importance score 

Number of children in the family 49.28 

Number of people in the family 26.92 

Percentage of unauthorised absence for the previous year, for the family 18.98 

Intervention type 4.82 

 

Cluster 2: This utilised dataset A and only three attributes had any importance, with the 

percentage of lone-parent households in the area that a family lived being most important, 

followed by the percentage of privately rented households.  The model accuracy was a decent 

improvement over baseline (just under 7%). 

Attribute Variable importance score 

Percentage of lone-parent households in OA 41.42 

Tenure – Percentage of households that are privately rented in OA 36.36 

Number of females in the family 22.22 

 
Cluster 11: This utilised dataset A and only six attributes had any importance, with the number of 

children, and people overall, in the family being most important.  The model accuracy was a small 

improvement over baseline (just under 4%). 

Attribute 
Variable 

importance score 

Number of children in the family 63.24 

Number of people in the family 22.63 

Percentage of people born in the Middle East and Asia in OA 4.52 

Intervention type 3.57 

Tenure – Percentage of households that are owned in OA 3.32 

Police – Violent crime – Percentage of crimes in the LSOA (as a percentage of total 
number of violent crimes in whole city), 2011 

2.73 

 

Logistic Regression models 

Built using the ‘glm’ R package.  The data was scaled to between zero and one and records with 

missing values removed.  It should be noted that the models were misspecified as some of the 

predictors were correlated; and generally, it might not be helpful to use so many predictors with a 

regression model, but for a direct comparison the same dataset was utilised for all methods.  

Models were built utilising each of the three datasets (A, B, C).  Each model was tested on the test 

dataset.  The best model performance, in terms of test set accuracy, which dataset this came from 

and the Aikaike Information Criterion, is listed in the table.  In some cases, each dataset had the 

same test set accuracy, so all are listed.  The size of the test dataset is included in the first column. 

 Baseline accuracy Test set accuracy Dataset AIC 

All data 54.2% 64.0% C 1375.5 
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(n=500) 

Cluster 1 
(n=67) 

68.7% 68.7% A 203.5 

Cluster 2 
(n=81) 

53.1% 51.9% A 248.68 

Cluster 3 
(n=32) 

81.3% 68.8% B 60 

Cluster 8 
(n=41) 

51.2% 48.8% A, B 145 

Cluster 9 
(n=54) 

63.0% 61.1% A 222.19 

Cluster 10 
(n=45) 

68.9% 64.4% B 134.23 

Cluster 11 
(n=140) 

68.6% 70.0% B 333.74 

 

Two models had accuracy on the test dataset that beat the baseline accuracy, that which utilised 

all the data, and the cluster 11 model.  

All data: This utilised dataset C and the model accuracy on the test dataset was a decent 

improvement over baseline (just over 8%).  ‘No improvement’ was set as the reference level.  The 

model had an AIC value of 1375.5 and residual deviance of 1309.5 on 1129 degrees of freedom.  

The full summary is listed below, with values that were significant at the p < 0.05 (*), p < 0.01 (**) 

and p < 0.001 (***) indicated.  The model indicated that cluster assignment (particularly, cluster 

11), the percentage of single person households in the area the family lived in, and receiving the 

FIP intervention type were all important to the model. 

Coefficient: Estimate Standard 
Error 

z value Pr (>|z|) 

(Intercept) -0.32024 1.55462 -0.206 0.836797 

Cluster assignment: 2 0.89385 0.26243 3.406 0.000659 *** 

Cluster assignment: 3 0.54565 0.35758 1.526 0.127024  

Cluster assignment: 4 1.48294 0.48656 3.048 0.002305 ** 

Cluster assignment: 5 1.18555 0.75428 1.572 0.116002  

Cluster assignment: 6 1.64708 0.43780 3.762 0.000168 *** 

Cluster assignment: 7 -0.47868 0.80029 -0.598 0.549749  

Cluster assignment: 8 0.24432 0.29083 0.840 0.400869 

Cluster assignment: 9 1.13736 0.26968 4.218 0.0000247 *** 

Cluster assignment: 10 0.58091 0.30703 1.892 0.058490 

Cluster assignment: 11 1.78834 0.24475 7.307 0.0000000000003 
*** 

Ethnic Group – Percentage ‘white’ people in OA -0.05694 1.16972 -0.049 0.961114 

Percentage of households in OA not deprived -2.72488 1.51775 -1.795 0.072600 

Percentage of people born in the UK in OA -1.76055 1.99029 -0.885 0.376390 

Percentage of people with no qualifications in OA 0.87637 1.54889 0.566 0.571527 

Religion – Percentage of people who are Christian in 
OA 

-0.89944 1.10451 -0.814 0.415454 

Tenure – Percentage of households that are owned in 
OA 

-0.94746 0.84980 -1.115 0.264884 

Tenure – Percentage of households that are social 
rented in OA 

-0.23472 0.64452 -0.364 0.715726 

Economic Activity – Percentage of economically 
active people in OA 

2.14631 1.43960 1.491 0.135987 

Percentage of households in OA where English is first 
language of all adults 

3.39647 1.79956 .1887 0.059108 

Percentage of single-person households in OA -2.73654 0.97384 -2.810 0.004954 ** 
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Percentage of lone-parent households in OA -4.09520 1.78497 -2.294 0.021775 * 

Percentage of people in OA with limited long-term 
health 

-0.69836 2.21664 -0.315 0.752722 

Police – Anti-social behaviour – Percentage of crimes 
in the LSOA (as percent of total in whole city), 2011 

1.06963 1.14781 0.932 0.351395 

Police – Violent crime – Percentage of crimes in the 
LSOA (as percent of total in whole city), 2011 

0.28571 2.02185 0.141 0.887626 

Police – Burglary – Percentage of crimes in the LSOA 
(as percent of total in whole city), 2011 

1.91246 1.92456 0.994 0.320364 

Intervention type: CFPT 0.05811 0.18685 0.322 0.755791 

Intervention type: FF -0.23409 0.23353 -1.002 0.316150 

Intervention type: FINIS 0.42468 0.46740 0.887 0.374970 

Intervention type: FIP -0.53533 0.19668 -2.722 0.006492 ** 

Number of people in the family -8.70434 6.43471 -1.353 0.176146 

Number of adults in the family 3.76393 3.54724 1.061 0.288650 

Number of children in the family 3.11680 5.24948 0.594 0.522690 

 
Cluster 11: This utilised dataset B and the model accuracy on the test dataset was a very small 

improvement over baseline (just over 1%).  ‘Improvement’ was set as the reference level.  The 

model had an AIC value of 333.74 and residual deviance of 287.74 on 303 degrees of freedom.  

The full summary is listed below; no values were significant at the p < 0.05 (*), p < 0.01 (**) and p 

< 0.001 (***) level.  Given that the model was only marginally better than the baseline accuracy, it 

may not be very useful. 

Coefficient: Estimate Standard 
Error 

z value Pr (>|z|) 

(Intercept) 3.0707 3.6030 0.852 0.3941 

Ethnic Group – Percentage ‘white’ people in OA 2.1356 2.7475 0.777 0.4370 

Percentage of households in OA not deprived 1.5040 3.7954 0.396 0.6919 

Percentage of people born in the UK in OA -3.0991 4.9112 -0.631 0.5280 

Percentage of people with no qualifications in OA 1.8585 3.3652 0.552 0.5808 

Religion – Percentage of people who are Christian in 
OA 

-1.5133 2.6328 -0.575 0.5653 

Tenure – Percentage of households that are owned in 
OA 

-0.8717 2.0422 -0.427 0.6695 

Tenure – Percentage of households that are social 
rented in OA 

-0.6239 1.5177 -0.411 0.6810 

Economic Activity – Percentage of economically 
active people in OA 

3.3183 3.4198 0.970 0.319 

Percentage of households in OA where English is first 
language of all adults 

-0.6450 4.3058 -0.150 0.8809 

Percentage of single-person households in OA -1.6283 2.3282 -0.699 0.4842 

Percentage of lone-parent households in OA 1.0732 4.0815 0.263 0.7926 

Percentage of people in OA with limited long-term 
health 

6.0825 5.8698 1.031 0.3023 

Police – Anti-social behaviour – Percentage of crimes 
in the LSOA (as percent of total in whole city), 2011 

-0.9278 2.5197 -0.368 0.7127 

Police – Violent crime – Percentage of crimes in the 
LSOA (as percent of total in whole city), 2011 

-5.6321 4.5422 -1.240 0.2150 

Police – Burglary – Percentage of crimes in the LSOA 
(as percent of total in whole city), 2011 

-1.9216 4.1982 00.458 0.6472 

Intervention type: CFPT 0.5794 0.4153 1.395 0.1630 

Intervention type: FF -0.5660 0.5138 -1.102 0.2706 

Intervention type: FINIS -0.5619 1.2940 -0.434 0.6641 

Intervention type: FIP -0.7098 0.3995 -1.777 0.0756 

Number of people in the family -182.4985 9710.1787 -0.019 0.9850 

Number of adults in the family 96.5253 5296.4614 0.018 0.9855 

Number of children in the family 138.8173 7944.6917 0.017 0.9861 
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B4: Predicting ‘improvement’ for families with and without children 

Results from the models detailed in section 7.3.7.3.  The data was split into families with children 

(n=1372) and without children (n=296), and the models predicted whether or not a family would 

have an ‘improvement’.  That is, whether the events that they had in the year prior to 

intervention would have stopped or decreased in the year following the start of intervention.  The 

target attribute was therefore a dichotomous attribute with two possible values (improvement, or 

no improvement).  As with the models built in the previous sections, each dataset was split into a 

training and testing dataset (70:30 split) and the machine learning models utilised 10-fold cross-

validation on the training dataset to determine the optimal model which was then tested on the 

test dataset.  The logistic regression model was built on the training set and tested on the test set. 

For each method (decision tree, random forest, generalized boosted models, and logistic 

regression) an overall model was built that utilised all the data; there were no cluster-level 

models.  For each of these, the three different datasets (A, B, C) were utilised.  The results of 

these models, in terms of their accuracy on the test dataset are contained in the table: 

 Baseline 
accuracy 

Test set 
accuracy 

Dataset 

Families with children:    

Decision tree 63.1% 62.1% C 

Random forest 63.1% 62.1% B 

Generalized boosted model 63.1% 62.9% B, C 

Logistic regression 63.1% 64.1% A 

 

Families without children:    

Decision tree 87.5% 84.1% C 

Random forest 87.5% 86.4% B, C 

Generalized boosted model 87.5% 88.6% C 

Logistic regression 87.5% 85.2% B 

 

Whilst a couple of the models had a marginal improvement over the baseline accuracy (around 

1%) it would seem that the models were not very useful and could not really beat the accuracy 

attained simply from guessing. 


