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Abstract 

Natural killer cells are thought to influence the outcome of hematopoietic stem 

cell transplant (HSCT), impacting on relapse, overall survival, graft versus 

host disease and the control of infection, in part through the complex interplay 
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between the large and genetically diverse killer immunoglobulin-like receptor 

(KIR) family and their ligands. This study examined the relationship between 

KIR gene content and clinical outcomes including the control of opportunistic 

infections such as cytomegalovirus in the setting of human leucocyte antigen 

(HLA)-matched sibling HSCT in an Australian cohort. The presence of the KIR 

B haplotype which contain more activating receptors in the donor, in particular 

centromeric B haplotype genes (Cen-B), was associated with improved 

overall survival of patients with acute myeloid leukemia (AML) undergoing 

sibling HSCT and receiving myeloablative conditioning. Donor Cen-B 

haplotype was also associated with reduced acute graft versus host disease 

grades II-IV whereas donor telomeric-B haplotype was associated with 

decreased incidence of CMV reactivation. In contrast, we were not able to 

demonstrate a reduced rate of relapse when the donor had KIR Cen-B, 

however relapse with a donor Cen-A haplotype was a competing risk factor to 

poor overall survival. Here we show that the presence of donor activating KIR 

led to improved outcome for the patient, potentially through reduced relapse 

rates and decreased incidence of acute GvHD translating to improved overall 

survival.  

 

 

 

Introduction 

Natural killer (NK) cells play a crucial a role in the control and elimination of 

tumours. Consistent with a role in anti-tumour immunity, studies have shown 

that antibody-mediated depletion of NK cells can result in increased tumour 
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burdens, typically in the context of transplantation.1-3 The activation of NK 

cells is controlled by a balance of activating and inhibitory signals that are 

transduced by an array of cell surface receptors many of which interact with 

Major Histocompatibility Class I (MHC-I) molecules.4  

 

In humans, NK cell surveillance of the expression of classical HLA class I 

proteins is largely mediated by killer cell immunoglobulin-like receptors (KIR), 

a large family of polymorphic receptors. The gene complex encoding KIR is 

found on chromosome 19q13.4 within the Leukocyte Receptor Complex 

consisting of 14 genes and 2 pseudogenes. At a population level, this 

complex is highly diverse with considerable variability in the gene content of 

KIR haplotypes as well as significant polymorphism within individual KIR 

genes.5,6 

 

The presence or absence of clusters of particular KIR genes has been used to 

define two broad haplotypes termed A and B. The A haplotypes have a 

relatively well-defined set of KIR genes including KIR2DL1, -2DL3, -3DL1 and 

-2DS4 of which only one, KIR2DS4 is an activating receptor. In contrast B 

haplotypes are far more varied in terms of gene content but typically possess 

more genes encoding activating receptors than A haplotypes. B haplotype 

genes include KIR2DS1, -2DS2, -2DS3, -2DS5, -2DL2, -2DL5 and -3DS1, 

which may be in various combinations due to reciprocal recombination 

events.4,7,8  
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In an attempt to understand how KIR/HLA interactions impact on the control of 

infection or cancer, numerous studies have correlated allotypic variation of 

either HLA class I or KIR with clinical outcomes, most notably perhaps in the 

setting of haematological malignancy. Ruggeri et al first observed that 

mismatching of KIR ligands between donor and recipient was associated with 

improved outcomes in patients receiving haploidentical hematopoietic stem 

cell transplantation (HSCT) for acute myeloid leukemia (AML).3,9 These data 

suggested that the lack of KIR ligands in transplant recipients resulted in 

reduced rates of relapse and graft versus host disease (GvHD). Further 

studies examining recipient and donor KIR haplotype showed evidence of 

protection against severe GvHD and improved survival in HLA-matched 

sibling transplants and unrelated HSCT when the donor had the B haplotype 

or presence of activating KIR.10-13 Activating KIR and KIR B haplotypes have 

also been implicated in the role of NK cell mediated control of 

cytomegalovirus (CMV) reactivation in HSCT, a major cause of morbidity.14,15  

 

While two broad types of haplotype have been identified, in an effort to 

identify the genes associated with clinical outcomes, a number of studies 

have focussed on centromeric (Cen) or telomeric (Tel) clusters of genes 

belonging to either the A or B haplotype. This further defines the KIR 

repertoire, as inhibitory receptors that recognise HLA-C C1 and C2 (based 

upon on the amino acid present at positions 77 and 80) are located in the 

centromeric region whereas those that recognise Bw4 and A3/11 are within 

the telomeric region.11,16 Indeed using this approach patients receiving 

transplants from donors possessing clusters of centromeric genes from B 
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haplotypes (Cen-B) have improved outcomes following unrelated HSCT than 

individuals that lack this cluster.11,17,18 Furthermore, renal transplant recipients 

that possess the telomeric cluster of the B genes (Tel-B) have been reported 

to maintain better control of CMV replication.19 

 

Many previous studies have been retrospective reports of myeloablative 

transplants. Non-myeloablative preparative regimens are often used for older 

patients and it is expected that the early balance between recipient and donor 

immunity will be markedly different from that in the myeloablative setting. In 

the study presented here, we have examined the relationship between KIR 

haplotype and the outcome of T-replete HLA-matched sibling HSCT in an 

Australian cohort. We found improved survival, less aGVHD and decreased 

reactivation of CMV of patients when their donor had a B haplotype. This 

cohort was collected prospectively and includes patients that received 

myeloablative and reduced intensity conditioning. 

 

Methods 

Patient Demographics 
 
A total of 152 donor and recipient siblings were recruited from the Royal 

Adelaide Hospital, Adelaide, the Royal Melbourne and The Alfred Hospitals, 

Melbourne and Westmead Hospital in Sydney over the period 2002 - 2007. 

The study was approved by the human institutional review boards of all 

participating institutions. All donors and recipients provided informed consent 

to the study.  

KIR Genotyping 
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DNA was extracted from 10 ml whole blood EDTA anticoagulated peripheral 

blood samples, taken prior to the commencement of therapy, using a modified 

salting out method.20 KIR genotyping was performed by PCR using multiplex 

sequence specific primers as previously described.21 KIR haplotypes were 

classified as the A haplotype carrying the KIR2DL1, -2DL3, -3DL1 and -2DS4 

genes, all other combinations were denoted as the B haplotype. Combinations 

of KIR haplotype were assigned according to donor and then recipient 

haplotype (D-R), where Bx included BB and BA. Donor centromeric and 

telomeric haplotypes were assigned as previously described.11,22 Briefly, 

KIR2DS2, -2DL1, -2DL2 and -2DL3 were considered centromeric and 

KIR3DL1/S1, -2DS5, -2DS1 and -2DS4 were considered telomeric. 

Combinations of these gave the haplotypes as centromere (Cen) or telomere 

(Tel) AA, BA or BB. As only 4 donors had the Cen BB haplotype and 10 with 

Tel BB, the BA and BB haplotypes were combined and analysed as Bx. 

 

Clinical data was reviewed to determine day of death, relapse, CMV 

reactivation, GvHD or last known outpatient appointment. Data was analysed 

by GraphPad Prism 6 using Kaplan-Meier survival curves and compared 

using the Log Rank (Mantel-Cox) test. The result was considered significant if 

P<0.05. The Fine and Gray statistical test implemented in R version 3.4.1 

(cmprsk package, version 2.2-7) was used to examine associations between 

haplotypes, competing risks and the cumulative incidence of death.23 

Multivariate analysis for relapse free survival was performed using Cox-

proportional hazard model implemented in R version 3.4.1 (survival package, 

coxph function, version 2.41-3). 
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Results 
 
Transplant Characteristics 
 
Patients were consecutively recruited to the study and considered eligible if 

they were undergoing HSCT for hematological malignancies or severe 

aplastic anaemia and over 18 years of age. Patients who were undergoing T-

depleted HSCT or were Hepatitis B, C or HIV positive by serology or DNA 

testing were excluded.  

 
Transplant characteristics of those with complete clinical data (n=145) are 

summarised in Table 1. Ninety-five men and 50 women received 

hematopoietic stem cell transplants donated by an HLA-matched sibling. 

Eighty-five patients received myeloablative conditioning and 60 reduced 

intensity conditioning (RIC). The majority of patients received peripheral blood 

as the source of the stem cells and all were T-cell replete with the median 

time of follow-up being 2 years (9 days - 4.1 years). Of the 145 patients, 69 

(47%) had been diagnosed with AML, the second largest group were those 

diagnosed with Non-Hodgkin Lymphoma (13%).  

 

Seventy-eight percent of recipients (n=114) received GvHD prophylaxis for 

consisting of cyclosporine A/tacrolimus and short course methotrexate (MTX). 

CMV management involved either a prophylactic strategy using gancyclovir or 

oral valacyclovir or a pre-emptive strategy, involving weekly monitoring of 

blood for CMV DNA and treatment with gancyclovir or foscarnet where 

appropriate.   
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Multivariate analysis did not reveal any significant associations with relapse 

free survival when disease diagnosis, age at transplant, CMV reactivation or 

GvHD were considered (Supplementary Figure 1). There was a trend towards 

more males and the type of conditioning (RIC) received and relapse, however 

this did not reach statistical significance. 

 

Donor KIR Haplotype alone was not associated with improved survival 

To determine if there was a relationship between KIR haplotype and survival 

after sibling allogeneic HSCT, the KIR gene content of both donors and 

recipients was assessed and used to infer the associated KIR haplotypes in a 

cohort of 145 transplant recipients. Without disease stratification, there were 

no significant differences in overall survival associated with the presence of 

distinct KIR haplotypes in the donor (Figure 1A). Similarly, when limited to 

patients receiving transplants for AML, there was also no significant difference 

in relapse rates based on donor KIR haplotype either when all patients with 

AML were assessed or when the analyses were limited to those who received 

myeloablative conditioning (Figure 1A).  

 

 The presence of donor Cen-B genes was associated with improved 

overall survival. 

While there was no significant association between the B haplotype and 

overall survival in this cohort, previous studies had suggested that the 

centromeric cluster of the B haplotypes was more strongly associated with 

survival in a number of contexts. Furthermore, in our patient cohort, the 
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presence in the donor of KIR2DS2, the only activating KIR within the 

centromeric end of B haplotypes, was also associated with significantly 

improved overall survival in both the AML cohort (P = 0.03) and those AML 

patients that received myeloablative conditioning (P=0.01) (Figure 1B).  

 

Consequently, the cohort was stratified based on the presence of donor-

derived centromeric or telomeric genes. Again, when the entire cohort was 

assessed, there were no significant differences in outcomes associated with 

presence of donor derived B genes, irrespective of whether they were 

encoded within the centromeric or telomeric region of the locus. However, for 

patients with AML, the presence of centromeric genes of B haplotypes (Cen-

B) was associated with improved overall survival (P=0.01) (Table 2 and Figure 

2A, centre). When limited to patients who received myeloablative conditioning, 

this association was also evident (P=0.01) (Table 2 and Figure 2A, right).  

 

The presence of Cen-B genes was not associated with reduced rates of 

relapse. 

To better understand the mechanisms responsible for the improved overall 

survival in patients receiving transplants from donors with Cen-B genes, the 

proportion of patients who relapsed was also assessed. As with overall 

survival, there was no significant association between the presence of Cen-B 

genes and relapse when the entire cohort was assessed. Furthermore, there 

was no significant reduction in the number of AML patients who experienced 

relapse associated with presence of Tel-B or Cen-B genes, or when the 

analyses were focused on patients who had received only myeloablative 
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conditioning (Table 2 and supplementary figure 2). Similarly, comparison of 

the frequency of individual KIR genes in patients who relapsed compared to 

those who did not showed no marked differences with the possible exception 

of KIR2DS3 which was found in higher frequency in patients who did not 

relapse (data not shown). Cumulative incidence of death was considered with 

relapse as a competing risk. Significant associations were found when the 

donor had a Cen-B haplotype with improved overall survival in patients 

diagnosed with AML (P = 0.03) and those with AML and receiving 

myeloablative conditioning (P = 0.05) (Figure 3). Thus, the data suggests that 

the improved overall survival associated with Cen-B genes may be linked to 

reduced levels of relapse. 

No improvement in the incidence of CMV reactivation with the presence of 

KIR Cen-B genes  

In the absence of an association between the presence of Cen-B genes and 

disease relapse, we next considered whether the presence of these genes 

was associated with better control of cytomegalovirus replication, a common 

complication in HSCT where both primary infection and reactivation are 

associated with adverse outcomes.24 Of the 145 recipients for which full 

clinical data was available, 97 were CMV seropositive prior to transplant. No 

seronegative patients had evidence of CMV viremia after transplantation. In 

patients that were seropositive for CMV at diagnosis, there was no significant 

decrease in the timing or frequency of CMV reactivation that could be linked 

to the presence of Cen-B haplotypes. In contrast, CMV reactivation in patients 

that received a transplant from donors that were Tel-B/x was markedly less 
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than those receiving a transplant from a donor that possessed the A 

haplotype (P=0.02) (Table 2, supplementary figure 3).  

 

All recipients either received a suppressive prophylactic treatment or pre-

emptive treatment to control CMV. When stratified according to CMV 

treatment and donor KIR haplotype, only those receiving pre-emptive 

prophylaxis exhibited any significant differences, with those having an AA 

donor being associated with increased CMV reactivation relative to those 

receiving Tel-B (P=0.03) (Table 2, supplementary figure 3).  

 

CMV reactivation was considered as a competing risk by cumulative 

incidence of death, without stratification for IgG positivity or prophylaxis. Cen-

B was associated with improved survival in patients with AML (P = 0.012) and 

AML with myeloablative conditioning (P = 0.018) however Tel-B was 

associated with poor survival when the entire cohort was considered (P = 

0.004) (Supplementary figure 4). 

Donor KIR Cen-B was protective against aGvHD in patients with AML.  

A similar approach was taken to determine if KIR haplotype had an effect on 

the occurrence of GvHD. When the effect of KIR haplotype on GvHD was 

considered for the entire cohort, for those treated for AML or according to pre-

transplant conditioning there were no significant differences.  

 

Acute GvHD (aGvHD) was defined as grades II-IV aGvHD up to day 50 post-

transplant. When the effect of donor KIR haplotype on aGvHD was 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
considered for the entire cohort, no significant differences were noted (Table 

2). However, when this was stratified to include only those receiving treatment 

for AML, a significant difference was seen (P = 0.04), with an increased 

proportion of recipients receiving grafts from Cen-A donors having aGvHD 

(Table 2 and supplementary figure 5A).  

 

Cumulative incidence of death was considered with GvHD as a competing 

risk, without stratification of grade and considered up to 100 days post-

transplant. GvHD was also a significant competing risk factor to overall 

survival when the donor had a Tel-B haplotype for the entire cohort (P = 0.01) 

and AML (P = 0.02) (Supplementary figure 6). 

 

Discussion 

In this study, donor and recipient sibling HSCT pairs were prospectively 

recruited from four major transplant hospitals in Australia, to investigate the 

role of KIR in transplant outcome. Prior studies examining the role of NK cell 

mediated alloreactivity and the outcome of HSCT have yielded conflicting 

data.9,17,25-28 Improvement in HSCT outcome by alloreactive donor NK cells 

was first reported in the haploidentical setting where decreased relapse rates 

and a protective effect against GvHD were observed.3  Since then, many 

groups have sought to correlate KIR haplotype with the outcome of HSCT. As 

with other studies 11,29-31, when our entire cohort of MHC-matched cases was 

examined no significant associations of either donor or recipient KIR 

haplotype were evident with overall survival, relapse free survival or GvHD. 
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However, when just those receiving treatment for AML were examined, 

statistically significant associations were found.  

 

Significant associations were found with clinically relevant aGvHD and overall 

survival when the donor had both the AA haplotype and Cen-A KIR, and 

therefore limited numbers of activating KIR. All transplants were T cell replete 

and this may be a confounding factor, as when T cells are included in the graft 

this can affect the reconstitution of NK cells.32,33 A proposed mechanism for 

the beneficial effect of NK cell alloreactivity in the setting of HSCT is the ability 

to lyse recipient antigen presenting cells (APCs) that might otherwise prime 

donor derived T cells to induce GvHD.3 The presence of only one activating 

KIR or indeed stronger inhibitory receptors that are associated with A 

haplotypes 34 may limit their capacity to lyse recipient APCs resulting in 

inferior survival due to increased aGvHD. Consistent with this, studies in the 

haploidentical setting have found that the presence of the activating KIR2DS1 

on NK cells is associated with an enhanced capacity to kill mature allogeneic 

myelomonocytic dendritic cells.35 These same studies also found increased 

lysis of T cell blasts by NK cells expressing KIR2DS1 compared with those 

that lacked KIR2DS1. Thus, an additional mechanism by which donors with B 

haplotypes might limit GvHD, is through direct NK recognition of activated 

recipient reactive T cells.  

 

The impact of KIR haplotype on survival in HSCT prompted an analysis of the 

effect of KIR haplotype on CMV reactivation. Patients who received stem cells 

from AA donors had significantly more CMV reactivation than those from Bx 
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donors, but this effect was limited to those that received myeloablative 

conditioning and pre-emptive treatment. Similar results are reported in the 

myeloablative setting in both T-depleted or non-T-depleted studies and sibling 

or unrelated transplant cohorts.14,15 In contrast, another unrelated and T 

depleted study has reported no effect of KIR haplotype on CMV reactivation.27 

This advantage was limited to Tel-B and to a subset of those with CMV 

reactivation, in contrast to overall survival and aGvHD where this was a Cen-

B effect.  Together with the mixed results in the cumulative incidence of death 

analyses, this may suggest that KIR haplotype in relation to CMV reactivation 

is not an important driver of survival in this cohort and potentially that the 

immune mechanisms for CMV control are different to those for GvHD.  

 

Despite studies to the contrary we were unable to find any direct association 

between KIR haplotype and reduced relapse rates notwithstanding also 

examining missing ligands and the number of B haplotype genes as described 

in other studies.11,17,18,26 However, we did demonstrate that significantly 

improved overall survival with donor Cen-B when relapse was considered as 

a competing risk. These mixed results may be due to heterogeneity of this 

cohort and small sample size. While samples were collected prospectively 

from all eligible patients over a period of four years, it fell short of the planned 

250 sibling pairs, impacting on the ability to obtain adequate power and this 

may have affected the statistical analysis. Differences among conditioning 

protocols and post-transplant treatment may also contribute to the 

discrepancies seen between NK alloreactivity and survival across cohorts. 

While similar trends for were evident for patients undergoing RIC, small 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
numbers in this study restricted meaningful analysis of outcomes. Of interest, 

relapse rates for the entire cohort was 20% and in the AML group was 23% 

whereas generally the relapse rates for AML patients exceed 40%.36 

Multivariate analysis did not reveal any independent factors for improved 

relapse-free survival. Although limited sample size makes multivariate 

analysis difficult to interpret, these figures would suggest that this is lower 

than expected perhaps reflecting the prospective nature and best practice of 

this cohort at the time of the study. 

 

While the initial studies examining HSCT outcome in KIR ligand mismatched 

recipients were encouraging, the interpretation of this data has become 

increasingly complex. The previous understanding of the range of HLA-C 

ligands for KIR2DL2/3 was somewhat limited, excluding group 2 HLA-C 

alleles such as HLA-Cw6 that have been shown to function as ligands for 

KIR2DL2.37  The promiscuous nature of KIR2DL2 has been demonstrated 

through binding to a number of HLA-C alleles while allelic diversity has also 

been shown to impact their specificity.34,38,39 While the ligands for activating 

KIR remain poorly characterised in general, KIR2DS1 has been demonstrated 

to mediate alloreactivity while KIRDS2 also appears to recognise discrete 

subsets of HLA class I allotypes.35,40-43 KIR3DS1 has been shown to reduce 

mortality and despite structural similarity to 3DL1 appears to recognise the 

non-classical molecule HLA-F.40,44,45 Secondly, it is now evident that MHC 

class I expression impacts on the function of NK cells via licensing.34,46-

48  Consequently, the altered environment present within the allogeneic 

recipient may itself impact the composition of the NK cell compartment, being 
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shaped by an education process distinct from that of T cells but nevertheless 

important in the acquisition of effector function by mature NK cells.49 

 

While differences in HSCT protocols may continue to confound results, the 

data presented in this limited, small study add to reports that B haplotype 

genes are associated with improved outcomes following HSCT.10,11,31,50 

Furthermore, centromeric and telomeric clusters were associated with 

improved overall survival and decreased incidence of CMV reactivation 

respectively in patients diagnosed with AML. A greater understanding of the 

contribution of these distinct arms of the KIR haplotype awaits larger scale 

studies with high-resolution genetics.  
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Figure Legends 
 
 
Figure 1. Donor KIR 2DS2/2DL2 was associated with improved survival 
in patients with AML. 
Kaplan Meier analysis with log-rank statistic. Donor KIR genes with assigned 
to AA or Bx (BB and BA) haplotypes (panel A) or the presence or absence of 
KIR2DS2/2DL2 (panel B) and the analysis was determined for entire cohort 
(left), for AML patients only (centre) and those receiving myeloablative 
conditioning (right). AA haplotype is shown in red and Bx (BB and BA) is 
shown in black. The presence of KIR2DS2/2DL2 is shown in blue and the 
absence in purple. 
 
 
Figure 2. Overall survival was significantly improved in AML patients 
receiving a HSCT from a sibling with KIR Cen-B haplotype.  
Kaplan Meier analysis of overall survival with log rank statistic. Donor KIR 
genes were assigned to centromeric (A) or telomeric (B) haplotypes and the  
analysis was determined for the entire cohort (left), for AML patients only 
(centre) and those receiving myeloablative conditioning (right). AA haplotype 
is shown in red and Bx (BB and BA) in black.  
 
Figure 3. Significant improvement in overall survival with donor Cen-B 
with relapse as a competing risk in AML patients.  
Fine and Grey statistical method with relapse as a competing risk to overall 
survival. Donor KIR genes were assigned to centromeric (A) or telomeric (B) 
haplotypes and the analysis was determined for the entire cohort (left), for 
AML patients only (centre) and those receiving myeloablative conditioning 
(right). AA haplotype is shown in solid line and Bx (BB and BA) in dashed line. 
The number at risk in each group is shown with 0 = alive, 1 = death and 2 = 
relapse. 
 
 
Supplementary Figure Legends 
 
Supplementary Figure 1. Multivariate analysis of relapse free survival. 
Multivariate analysis of relapse free survival using Cox proportional hazard 
modelling in R. The following variables were considered: disease status, type 
of conditioning, CMV reactivation, GvHD (any grade), recipient sex and age at 
transplant (>50 years or below). 
 
Supplementary Figure 2. Donor KIR haplotype did not impact on the 
inncidence of relapse in recipients undergoing HSCT.  
Kaplan Meier analysis of day to relapse with log rank statistic. Donor KIR 
genes were assigned to centromeric (A) or telomeric (B) haplotypes and the 
analysis was determined for the entire cohort (left), for AML patients only 
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(centre) and those receiving myeloablative conditioning (right). AA haplotype 
is shown in red and Bx (BB and BA) in black.  
 
Supplementary Figure 3. The presence of donor KIR Tel-B genes in 
conjunction with pre-emptive CMV treatment was significantly 
associated with decreased CMV reactivation. 
Kaplan Meier analysis with log rank statistic. CMV reactivation was monitored 
until day 100 post transplant. Donor KIR genes were assigned to centromeric 
(A) or telomeric (B) haplotypes and the analysis was determined for patients 
that were IgG positive for CMV at diagnosis(left), IgG positive and receiving 
pre-emptive treatment (centre) and IgG positive and on the prophylaxis 
treatment arm (right). AA haplotype is shown in red and Bx (BB and BA) in 
black.  
 
Supplementary Figure 4. Cumulative incidence of death with CMV as a 
competing risk. 
Fine and Grey statistical method with CMV as a competing risk to overall 
survival. Donor KIR genes were assigned to centromeric (A) or telomeric (B) 
haplotypes and the analysis was determined for the entire cohort (left), for 
AML patients only (centre) and those receiving myeloablative conditioning 
(right). AA haplotype is shown in solid line and Bx (BB and BA) in dashed line. 
The number at risk in each group is shown with 0 = alive, 1 = death and 2 = 
CMV. 
 
Supplementary Figure 5. Severe aGVHD was significantly improved 
when the donor had KIR Cen-B haplotype in patients with AML. 
Kaplan Meier analysis with Gehan-Breslow-Wilcoxon test. Severe aGvHD 
was defined as grades II-IV within the first 50 days after HSCT. Donor KIR 
genes were assigned to centromeric (A) or telomeric (B) haplotypes and the 
analysis was determined for the entire cohort (left), for AML patients only 
(centre) and those receiving myeloablative conditioning (right). AA haplotype 
is shown in red and Bx (BB and BA) in black.  
 
Supplementary Figure 6. Cumulative incidence of death with GvHD as a 
competing risk. 
Fine and Grey statistical method with GvHD (any grade to day 100) as a 
competing risk to overall survival. Donor KIR genes were assigned to 
centromeric (A) or telomeric (B) haplotypes and the analysis was determined 
for the entire cohort (left), for AML patients only (centre) and those receiving 
myeloablative conditioning (right). AA haplotype is shown in solid line and Bx 
(BB and BA) in dashed line. The number at risk in each group is shown with 0 
= alive, 1 = death and 2 = GvHD. 
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  Conditioning 

  
Myeloablative 

(n=86) 
Reduced Intensity 

(n=59) 
Mean age at transplant (years) 39.4 (19-58) 51 (19-64) 
Recipient sex 55 M, 31 F 39 M, 20 F 
   
Disease   
Acute lymphoblastic leukemia 11 0 
Acute myeloid leukemia 44 25 
Chronic lymphoid leukemia 0 3 
Chronic myeloid leukemia 7 1 
Hodgkin lymphoma 1 5 
Myelodysplastic syndrome 2 1 
Multiple myeloma 1 12 
Non-Hodgkin lymphoma 11 8 
Aplastic anemia 5 0 
Other 4 4 
   
Conditioning regimen   
Busulphan plus 
cyclophosphamide 22 0 
Cyclophosphamide plus TBI 54 0 
Etoposide plus TBI 8 0 
Fludarabine plus 
cyclophosphamide 0 27 
Fludarabine plus melphalan 0 24 
ATG pus cyclophosphamide 1 0 
Melphalan 0 5 
Low dose TBI 0 4 
   
Immunosuppresion   
Cyclosporin/tacrolimus plus 
Methotrexate 69 45 
Cyclosporin plus mycophenolate 
mofetil  0 6 
Cyclosporin  14 4 
Other 2 5 
   
CMV Prophylaxis   
Pre-emptive 61 32 
Suppressive 21 28 
Unknown 3 0 

 
 
 
Table 1 Transplant characteristics 
Myeloablative total body irradiation (TBI) consisted of doses of 12 to 13.2 Gy 
while low dose was 2 Gy.  
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A 

      Overall survival 
      Centromere  Telomere 
      % survival proportion  % survival proportion 
   n=  AA  Bx  P =  AA  Bx  P = 
Entire cohort  145  45.6  56.3  0.53  51.2  51.3  0.12
AML only  69  46.3  53.6  0.01  56.5  43.4  0.81
AML, myeloablative  44  52.2  47.7  0.01  54.5  45.4  0.96

AML, RIC  25  40.04  62.5  0.48  47.6  60  0.70

B 

      Relapse free survival 
      Centromere  Telomere 
      % survival proportion  % survival proportion 
   n=  AA  Bx  P =  AA  Bx  P = 
Entire cohort  145  33.2  32.2  0.54  33.8  27  0.98
AML only  69  31.6  24.0  0.39  26.5  30.1  0.50
AML, myeloablative  44  23.1  21.9  0.63  23.0  24.3  0.70

AML, RIC  25  48.1  27.4  0.35  32.8  40  0.49

C 

      aGVHD (grades II‐IV) 
      Centromere  Telomere 
      % survival proportion (day 50)  % survival proportion (day 50) 
   n=  AA  Bx  P =  AA  Bx  P =
Entire cohort  145  36.3  23.8  0.09  31.9  27.9  0.75
AML only  69  43.1  19.6  0.04  35.4  23.3  0.33
AML, myeloablative  44  42.3  17.6  0.13  35.8  22.3  0.59

AML, RIC  25  50  20  0.11  35.3  22.2  0.40

D 

      CMV Reactivation 
      Centromere  Telomere 
      % survival proportion (day 100)  % survival proportion (day 100) 
   n=  AA  Bx  P =  AA  Bx  P = 
IgG positive  97  51.1  42.2  0.28  58.3  36.7  0.02
IgG pos, Pre‐emptive arm  53  55.1  55  0.79  73  44.4  0.03

IgG pos, prophylaxis arm  44  42.8  30  0.28  40.9  27.2  0.26

 
Table 2. Summary of Outcomes 
Summary of Kaplan Meier analyses with log rank statistic for A - overall 
survival, B – relapse free survival, C – severe graft versus host disease and D 
- CMV reactivation according to donor KIR centromere or telomere haplotype. 
P <0.05 was considered significant and underlined. 
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