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Abstract

A reasonably robust procedure is presented to evaluate each of the parameters of four non-Newtonian constitutive relationships for human 
blood, namely Cross, Carreau-Yasuda and modifications to Ostwald-de Waele and Sisko fluids. For each of the rheological models presented herein, 
a multidimensional optimization routine is used to find salient constitutive parameters from a compilation of digitized experimental data evident in 
the literature. It is shown for three of the models that, to conserve structural identification, the so-called low shear viscosity term can be set as it has 
little physiological relevance. The method presented herein is shown to minimize the square of the errors between the four suggested constitutive 
relationships and empirical data. It is shown that, for the data set investigated here, parameters which had previously been assumed to be fluid 
properties exhibit different values depending on the constitutive relationship selected.

Introduction
Blood is a suspension of various solid cells in a liquid plasma, 

formed from a solution of proteins and minerals. The rheological 
properties of blood are influenced by individual characteristics of 
these components as well as factors such as haematocrit, amongst 
others [1,2]. Whilst plasma itself is a Newtonian fluid, addition 
of the blood cellular components alters its rheological behaviour 
towards a shear-thinning non-Newtonian fluid [1,2]. No single 
rheological model can capture all aspects of this complex fluid, and 
as such particular aspects can be modelled individually [2,3]. To 
this end, differing rheological models are applied when predicting 
flow characteristics depending on area of the circulatory system of 
interest. For example, blood is often approximated to a Newtonian 
fluid in arterial flows, though has also been commonly modelled 
using the Cross [4–7] and Carreau-Yasuda [5–11] models; their 
constitutive relationships being defined respectively by:
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where Φ(γ˙) is the so-called effective fluid viscocity, µo is the 
low shear viscosity, µ∞ (∼2-4cP) is the high shear viscosity, λ is the 
shear time constant and a is a shaping constant termed the Yasuda 
index. Whilst (0,1)n∈  is the power index with values less than 
unity indicating shear thinning behavoiur, ergo values approaching 
unity approximate Newtonian behaviour. In this work we have used 
multivariate optimization routines resident in the SciLab data driven 
modelling open source software to approximate each of these. The  

 
values obtained being compared with the more traditional non- 
Newtonian constitute relations proposed by Ostwald-de Waele [12] 
& Sisko [13] defined respectively as:
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where K is the viscosity consistency and µl is a low (non-zero) 
shear viscosity. To ensure dimensional consistency, each of these 
are presented here in slightly modified forms to those initially 
described. As such, they should be more correctly referred to as to 
as Modified Ostwald-de Waele [12] and Modified Sisko [13] fluids 
respectively.

Method
Parameters were approximated for each of the before mentioned 

rheological models using compiled experimental data from the 
literature [14-17]. This required a multivariate optimization of the 
square of the error function, namely :
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where µm is the mth measurement of the blood viscosity, Φ(γ˙) is 
constitutive relationship, i.e. equation. (1), (2), (3) or (4), and N is 
the total number of data points. For each of the rheological models 
we simultaneously fit the free parameter set to experimental data 
using a variation of the Nelder-Mead optimization algorithm (i.e. 
fminbnd routine1) in SciLab open-source data driven modelling 

1This being resident in the FOSSEE optimization toolbox developed at the University of Bombay: 
https://scilab.in/fossee-scilab-toolbox/optimization-toolbox

http://crimsonpublishers.com/rmes/
http://crimsonpublishers.com/rmes/
http://crimsonpublishers.com/index.php
https://scilab.in/fossee-scilab-toolbox/optimization-toolbox
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code [18]. To preserve structural identification of the Modified Sisko 
and Carreau-Yasuda fluid models the low shear viscosity terms (µl 

and µ0 respectively) were fixed to 150cP [8,11,19]. The literature 
maintaining that these terms have no physiological relevance so 
the calculations that follow are unaffected by this assumption. 
Cross fluid bounds were used as [1,300], [0.01,1] and [0.01,100] 
for λ, n and µ∞ respectively. For the Modified Sisko and Carreau-
Yasuda models identical bounds were used for these parameters 
as for the Cross fluid. In the case of the latter, an additional bound 
[0.01,5] was used to represent the Yasuda index (a). In the case of 
the Ostwald-de Waele fluid, K in equation (3) is effectively set (to 
(150 − 2.3) ≈ 148cP) in order to render a structurally identifiable 
model with two free parameters. Refined accuracy being obtained 
(ipso facto verification) via application of an analogous constrained 
multivariate optimization algorithm. That is, the fmincon routine 
with initializations set to those previously evaluated from the 
fminbnd SciLab command. Each of the calculations allowed for 
30000 interactions in a time of 16.7 minutes. A convergence 
tolerance of 10-10 being set for the initial fminbnd calculation with 
default values being left for the fmincon evaluation which followed.

Results
In most of the cases investigated, the optimization routine 

reported that either an optimum solution was found or that a solution 
was obtained to acceptable accuracy. The noteable exception being 
in the case of the Carreau-Yasuda fluids which initially reported that 
the maximum number of iterations had been reached. In this case 
the bounds we altered using successive bisection until a solution 
to acceptable accuracy was obtained. These values were then used 
as initialization within the aforementioned SciLab fmincon routine 
thereby obtaining an optimized solution.

Table 1 compares these calculated parameters with those in 
the literature [1,3,4,20-23]. Those for Modified Sisko fluid are 
similar to the Ostwald-de Waele fluid, on the other hand equivalent 
parameters calculated for the Cross fluid are similar to those of 

Carreau-Yasuda model. The power index and high shear viscosity 
values are in good agreement with those quoted in the literature 
[4,24-26]. Particularly good agreement is demonstrated with 
respect to values obtained from the Cross and Carreau-Yasuda 
constitutive relationships and those reported in the literature. 
This said, analogous values obtained using identical optimization 
routines for the Modified Ostwald-de Waele and Modified Sisko 
fluids indicate significantly different values. However, similar 
values are obtained for the power index and shear time constant 
when comparing the Modified Sisko and Modified Ostwald-de 
Waele fluids.

Table 1: Rheological parameters to 2 s.f. obtained from 
fitting combined existing experimental data shown in 
Figure 1 to various non-Newtonian models. Experimental 
data is taken from a variety of sources.

Model n̂ λ̂ µ̂∞
â

- s cP -

Ostwald-de Waele 0.53 34 2.3 -

Modified Sisko 0.51 33 2.3 -

Cross 0.24 8.6 3.6 -

Carreau-Yasuda 0.23 17 3.6 1.7

Cross [24,25] 0.21 8.2 3.5 -

Carreau-Yasuda [4,24-26] 0.21 8.2 3.5 0.6
*set value

Discrepancies in the power index calculations are of particular 
interest from a practical viewpoint. To date the power index has 
been thought of as a diversion from an idealized Newtonian fluid. 
The natural assumption being that this quantity is a property of the 
fluid, hence independent of constitutive relationship, these results 
certainly suggest that this is not the case. Implying that, at least in 
the current mathematical forms, the power index is not a property 
of the fluid.

Figure 1: A log-log plot demonstrating four non-Newtonian constitutive models fitted to collated experimental rheological data 
for blood adapted from the literature.
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Figure 1 demonstrates that the empirical data are well predicted 
by each of the models to varying degrees; the primary source for 
these data being Ballyk et al. [20]. Crosses represent experimental 
blood rheological data collated from several sources i.e. Huang [14], 
Merrill [15], Cokelet [16] & Skalak [17]. Lines represent rheological 
models i.e. Ostwald-de Waele [12], Cross [27], Carreau [28,29], and 
Modified Sisko [13], fitted to the compiled experimental data.

As expected each of the models converge at higher (imposed) 
apparent viscosity values. The models predicting the apparent 
viscosity of the blood at relatively lower shear rates 150sγ −≤  very 
well. At higher shear rates the model predictions diverge. At the 
highest measured shear rate 1950s− the Cross and Carreau-Yasuda 
models predict higher viscosity values of respectfully 3.77cP and 
3.69cP respectively, with the Sisko model predicting a 12% lower 
viscosity than that the measurement of 3.6cP. Moreover, Figure 
1 demonstrates a deficiency with the Ostwald-de Waele model 
whereby at high shear rates the apparent viscosity is too low in 
comparison with the empirical data. Indeed, since this model is 
unbounded at both low and high shear limits, unlike other shear-
thinning models discussed, its use for evaluating blood is limited to 
a narrow range of shear rates [30], in this case probably between 
1s−1 and 45s−1 (Table1).

Conclusion
A combination of optimization routines have been used to 

evaluate the constitutive non-Newtonian relationships from 
compilation of data evident in the literature, via minimization of 
appropriate least squares error function. It was found that the 
values within each constitutive relationship vary depending on the 
data set used and non-Newtonian fluid model applied. Specifically, 
this study has shown that:

A. Using these calculated optimized parameters most of the 
non-Newtonian models describe the empirical data rather well;

B. The Ostwald-de Wael model is not suitable for predicating 
the effective blood viscosity at high shear rates;

C. Due to the similarity of the models the Sisko and Ostwald-
de Waele similar constitutive non-Newtonian parameters 
are apparent models; analogous similarities being evident 
regarding Cross and Carreau -Yasuda fluids;

D. The optimization routine predicts the Carreau-Yasuda and 
Cross models agree well about analogous parameters as well as 
with values in the literature;

E. The non-Newtonian constitutive parameters (e.g. n,λ and 
µ∞and a) may not be properties of blood.

We should also note that there are more data sets available in 
the literature. Furthermore, much more advanced technology is 
available to measure blood viscosity. So, whilst the work herein 
does raise some interesting observations which have been properly 
verified, further work is required to validate these findings.
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