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Abstract—This paper describes the output of a study to tackle
the problem of gang-related crime in the UK; we present the in-
telligence and routinely gathered data available to a UK regional
police force, and describe an initial social network analysis of
gangs in the Greater Manchester area of the UK between 2000-
2006. By applying social network analysis techniques, we attempt
to detect the birth of two new gangs based on local features
(modularity, cliques) and global features (clustering coefficient).
Thus for the future, identifying the changes in these can help
us identify the possible birth of new gangs (sub-networks) in
the social system. Furthermore, we study the dynamics of these
networks globally and locally, and have identified the global
characteristics that tell us that they are not random graphs –
they are small world graphs – implying that the formation of
gangs is not a random event. However, we are not yet able to
conclude anything significant about scale-free characteristics due
to insufficient sample size.

I. INTRODUCTION

We present the dynamics of a social network study of gang
activity in Greater Manchester, a region in the north of the
UK. We use the intelligence gathered by police observations
of known gang members and associated criminals. We de-
velop the statistical analysis of network dynamics, combining
well-known global topological measures, local motifs and
modules [1]–[3]. Network motifs are subgraphs that appear
more frequently in a real network than could be statistically
expected. At a global level, if these networks of associations
exhibit clustering behaviour this indicates the presence of
gangs. At a local level, any defined substructures will provide
us information about the gang structure. We are interested in
modelling the dynamics of the gangs, their development and
fragmentation into new gangs, and we hope that the study of
the dynamics in such modules will provide information on the
structural changes within gangs that lead to birth of new gangs,
and predictors of other gang-related behaviour.

Furthermore, we investigate if the networks have scale-
free, small-world or other characteristics [3]–[5]; small-world
networks are characterised by a diameter that grows log-
arithmically with their size. One important characteristic of
the small-world phenomenon is that each pair of nodes are
connected through a relatively small number of steps to a huge
network size defined by the total number of nodes. Scale-free
structures consists of many nodes with low degrees and a few
hubs with high degrees [1], [2], [6]. If the offender networks
can be classified into either (or both) of these categories (or
other known network types), then this provides not only insight
into the dynamics of the gang network, but also operational

uses; for instance, network disruption/destruction strategies,
nodes/offenders to monitor, and so on.

II. PROBLEM DESCRIPTION AND DATA

Numerous shootings – both fatal and non-fatal – have taken
place over the years as the the Pepperhill, Gooch, Doddington
and Longsight Crew gangs (see Table I) have clashed over drug
territories and other disputes. Many of these gun fire exchanges
were on public streets, some were planned acts and some were
spontaneous events.

Gang label Gang Name Formation
A Gooch 1990s
B Doddington/Pepperhill 1990s
C Longsight Crew c.2001
D Rusholme Crew Gangsters c.2004

Table I. GANG NAMES AND APPROXIMATE DATES OF FORMATION.

In 2001, a new approach to tackling gun crime began
to develop with police working more closely with the local
community and other agencies. The Manchester Multi-Agency
Gang Strategy (MMAGS), a multi-agency approach to tackling
gun crime and detering young people from entering into a
gang/gun culture was initiated as a result of a UK Home
Office report [7]. The report concludes that about 60 per cent
of shootings are thought to gang-related, with violence in
general, and gun violence and fatal shootings inparticular are
concentrated in specific small areas of South Manchester, and
that gangs in South Manchester are loosely turf-based.

The geographical proximity between Gangs A and B is
hundreds of meters, literally a few streets away from each
other. Gangs A and B show a negative attitude towards each
other, often resulting in ‘tit-for-tat’ gun crimes. The alignment
between Gangs A and D is possibly because of a mutual rivalry
with B, while the positive alignment of B with C is because
A has encroached on C’s ‘territory’ for drug sales. Agreeing
strongly with the Home Office report [7] we find: 38% (n=162)
of all serious crimes occurring within 1 km radius (of gang
locations) and 63% of all serious crimes occur within 2 km,
and 53% (n=9) of murders are within 3 km; 38% (n=34) of
attempted murders are within 1 km and 63% within 2 km; and,
33% (n=17) of serious woundings are within 1 km and 48%
are within 2 km.

III. POLICE DATABASES

The database used for this analysis included the list of
associates for each gang member, with fields such as unique
identifiers for each offender, date of birth, relationship between



the offenders, ethnic origin, reason reported and date of
occurrence.

The network links available are quite different to other
existing work with networks of burglars or retail fraudsters
[8], [9]). These link types are: Accomplice; Brother-Brother;
Boyfriend; Brother; Sister; Charged with; Child; Cohabitant;
Foster child; Foster parent; Friend; Girlfriend; Guardian;
Other; Parent; Relative; Spouse; Sister-Sister; Ward; Gay Boy-
friend; and Gay Girlfriend.

IV. IDENTIFYING COMMUNITY STRUCTURE

In order to investigate community structure we removed
any nodes with less than six connections (i.e. degree 6);
Figure 1 shows data from 2002, with the well-established
Gangs A and B, and also the newly formed Gang C (in
2001). The Gangs A, B, and C are highly interconnected, with
Figure 1 also showing the ‘go-betweens’, labelled as ab* and
bc*. Individuals who are only connected to one gang, and who
are highly connected within themselves, are labelled a* and b*.
In this way it is easier to see the communities.

Figure 1. Link reduction, showing Gangs A and B and emergence of Gang
C (for 2002). This also illustrates the large amount of non-gang members who
are associated with individual gangs (a*, b*) or who are intermediaries (ab*,
bc*).

V. NETWORK CHARACTERISATION

A series of experiments were carried out to determine how
the gang networks compare with well-known networks, for
example scale-free and small-world networks.

A. Small-world networks

Table II presents the clustering coefficient [10] (CC) for
each individual year, alongside the node and edge counts and
various other measures to describe the network. For any simple
connected graph G with at least two vertices, the clustering
coefficient (1-neighbourhood) [10] measures the extent to
which vertices linked to any given vertex v are also linked to
each other. Or in other words, are the friends of my friends also
my friends? This is 1-neighbourhood clustering. The clustering
coefficient 2-neighbourhood is a less stringent condition, and

states: of the friends of my friends, are they linked to me by
other friends?

The links presented in Table II are cumulative; that is, the
links and nodes for 2002 include not only the new links and
nodes for 2002, but also those for 2001 and 2000.

Measure 2000 2001 2002 2003 2004 2005 2006
Number of nodes (n) 1095 1295 1487 1752 2090 2229 2408
1/n 0.00091 0.00077 0.00067 0.00057 0.00048 0.00045 0.00042
4/n 0.00365 0.00309 0.00269 0.00228 0.00191 0.00180 0.00166
log(n) 6.999 7.166 7.305 7.469 7.645 7.709 7.787
log(log(n)) 1.95 1.97 1.99 2.01 2.03 2.04 2.05
Number of links 1565 1903 2295 2844 3540 3872 4265
Total possible links 598965 837865 1104841 1533876 2183005 2483106 2898028
Diameter 12 14 11 11 14 12 13
Average path length 4.85 4.82 4.68 4.57 4.86 4.78 4.70
Density 0.00261 0.00227 0.00208 0.00185 0.00162 0.00156 0.00147
Betweenness 0.107 0.117 0.172 0.205 0.146 0.102 0.100
CC (cumulative) 0.47 0.48 0.47 0.46 0.49 0.55 0.56
CC (per year) 0.24 0.57 0.34 0.15 0.62 0.25 0.30

Table II. NETWORK MEASURES FOR 2000-2006. CLUSTERING
COEFFICIENTS ARE ALWAYS GREATER THAN 4/N. AVERAGE PATH

LENGTHS ARE ALWAYS LESS THAN LOG(N).

Table III shows the same network measures, but this time
the data has been sliced into the members of the Gangs A, B,
C and D.

Measure A B C D
Number of nodes (n) 859 617 431 513
1/n 0.00116 0.00162 0.00232 0.00195
4/n 0.00466 0.00648 0.00928 0.00780
log(n) 6.76 6.42 6.07 6.24
log(log(n)) 1.91 1.86 1.80 1.83
Number of links 844 1047 602 707
Total possible links 368511 190036 92665 249571
Diameter 7 5 6 7
Average path length 3.61 3.38 3.37 4.11
Density 0.00396 0.00550 0.00648 0.00537
Closeness 0.302 0.298 0.393 0.305
Betweenness 0.185 0.179 0.350 0.239
CC 0.16 0.19 0.15 0.12

Table III. NETWORK MEASURES FOR GANGS A, B, C, D. CC IS THE
AVERAGE CLUSTERING COEFFICIENT FROM [10], CONSIDERING ONLY

1-NEIGHBOURHOOD.

A small-world network has both local connectivity and
global reach [10], and is a simple connected graph G exhibiting
two properties:

1) Small characteristic path length: the presence of
short-cut connections between some vertices results
in a small characteristic path length L(G).

2) Large clustering coefficient: each vertex of G is
linked to a relatively well-connected set of neigh-
bouring vertices, resulting in a large value for the
clustering coefficient C(G).

To determine whether our network is a random one or is
small-world, we can test whether or not it has exponential
k-connectivity distribution. We do not observe this in the
data, however, we do see large clustering coefficients, and the
average path lengths are always less than log(n). Based upon
these two criteria we can still conclude that our networks have
small-world characteristics.

B. Scale-free networks

This section also refers to the preceding tables, where we
find a mixture of evidence for and against the case for scale-
free networks.



Plotting the clustering coefficient as a function of the
number of nodes n, should follow the power-law distribution
for scale-free networks (see later experiments), with the clus-
tering coefficient being roughly four times larger than random
networks [6]. The value of the clustering coefficient for a
random networks will be 1/n. In this way we are able to
compare the values of 4/n against CC in Tables II and III.
As the cumulative links increase from 2000 to 2006, the value
of CC generally increases (with the number of nodes n) and is
always significantly higher than the values of 4/n. Each of the
gang values for CC are also significantly higher than would
be expected in a random network.

The diameter of the network (longest path length) should
be approximately log(log(n)) for scale-free networks. In both
cases (for the gangs and the years) the real values are
significantly higher than would be expected for a scale-free
network. The average path length should be approximately
log(n) for scale-free networks. For both the ‘years’ and ‘gangs’
data it was actually smaller than log(n), indicating scale-free
networks.

The statistics on degree centrality were low, indicating that
there is no group leader. As we know when Gangs C and D
are formed (2001 and 2004 respectively), it is interesting to
note that the characteristic of the networks at this time are
that the betweeness centralisation reaches 0.2. It is necessary
to compare the closeness and betweenness averages for each
gang against the value for the overall network.

C. Power law investigation

Our initial power law investigations used a log-log plot and
R2 values, and these all produced α values within this typical
range (between 2 and 2.5). However being roughly straight on
a log-log plot is a necessary but not sufficient condition for
power-law behaviour [11], and that there are problems (bias
and inaccuracy) with fitting to the power-law distribution using
graphical methods based on linear fit on the log-log scale.

We therefore proceeded to use maximum likelihood estim-
ation (MLE), which is a far more robust method for estimating
the scaling exponent [11], [12]. We report the maximum
likelihood estimate of the scaling exponent (α), the estimate
of the lower bound of the power-law (xmin).

By optimising the Kolmogorov-Smirnov goodness-of-fit
statistic, we can use a goodness of fit to estimate where the
empirically-best scaling region begins [11]. Given an observed
data set and a hypothesised power-law distribution from which
the data are drawn, we can then test whether our hypothesis is
a plausible one using the goodness-of-fit test (the Kolmogorov-
Smirnov statistic), given the data, and generate a p-value that
quantifies the plausibility of the hypothesis.

Employing the Kolmogorov-Smirnov test we are able to
choose among the hypotheses that:

• H0: the data follow a specified distribution;

• Ha: the data do not follow the specified distribution.

We did not use Vuong’s test to check for alternative
distributions (non-power-law distributions) which could have
produced the data. Instead, because our sample sizes are small

(i.e., < 100), we explicitly used an experimental finite-size
correction, as recommended by [11].

Figure 2 shows our results for our network between 2000-
2006. In all cases the exponent α is less than 2. Only when
the power-law exponent is in the range 2 − −3 do the hubs
tend to connect to form a single cohesive hierarchy [13].
The goodness-of-fit (gof) and p-values however are significant.
Even though the p-values are above 0.1 (arbitrary threshold
level), we err on the side of caution because of the low α
value and the small sample size. When n is small, meaning
n ≤ 100, we cannot rule out the power-law hypothesis [11]. It
is possible, for small values of n, that the empirical distribution
will follow a power law closely, and hence that the p-value will
be large, even when the power law is the wrong model for the
data [11].

Figure 2. Power law investigations. A power law is fitted to each years data
and various statistics calculated: the exponent alpha, xmin, goodness-of-fit
(gof) and p-value.

Table IV shows our results for the power law exponent for
the different gangs against years. The case is similar in that
there are significant gof and p-values, however in nearly all
cases the exponent is less than 2, and again we did not test
for alternate explanatory distributions, satisfied (operationally)
that the the tail was heavy in all cases, indicating the presence
of very well connected offenders.

Gang 1999 2000 2001 2002 2003 2004 2005 2006 2007
A 2.65 1.47 1.00 1.91 1.07 0.10 0.94 0.77 0.74
B 2.95 1.44 3.64 1.88 1.36 0.09 0.97 0.63 0.51
C 0.27 0.24 0.17 0.32 0.38 0.02 0.46 0.36 0.32
D 1.26 0.76 0.56 0.69 1.14 0.03 1.21 0.81 0.65

Table IV. POWER LAW EXPONENTS FOR GANGS, AGAINST YEARS
(SIGNIFICANT RESULTS ARE SHOWN IN BOLD).

Based on these experiments we are therefore unable to
comment whether the networks possessing scale-free char-
acteristics, however we can conclude that we have small-
world networks, since consistently there are larger clustering
coefficients and shorter path lengths compared to a random
network with same number of gang members. This means two
things for our system:

• The smaller path length means that the criminal activ-
ity (contagion) spreads more easily in this network
than in a random network.



• Larger clustering coefficient means that contacts of
contacts are treated as contacts as well.

D. Emergence of gangs

We might see changes in the path length and clustering
coefficients from 2000 to 2005, indications of how the gangs
have become more closely knit or are splitting apart. By
examining annual links for 2001 and 2004, we might predict
that the cumulative links decrease and the annual links in-
crease, just before/as a gang forms, then both values increase
afterwards as everyone becomes linked together. This is not the
case, and neither are we able to see any meaningful behaviour
in these data.

Figure 3 shows the clustering coefficients for each gang
and against years. In Table 3 the CC value of each gang dips
at 2004. What this may indicate is clustering due to non-gang
members (from Figure 1, offenders who are connected to gang
members: a*, b*, bc* and ab*) and less clustering that previous
years between members of gangs themselves. There is also a
significant peak in clustering during 2001 for Gang B, whereas
all other gangs suffer a decrease in clustering.

Figure 3. Per year clustering coefficients for each gang. Gang C was formed
in 2001, Gang D in 2004.

VI. DISCUSSION

The model of two rival sets of gangs is potentially a
misrepresentation of the much more complex sets of smaller
cliques and fluid changes within the larger gang structures.
However, the four gangs discussed do exist, and are the main
gangs; what is not possible is a high degree of exactitude.

We require a much better analysis of link types, developed
a model where individuals learn about crime opportunities by
interacting with other peers; for instance whether weak ties
play an important role in explaining criminal activities [14],
especially gang homicide [15]. The theoretical predictions of
the model are confirmed by the empirical analysis since they
find that weak ties, as measured by friends of friends, have a
positive impact on criminal activities.

Furthermore, for 2001 and 2004, it would be interesting to
examine the kinds of links within each gang which split apart.

VII. CONCLUSIONS

The work presented in this paper contains our initial
findings about the offender/gang networks in Manchester in
the UK, using network analysis. The uses of this technology
in an operational context are significant. Even using the net-
works merely as visual representations of otherwise cognitively
unmanageable data contained in spreadsheets and databases is
operationally very useful, for knowledge sharing and training,
and identifying key offenders. When further pre-processing is
carried out, and the quality of the data collection process is
improved, there will be sigificant future work available with
this dataset.

The police crime recording database is routinely gathered
and available for analysis. The additional databases of histories
and associates of gang offenders are routinely gathered by the
UK’s National Crime Agency 1, who investigate gang and gun-
related crimes. These data sources are potential rich sources of
information for computer science technologies to deliver crime
prevention and detection decision support systems.
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