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A B S T R A C T

The delivery of therapeutics to the brain is greatly hampered by the blood-brain barrier (BBB). The use of
nanoparticles that can cross the BBB via the process of receptor-mediated transcytosis at blood-brain barrier
endothelial cells seems a promising strategy to transport therapeutics into the brain. To screen for suitable
nanocarriers, and to study the process of transcytosis, a cultured polarized monolayer of brain microvascular
endothelial cells on an extracellular matrix-coated porous membrane filter is widely used as an in vitro BBB
model. However, due to the adhesion of numerous types of nanoparticles to the membrane filter and within the
filter pores, such a model is unsuitable for the quantification of transendothelial delivery of nanoparticles.
Hence, there is a pressing need for a filter-free in vitro BBB model. Ideally, the model is inexpensive and easy to
use, in order to allow for its wide use in nanomedicine and biology laboratories around the world.

Here, we developed a filter-free in vitro BBB model that consists of a collagen gel covered with a monolayer of
brain microvascular endothelial (hCMEC/D3) cells. The paracellular leakage of differently sized dextrans and the
transcellular transport of LDL were measured to demonstrate the validity of the filter-free model. Finally, the
transendothelial delivery of fluorescently-labelled PEG-P(CL-g-TMC) polymersomes that were functionalized
with GM1-targeting peptides was assessed by fluorescence spectroscopy measurement of the luminal, cellular,
and abluminal parts of the filter-free BBB model. Our data confirm the effectiveness of the G23 peptide to
mediate transport of polymersomes across the BBB and the suitability of this filter-free in vitro model for
quantification of nanoparticle transcytosis.

1. Introduction

The blood-brain barrier (BBB), which is formed by a polarized layer
of brain capillary endothelial cells and supporting cell types [1], ac-
tively regulates the transport of substances between blood and brain.
Adjacent endothelial cells are interconnected by tight junctions,
thereby limiting the paracellular diffusion of macromolecules across the
BBB [1]. Temporary disruption of tight junction integrity in order to
enable passive drug diffusion through the BBB, or direct administration
of a drug into the brain, e.g. via intracranial injection, are possible
routes for drug delivery to the brain, but highly invasive [2]. In-
travenous administration of drug-loaded nanoparticles decorated with
moieties that promote their transendothelial transport into the brain,

without compromising BBB integrity, is considered a less invasive al-
ternative to treat brain diseases.

At the BBB the process of transcytosis in brain endothelial cells al-
lows for the transcellular transport of specific endogenous macro-
molecules, providing a gateway for the delivery of nanoparticles into
the brain [3–5]. The culture of a polarized monolayer of (human) brain
microvascular endothelial cells on extracellular matrix (ECM)-coated
porous membrane filters is widely used as an in vitro model for the BBB
[6]. However, due to the adhesion of many types of nanoparticles to the
membrane filter and within the filter pores, such a model is unsuitable
for the reliable quantification of transendothelial delivery of nano-
particles [7,8]. Unfortunately, many of the recently developed micro-
fluidic ‘BBB-on-chip’ systems do not provide a solution to this problem,
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because within these microfluidic systems similar membrane filters are
used for cell support [9–15]. Furthermore, the recently developed filter-
free BBB-on-chip systems, which consist of a microchannel that encloses
a cylindrical ECM hydrogel with a lumen that is lined with human brain
endothelium [16,17], are primarily useful for fluorescence microscopy
studies. Lastly, the BBB-on-chip model designed by Adriani et al. [18]
and the commercially available 3-lane OrganoPlate (Mimetas BV, the
Netherlands) are systems that allow human brain endothelial cells to
form a tubular monolayer against an ECM hydrogel (i.e. in the absence
of an artificial membrane filter) and allow for access to the abluminal
side of the endothelium. However, the surface area of the endothelial
cell-ECM interface, which is< 1mm2 in both systems, will limit the
absolute amount of material transport across the BBB, while the diffu-
sion of nanoparticles through the ECM hydrogel will be limited.
Therefore, in these models, the quantification of nanoparticle transport
across the BBB relies on the analysis of fluorescence microscopy images,
or may necessitate the use of sensitive detection methods such as ELISA
and mass spectrometry, which are time-consuming, expensive, and re-
quire expert knowledge.

Here, we set out to develop a filter-free in vitro BBB model for the
quantification of transendothelial delivery of nanoparticles that is user-
friendly and inexpensive. The model consists of a collagen gel in a
conventional well plate covered with an hCMEC/D3 cell monolayer. A
similar model was used by Gromnicova et al. to analyse the transport of
gold nanoparticles across the barrier by transmission electron micro-
scopy (TEM) [19,20]. However, electron microscopy is a labour in-
tensive, time consuming and expensive technique that requires a high
level of expertise [21–23]. Moreover, the detection of many types of
organic nanoparticles, e.g. liposomes and polymersomes, within the
complex cellular environment proves to be challenging with TEM [24].
Therefore, the model was redesigned in order to allow for the quanti-
tative measurement of nanoparticle fluorescence in the apical, cellular
and basolateral compartments by means of fluorescence spectroscopy.

In previous work we have demonstrated, both in vitro and in vivo,
the transcytosis of non-biodegradable poly(ethylene glycol)-block-poly
(butadiene) polymersomes decorated with the GM1-binding G23 pep-
tide across the BBB [25,26]. The inability to biologically degrade
polymersomes composed of these copolymers severely limits their ap-
plication in drug delivery. Therefore, in this study, we developed bio-
degradable GM1-targeted polymersomes, consisting of poly(ethylene
glycol)-block-poly(caprolactone-gradient-trimethylene carbonate) (PEG-
P(CL-g-TMC)) copolymers, that are considered suitable for the actual
delivery of drugs into the brain. In addition to the G23 peptide, we
evaluated the transcytosis capacity of eight other GM1-binding peptides
that were previously identified by phage display [25], demonstrating
the suitability of our filter-free BBB model to quantify nanocarrier
transcytosis.

2. Materials and methods

2.1. Cell culture

Human cerebral microvascular endothelial hCMEC/D3 cells were
maintained in 25 cm2

flasks precoated with 150 μg/ml rat tail collagen
type-I (Enzo LifeSciences #ALX-522-435) in endothelial basal medium-
2 (EBM-2) (Lonza #CC-3156) supplemented with 1 ng/ml human basic
fibroblast growth factor (Peprotech #100-18B), 5 μg/ml ascorbic acid
(Sigma-Aldrich #A4544), 1.4 μM hydrocortisone (Sigma-Aldrich
#H0888), 10mM HEPES (Gibco #15630-056), 1% (v/v) chemically
defined lipid concentrate (Gibco #11905‐031), 5% (v/v) foetal bovine
serum (FBS), 100 units/ml of penicillin and 100 μg/ml streptomycin at
37 °C in a humidified atmosphere with 5% CO2.

For experiments, hCMEC/D3 cells (passage 30–38) were seeded at a
density of 1× 105 cells/cm2 onto collagen gels, with a gel volume of
450 μl per well, in a 24-wells plate (Corning #3524), and grown for five
days in 1ml of culture medium. The medium of hCMEC/D3 cells was

replaced every other day. Collagen gels were prepared at a collagen
concentration of 2mg/ml by mixing 400 μl of the stock collagen solu-
tion (Enzo LifeSciences #ALX-522-435) with 100 μl of 10× phosphate-
buffered saline (PBS), 490.8 μl of dH2O and 9.2 μl of 1M NaOH per ml
of final collagen solution on ice, and incubated for 1 h at 37 °C in a
humidified atmosphere to allow collagen gel formation.

2.2. Paracellular permeability assay

hCMEC/D3 cells were seeded onto collagen gels, and transwell fil-
ters (Corning #3401) precoated with 150 μg/ml rat tail collagen type-I.
The cells were grown for five days and culture medium was replaced
every other day. At day two to five, transwell-cultured hCMEC/D3 cells
were washed once with prewarmed Hank's balanced salt solution
(HBSS) (Gibco #14025) and 1ml of prewarmed EBM-2 was added to
the basolateral compartment of the transwell filter system.
Subsequently, 500 μl of 1 mg/ml fluorescein isothiocyanate (FITC)-la-
belled dextran of 4 kDa (Sigma-Aldrich #FD-4) or 2000 kDa (Sigma-
Aldrich #FD-2000S) in EBM-2 was added apically to the cells and in-
cubated for 1 h at 37 °C. The medium from the basolateral compartment
was collected immediately after the incubation period. Similarly, at day
two to five, the hCMEC/D3 cultures on collagen gels were washed with
HBSS and incubated with FITC-labelled dextran (4 kDa and 2000 kDa)
for 1 h at 37 °C. After removal of the apical medium, the collagen gels
with hCMEC/D3 cells were incubated with 200 μl 0.25% (w/v) col-
lagenase A (Roche #10103578001) in HBSS for 90min at 37 °C to so-
lubilize the collagen. hCMEC/D3 cells were pelleted from this solution
by centrifugation at 200 g for 5min, and the supernatant, representing
the basolateral compartment, was collected for quantification. The
fluorescence intensity of the collected samples was measured using
black flat-bottomed microplates (Greiner Bio-One #655209) and a
Fluostar-Optima microplate reader (BMG Labtech) with excitation and
emission at 485 nm and 520 nm, respectively. The quantity of dextran
in the samples was determined using a standard curve of serially diluted
FITC-labelled dextran. The apparent permeability was calculated ac-
cording to the formula Papp= (ΔQ/Δt)× (1/AC0), where Papp is the
apparent permeability coefficient (cm/min), ΔQ/Δt is the rate of per-
meation of dextran (μg/min) across the endothelial cell layer, A is the
surface area of the cell layer (cm2) and C0 is the initial dextran con-
centration (μg/ml) applied to the apical cell surface.

2.3. Immunofluorescence microscopy

The hCMEC/D3 cell monolayers were washed once with prewarmed
HBSS and fixed with 4% paraformaldehyde in PBS for 5min. The cells
were washed three times with PBS (pH 7.4) for 15min and permeabi-
lized with 0.2% Triton X-100 in PBS for 10min. The cells were washed
three times with PBS for 15min before unspecific antibody binding was
blocked by 5% goat serum (Vector Laboratories #S-1000) in PBS for
1 h. The cells were washed three times with PBS for 15min and in-
cubated with 5 μg/ml polyclonal rabbit anti-ZO-1 antibody (Invitrogen
#61‐7300) in 1% goat serum in PBS for 2 h at room temperature. The
cells were washed 6 times with PBS for 15min under gentle agitation
before incubation with 4 μg/ml goat secondary antibody (Life
Technologies #A-11034) and 1 μg/ml DAPI (Sigma-Aldrich #D9542) in
1% goat serum in PBS for 1 h at room temperature. The cells were
washed 6 times with PBS for 15min under gentle agitation. The col-
lagen gels were removed from the 24-wells plate using a forceps and
placed in aqueous mounting medium (DAKO #S3025) on a glass slide.
The gels were covered with a coverslip and a Leica DM4000B fluores-
cence microscope (Leica Microsystems) was used to obtain fluorescence
images, using 10× and 20× dry and 40× oil immersion objectives.

2.4. Lactate dehydrogenase assay

hCMEC/D3 cells were seeded at a density of 5× 104 cells/cm2 in a
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96-wells plate (Corning #3599) precoated with 150 μg/ml rat tail col-
lagen type-I and grown for five days in culture medium. The medium of
the cells was replaced every other day. The cells were washed once with
prewarmed HBSS, and subsequently treated with 50 μl of 0.25%, 0.5%
and 1% (w/v) collagenase A in HBSS for 90min at 37 °C. Spontaneous
release of lactate dehydrogenase (LDH) by hCMEC/D3 cells was de-
termined by incubation in HBSS alone. LDH activity was determined by
measuring the absorbance at 490 nm in optically clear flat-bottomed
microplates (Greiner Bio-One #655191) with a μQuant spectro-
photometer (Bio-Tek Instruments) using a Cytotoxicity Detection Kit
(Roche Diagnostics #11644793001) according to the manufacturer's
protocol. Controls were included to correct for absorbance caused by
collagenase A and interference of collagenase A with LDH activity. The
percentage of LDH release as induced by incubation of hCMEC/D3 cells
with collagenase A was expressed relative to the maximum LDH release
by the hCMEC/D3 cells.

2.5. Fluorescent labelling of low density lipoprotein

Human low density lipoprotein (LDL) (Calbiochem #437644) was
diluted in 100mM sodium bicarbonate buffer (pH 9) to a protein con-
centration of 2mg/ml and FITC (Sigma-Aldrich #F7250) was dissolved
in DMSO at a concentration of 2mg/ml. 5 mg of LDL, which corre-
sponds to 1mg of protein content, and 15 μg of FITC were mixed and
incubated for 2 h at room temperature. Unbound FITC was removed by
dialysis against sterile PBS (pH 7.4) with two buffer changes over a 24-h
period using a 10 kDa molecular weight cut-off dialysis cassette
(Thermo Scientific #66380). The protein concentration of fluores-
cently-labelled LDL was determined by measuring the absorbance at
750 nm in an optically clear flat-bottomed microplate (Greiner Bio-One
#655191) with a μQuant spectrophotometer (Bio-Tek Instruments)
using the DC protein assay kit (Bio-Rad #500‐0112) according to the
manufacturer's protocol. LDL was diluted to a concentration of 2mg/ml
in PBS (corresponding to 400 μg protein/ml) and stored at 4 °C.

2.6. Assembly of PEG-P(CL-g-TMC) polymersomes

Amphiphilic block copolymers were produced as previously de-
scribed [27]. Polymersomes, composed of poly(ethylene glycol)22-
block-poly(caprolactone28-gradient-trimethylene carbonate31) (PEG22-P
(CL28-g-TMC31)), nitrobenzoxadiazole-labelled poly(ethylene glycol)22-
block-poly(caprolactone28-gradient-trimethylene carbonate31) (NBD-
PEG22-P(CL28-g-TMC31)) and maleimide-functionalized poly(ethylene
glycol)75-block-poly(caprolactone28-gradient-trimethylene carbonate31)
(MAL-PEG75-P(CL28-g-TMC31)) copolymers were assembled through the
direct hydration method. The different PEG chain length for the mal-
eimide-functionalized copolymer was chosen to ensure a good display
of the targeting moieties on the surface of the polymersomes. The
PEG22-P(CL28-g-TMC31), NBD-PEG22-P(CL28-g-TMC31) and MAL-PEG75-
P(CL28-g-TMC31) copolymers were dissolved at 10 wt% in poly (ethy-
lene glycol) methyl ether (350) (Fluka #81318) at 60 °C and mixed at a
molar ratio of 94:4:2. After the copolymer solution was cooled to room
temperature, 150 and 300 μl of PBS (pH 7.4) were added to 4mg of
copolymer and magnetically stirred at 200 rpm for 5min after each
addition. The polymersome emulsion was extruded 11 times over a
100 nm polycarbonate filter.

2.7. Conjugation of peptides to polymersomes

Peptides were synthesized by JPT Peptide Technologies (Berlin,
Germany) with a purity of over 90% as analysed by HPLC and mass
spectrometry. The addition of an amidated C-terminal cysteine residue
to the native peptide sequences allowed for their conjugation to the
polymersomes via a maleimide-thiol reaction. 200 μg of peptide lyo-
philisate was dissolved in 50 μl of 10mM acetic acid, and subsequently
mixed with 50 μl PBS (pH 7.4). The concentration of peptides was

determined by measuring the absorbance at 280 nm with the Nanodrop
One spectrophotometer (Thermo Scientific). A 2-fold molar excess of
peptide relative to MAL-PEG75-P(CL28-g-TMC31) copolymer was added
to the polymersomes and the conjugation reaction was allowed to
proceed for 2 h at room temperature. The polymersomes were diluted to
a concentration of 2mg/ml by the addition of PBS. Non-coupled pep-
tide was removed by dialysis against sterile PBS with two buffer
changes over a 24-h period using a 10 kDa molecular weight cut-off
dialysis cassette (Thermo Scientific #66380) at 4 °C. The polymersomes
were diluted to a concentration of 1mg/ml in PBS and stored at 4 °C.
Prior to the assembly of non-functionalized PEG-P(CL-g-TMC) poly-
mersomes, the maleimide-functionalized copolymer was reacted with
ethanethiol to block the maleimide residues.

2.8. Characterization of the polymersomes

Size, polydispersity, and ζ-potential of the polymersomes were de-
termined at a temperature of 25 °C with a Zetasizer Nano ZS particle
analyser (Malvern Instruments) using a standard 633 nm laser. The
polymersomes were diluted in 10mM NaCl to a concentration of
100 μg/ml, and subsequently loaded into a folded capillary cell
(Malvern Instruments #DTS1070). Dynamic light scattering measure-
ments were performed in triplicate with a backscattering detection
angle of 173°. Size and polydispersity were calculated by the cumulant
analysis method using Zetasizer software version 7.10. The ζ-potential
was determined by measuring the electrophoretic mobility and calcu-
lated using the Smoluchowski approximation.

The morphology of the G23-PEG-P(CL-g-TMC) polymersomes was
imaged using a 300 kV FEI Titan transmission electron cryo-microscope
(FEI Company) equipped with a LaB6 filament and an autoloader sta-
tion. Lacey carbon coated 200 mesh copper grids (Electron Microscopy
Sciences) were treated in the Cressington 208 carbon coater
(Cressington Scientific Instruments) for 40 s, and subsequently 3 μl of a
2mg/ml polymersome emulsion was applied to the plasma treated grid.
The grid was blotted for 3 s with an offset of ‐3 at 100% humidity using
the Vitrobot Mark III (FEI Company) and directly frozen in vitreous ice
by plunging into liquid ethane.

2.9. Transcytosis assay

hCMEC/D3 cell monolayers were washed once with prewarmed
HBSS. Subsequently, 500 μl of FITC-labelled LDL (100 μg/ml and
200 μg/ml) diluted in EBM-2 or 100 μg/ml NBD-labelled polymersomes
diluted in EBM-2+5% FBS was added apically to the cells and in-
cubated at 37 °C for 2 and 4 h, or 4, 8 and 16 h, respectively. After the
incubation period, the medium was collected and the cells were washed
with 500 μl prewarmed HBSS to collect residual LDL or polymersomes
(total volume of apical fraction: 1 ml). The collagen gels were digested
in 200 μl 0.25% (w/v) collagenase A (Roche #10103578001) in HBSS
for 90min at 37 °C. The cells were pelleted by centrifugation at 200 g
for 5min. The supernatant was collected and mixed with 400 μl EBM-2
or EBM-2+5% FBS (total volume of basolateral fraction: 1 ml). The
hCMEC/D3 cell pellet was soaked in 500 μl of ultrapure water for
10min, and subsequently mixed with 500 μl of EBM-2 or EBM-2+5%
FBS (total volume of cellular fraction: 1 ml). The fluorescence in-
tensities in the apical, cellular, and basolateral fractions were measured
in triplicate using black flat-bottomed microplates (Greiner Bio-One
#655209) and a Fluostar-Optima microplate reader (BMG Labtech)
with excitation and emission at 485 nm and 520 nm, respectively. The
fluorescence in the distinct apical, cellular, and basolateral fractions
without LDL or polymersomes, i.e. background fluorescence, was sub-
tracted from the measured intensity values. The percentage of LDL or
polymersomes fluorescence associated with the apical, cellular and
basolateral fraction was expressed relative to the total fluorescent
content present in all three fractions collectively. The percentage of
total recovery was calculated from the ratio between the total
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fluorescent content measured in all three fractions and the fluorescence
of the LDL or polymersome solution that was added apically at the onset
of the assay. The percentages of total recovery were >85%.

3. Results and discussion

3.1. hCMEC/D3 monolayer tightness is similar in the filter-free and
transwell BBB model

In order to assess the tightness of the hCMEC/D3 monolayer in our
filter-free BBB model, the apparent permeability coefficients (Papp) for
4 kDa and 2000 kDa dextran were determined, and compared to the
Papp in the conventional transwell BBB model. As shown in Fig. 1, the
paracellular permeability of the conventional BBB model for dextran of
4 kDa decreased up to four days post-seeding and reached a Papp of
3.16 ± 0.15×10−4 cm/min at five days post-seeding (Fig. 1a). The
filter-free BBB model showed a similar increase in barrier formation in
time for 4 kDa dextran and demonstrated a Papp of 3.70 ± 0.22× 10−4

cm/min at day five post-seeding (Fig. 1a), indicating the formation of a
confluent hCMEC/D3 cell monolayer on collagen gel within four to five
days post-seeding. This Papp value corresponds to the Papp values that
were determined for two other filter-free 3D BBB-on-a-chip models
using fluorescence microscopy [16,17]. For dextran of 2000 kDa the
filter-free and the conventional BBB model demonstrated a decrease in
paracellular permeability of an order of a magnitude compared to 4 kDa
dextran, resulting in a Papp of 0.27 ± 0.01×10−4 and
0.19 ± 0.02×10−4 cm/min (Fig. 1b), respectively. These Papp values
correspond to a>99% block of 2000 kDa dextran passage across the
BBB for both in vitro BBB models. The size-dependent permeability for
dextrans indicates the integrity of the endothelial cell monolayer on
collagen gel in the filter-free BBB model.

Tight junctions between adjacent endothelial cells limit the para-
cellular diffusion of macromolecules, including dextrans, across the
BBB. To further confirm monolayer integrity in the filter-free BBB
model, the expression of the tight junction protein zonula occludens-1
(ZO-1) was assessed in hCMEC/D3 cell monolayers grown on collagen
gel by immunofluorescence microscopy. ZO-1 showed a continuous
staining pattern at the lateral membranes of neighbouring brain en-
dothelial cells (Fig. 2), which confirms the formation of a continuous
hCMEC/D3 cell monolayer grown on a collagen gel.

3.2. hCMEC/D3 cells maintain cell membrane integrity during Collagenase
A digestion of the collagen gel in the filter-free BBB model

In order to collect the cellular and basolateral fractions in the filter-

free BBB model, the apical medium was aspirated and the collagen gel
containing the hCMEC/D3 monolayer was digested with collagenase A.
Following collagenase A treatment the resulting suspension was cen-
trifuged to separate the cells (pellet) from the basolateral (supernatant)
fraction. To exclude the possibility of passive leakage of material from
the cellular interior into the basolateral fraction, because of collagenase
A-induced plasma membrane damage in the endothelial cells, the re-
lease of lactate dehydrogenase (LDH) from the endothelial cells upon
incubation with collagenase A was tested. hCMEC/D3 cells were treated
with various concentrations of collagenase A for 90min at 37 °C.
Collagenase A at a concentration up to 0.5% (w/v), which is twice the
concentration that is used for digestion of the collagen gel in our assay,
did not significantly increase the release of LDH compared to the
spontaneous LDH release by endothelial cells (Fig. 3). These data de-
monstrate that collagenase A at a concentration of 0.25% (w/v) allows
for the digestion of the collagen gel without damaging the endothelial
plasma membrane.

3.3. Quantitative measurement of low density lipoprotein transport across
the filter-free BBB model

Transport of low density lipoprotein (LDL) across the BBB occurs
through the process of transcytosis [28,29]. Therefore, to establish the
capacity of hCMEC/D3 cell monolayers grown on collagen gels for ac-
tive transport through transcytosis, the transendothelial transport of
LDL was quantitatively studied by fluorescence spectroscopy. Fluores-
cently-labelled LDL at a quantity of 50 and 100 μg was apically added to
hCMEC/D3 cell monolayers and incubated for 2 and 4 h at 37 °C. The
apical addition of 50 μg of LDL demonstrated a basolateral recovery of
12.4 ± 2.0% and 17.6 ± 1.5% after 2 and 4 h of incubation (Fig. 4a),
respectively. A similar transcytosis efficiency was observed with 100 μg
of LDL, i.e. a basolateral recovery of 12.8 ± 2.3% and 17.9 ± 1.5%
after 2 and 4 h of incubation (Fig. 4b), respectively. The barrier in-
tegrity of the endothelial cell monolayer was not compromised by the
presence of LDL, as was shown by an unaltered paracellular perme-
ability for 4 kDa dextran compared to cells without LDL (data not
shown). This means that incubation of cells with LDL does not result in
an increased transport of LDL via the paracellular route. Since the
transcellular transport of macromolecules is a temperature-dependent
process, the basolateral recovery of fluorescently-labelled LDL was ex-
amined after incubation at 4 °C and compared to the recovery after
incubation at 37 °C. A significant decrease in basolateral recovery of
LDL was observed after incubation at low temperature (19.5 ± 0.2% at
37 °C compared to 7.4 ± 0.4% at 4 °C), i.e. a> 2.5-fold decrease. This
indicates that LDL requires active mechanisms for transport across the

Fig. 1. Paracellular permeabilities for dextrans in brain endothelial cell monolayers grown on collagen gels or transwell filters. Fluorescently-labelled dextrans were
added apically to the cell monolayers and incubated for 1 h at 37 °C. The quantity of dextran in the basolateral collagen gel fraction or transwell filter compartment
was used to calculate the apparent permeability coefficients (Papp). (a) Papp for 4 kDa dextran in hCMEC/D3 cell cultures at two to five days post-seeding. (b) Papp for
2000 kDa dextran in hCMEC/D3 cell monolayers five days post-seeding. Each value represents the mean ± S.D. of three independent experiments performed in
duplicate.
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BBB model, but does not exclude a contribution of paracellular trans-
port. Because a relatively low junctional tightness has been described
for hCMEC/D3 cell monolayers [30], the paracellular leakage of
250 kDa dextran, a small molecule with a similar size as LDL (20-25 nm;
[31]) was investigated next. Apical addition of 100 μg 250 kDa dextran
to the filter-free BBB model demonstrated a basolateral recovery of
1.7 ± 0.1% after 1 h at 37 °C (data not shown). Assuming a linear
curve for paracellular transport in time, 1.7% basal recovery after 1 h

would give 6.8% after 4 h, which is similar to the 7.4% that was de-
tected for passive LDL transport at 4 °C. Finally, the possibility of active
LDL excretion by the endothelial cells during collagenase A digestion
was excluded. Namely, the amount of LDL that was found in the cellular
fraction following collagenase A digestion at 37 °C was similar to the
amount that was detected after digestion at 4 °C (data not shown), in-
dicating that LDL is not actively exported from the cells during col-
lagenase A treatment. Altogether, the data indicate that the filter-free
BBB model allows for the quantitative assessment of active and passive
LDL transport following collection of the apical, cellular, and baso-
lateral fractions by means of collagenase A digestion.

3.4. Quantitative measurement of the transport of G23-PEG-P(CL-g-TMC)
polymersomes across the filter-free BBB model

In contrast to the non-biodegradable GM1-targeted poly(ethylene
glycol)-block-poly(butadiene) polymersomes [25], the G23-PEG-P(CL-g-
TMC) polymersomes were not able to cross the membrane filter of a
transwell system. Therefore, the filter-free BBB model was necessary in
order to quantitatively study the transcytosis of nanoparticles, in-
cluding polymersomes. Biodegradable polymersomes composed of
94mol% of PEG22-P(CL28-g-TMC31) copolymer, 4 mol% of fluores-
cently-labelled PEG22-P(CL28-g-TMC31) and 2mol% of maleimide-
functionalized PEG75-P(CL28-g-TMC31) copolymer were made using the
direct hydration method, while functionalization with cysteine-termi-
nated GM1-targeting peptides was performed via a maleimide-thiol
reaction (see Materials and methods). Conjugation of the G23 peptide
to the PEG-P(CL-g-TMC) polymersomes resulted in a negligible shift in
their mean size and polydispersity from 123 to 138 nm and 0.11 to 0.23
(Table 1), respectively. Also, the ζ-potential remained similarly nega-
tive after peptide conjugation to the polymersomes (Table 1). Finally,

Fig. 2. Expression of the tight junction protein zonula occludens-1 (ZO-1) in hCMEC/D3 cells grown on collagen gels. hCMEC/D3 cell monolayers grown on collagen
gels were immunostained for ZO-1 (green). Cell nuclei were stained with DAPI (blue). Scale bars represent 50 μm. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Lactate dehydrogenase (LDH) release from brain endothelial cells
treated with various concentrations of collagenase A. hCMEC/D3 cells grown in
a 96-wells plate were treated with 0.25%, 0.5% and 1% (w/v) collagenase A in
HBSS for 90min and activity of the LDH released by the cells was determined.
Each value represents the mean ± S.D. of three independent experiments
performed in triplicate. Data were analysed by one-way ANOVA followed by a
Dunnett post hoc test and considered significantly different from the control for
a p value lower than 0.05 (*).
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the morphology of the G23-PEG-P(CL-g-TMC) polymersome formula-
tion was examined by cryo-TEM. Spherical bilayer structures, i.e.
polymersomes with a size > 50 nm were identified (Fig. 5). Asym-
metric flow field flow fractionation (AF4) in combination with dynamic
light scattering (DLS) indicated the presence of polymersomes with an
average size of 100 nm, and a neglectable amount (< 1%) of micellar
structures (data not shown).

Next, the transcytosis capacity of the G23-PEG-P(CL-g-TMC) poly-
mersomes was analysed using the filter-free BBB model and fluores-
cence spectroscopy. Fluorescently-labelled polymersomes were added
apically to the cells and incubated for 4, 8 and 16 h at 37 °C. After 4 h of
incubation, the hCMEC/D3 cell monolayer showed an uptake of
5.0 ± 3.4% of G23-PEG-P(CL-g-TMC) polymersomes, whereas the in-
ternalization of non-functionalized (control) PEG-P(CL-g-TMC) poly-
mersomes was 0.6 ± 0.4% (Fig. 6a). Moreover, 4.8 ± 2.2% of G23-
PEG-P(CL-g-TMC) polymersomes and 1.2 ± 0.3% of control polymer-
somes accumulated at the basolateral side of the BBB (Fig. 6a). Hence,
the G23 peptide mediated a 4-fold increase in the transcytosis capacity
of polymersomes after 4 h of incubation. Prolonged incubation of the
filter-free BBB model with PEG-P(CL-g-TMC) polymersomes for 8 h and
16 h did not result in an increase in cellular uptake and/or basolateral
accumulation (Fig. 6b and c). In contrast, the basolateral accumulation
of G23-PEG-P(CL-g-TMC) polymersomes increased to 6.6 ± 2.2% and
6.5 ± 2.3% after 8 and 16 h of incubation (Fig. 6b and c), respectively,
demonstrating a ~7-fold increase in the transcytosis capacity of G23-
PEG-P(CL-g-TMC) polymersomes compared to control polymersomes.
Importantly, incubation of the hCMEC/D3 cell monolayer with and
without G23-PEG-P(CL-g-TMC) polymersomes showed equal levels of
paracellular permeability for 4 kDa dextran, indicating that the barrier
integrity of the endothelial cell monolayer was not compromised by the
presence of G23-PEG-P(CL-g-TMC) polymersomes (data not shown).
Overall, the data exclude the involvement of paracellular transport of

G23-PEG-P(CL-g-TMC) polymersomes across the BBB, specifying the
involvement of active transcellular transport, i.e. transcytosis, in the
passage of G23-PEG-P(CL-g-TMC) polymersomes across the filter-free
BBB model. The association of (G23-)PEG-P(CL-g-TMC) polymersomes
with hCMEC/D3 cell monolayers grown on collagen gels was demon-
strated by fluorescence microscopy (Fig. 7), confirming the increase in
cellular association after conjugation of the G23 peptide to the

Fig. 4. Transcytosis of low density lipoprotein (LDL) in the filter-free BBB model. Fluorescently-labelled LDL at a quantity of 50 (a) and 100 μg (b) was added apically
to the cells and incubated for 2 and 4 h at 37 °C. The percentage of LDL associated with the apical, cellular and basolateral fraction is expressed relative to the total
fluorescent content present in all three fractions collectively. Each value represents the mean ± S.D. of three independent experiments performed in duplicate.

Table 1
Physical characterization of the PEG-P(CL-g-TMC) polymersomes conjugated to the different GM1-targeting peptide sequences. Mean diameter, polydispersity (PDI),
and ζ-potential of the polymersomes functionalized with GM1-targeting peptides was measured using a particle analyser. Each value represents the mean ± S.D. of
two different batches of polymersomes.

Polymersomes Peptide sequence Size (nm) PDI ζ-potential (mV)

PEG-P(CL-g-TMC) – 123 ± 3.1 0.11 ± 0.01 −5.9 ± 0.4
G23-PEG-P(CL-g-TMC) H-HLNILSTLWKYRC-NH2 138 ± 0.2 0.23 ± 0.07 −4.4 ± 0.1
G2-PEG-P(CL-g-TMC) H-HSSWWLALAKPTC-NH2 134 ± 4.5 0.26 ± 0.03 −6.4 ± 0.3
G18-PEG-P(CL-g-TMC) H-HTKQIPRHIYSAC-NH2 145 ± 7.9 0.17 ± 0.03 −4.9 ± 0.1
G29-PEG-P(CL-g-TMC) H-MPAVMSSAQVPRC-NH2 127 ± 3.5 0.11 ± 0.01 −4.1 ± 0.8
G32-PEG-P(CL-g-TMC) H-YQLRPNAESLRFC-NH2 130 ± 6.2 0.14 ± 0.06 −5.2 ± 0.5
G47-PEG-P(CL-g-TMC) H-YSNTLPLNLPPYC-NH2 128 ± 3.4 0.11 ± 0.01 −6.9 ± 0.2
G88-PEG-P(CL-g-TMC) H-NPAGPSPAHIISC-NH2 126 ± 3.0 0.10 ± 0.01 −5.4 ± 0.4
G92-PEG-P(CL-g-TMC) H-HSSWYIQHFPPLC-NH2 135 ± 0.1 0.18 ± 0.01 −7.4 ± 0.6
G117-PEG-P(CL-g-TMC) H-LLADTTHHRPWTC-NH2 126 ± 2.9 0.09 ± 0.01 −5.2 ± 1.0

Fig. 5. Morphological examination of G23-PEG-P(CL-g-TMC) polymersomes by
cryo-TEM. G23-PEG-P(CL-g-TMC) polymersomes examined by cryo-TEM re-
vealed spherical bilayer structures with a size > 50 nm. Scale bar represents
100 nm.
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polymersomes.

3.5. Quantitative measurement of the transcytosis capacity of PEG-P(CL-g-
TMC) polymersomes functionalized with GM1-binding peptides using the
filter-free BBB model

In order to assess the transcytosis capacity of the GM1-targeting
peptide sequences obtained from our earlier phage library screening
[25], biodegradable PEG-P(CL-g-TMC) polymersomes were functiona-
lized with the different peptides G2, G18, G29, G32, G47, G88, G92,
and G117 and their transcytosis was measured using the newly devel-
oped filter-free BBB model. Conjugation of the different GM1-targeting

peptides to the biodegradable polymersomes resulted in a minimal shift
in their mean size and ζ-potential (Table 1), excluding a potential effect
of differences in size and charge of the functionalized polymersomes on
their cellular processing. Functionalization of the polymersomes with
the different GM1-targeting peptides, however, did neither increase
their cellular internalization nor their transcytosis across the filter-free
BBB model compared to non-functionalized polymersomes (Fig. 8).
Apparently, only the G23 peptide is able to mediate transcytosis of
polymersomes across the BBB, like shown previously with non-biode-
gradable poly(ethylene glycol)-block-poly(butadiene) polymersomes
[25].

Fig. 6. Transcytosis of G23-PEG-P(CL-g-TMC) polymersomes in the filter-free BBB model. Fluorescently-labelled polymersomes at a quantity of 50 μg were added
apically to the cells and incubated for 4 (a), 8 (b) and 16 (c) hours at 37 °C. The percentage of polymersomes associated with the apical, cellular and basolateral
fraction is expressed relative to the total fluorescent content present in all three fractions collectively. Each value represents the mean ± S.D. of four independent
experiments performed in duplicate. Data were analysed by Student t-test and statistically significant differences between polymersomes with and without the G23
peptide are indicated with (*) for a p value lower than 0.05 and (**) for a p value lower than 0.005.

Fig. 7. Enhanced association of G23-PEG-P(CL-g-
TMC) polymersomes compared to PEG-P(CL-g-TMC)
polymersomes with hCMEC/D3 cell monolayers
grown on collagen gels. Fluorescently-labelled poly-
mersomes (green) at a quantity of 50 μg were added
apically to the cells and incubated for 8 h at 37 °C.
Cell nuclei were stained with DAPI (blue). Scale bar
represents 50 μm. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)
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4. Conclusions

In the present study, we have successfully established a filter-free in
vitro BBB model that allows for high throughput quantitative mea-
surement of transendothelial transport of nanocarriers by fluorescence
spectroscopy. Using this model, the transcytotic potential of GM1-tar-
geted biodegradable polymersomes was determined. G23-PEG-P(CL-g-
TMC) polymersomes showed 6.6 ± 2.2% transcytosis following 8 h of
incubation and will be further developed to transport drugs across the
BBB in order to treat brain diseases. Since there is no membrane filter
involved in the presented BBB model, the transendothelial transport of
drug-loaded nanoparticles decorated with moieties that promote
transcytosis across the BBB now can be evaluated in a setting that more
closely mimics the in vivo situation. Furthermore, in order to quanti-
tatively study the transport of nanoparticles across other cellular bar-
riers of the human body, the same setup can be used to create filter-free
barrier models with the use of relevant primary or immortalized en-
dothelial or epithelial cells cultured on extracellular matrix (ECM) gels.
Next to the quantification of cellular uptake and transcytosis of nano-
particles, filter-free models will prove useful for mechanistic studies.
Here, fast live cell imaging techniques, including total internal reflec-
tion fluorescence (TIRF), are useful, especially to study cellular dy-
namics, while (immuno)electron microscopic investigation allows for
the determination of subcellular details, including barrier integrity. A
limitation of the presented filter-free BBB model is its use in combina-
tion with (fluorescence) microscopy at high magnification. Since the
collagen gel is > 2mm in height and is prepared in a conventional well
plate, the limited working distance of high magnification objectives
hampers image acquisition. This problem can be solved by fixation of
the cells and collagen gel, and subsequent positioning of the specimen
between a glass slide and a coverslip, as described. However, without
fixation of the gels, it proved difficult to transfer the collagen gel with
cells while maintaining cell monolayer integrity. Therefore, for high
magnification imaging using (fluorescence) microscopy, we re-
commend to use ECM-coated coverslips.
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