

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Proceedings of SETTA'18

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa40967

Conference contribution :

Adelsberger, S., Setzer, A. & Walkingshaw, E. (in press). Developing GUI Applications in a verified setting.

Proceedings of SETTA'18,

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/162909567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa40967
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Developing GUI Applications in a Verified Setting

Stephan Adelsberger1, Anton Setzer2, and Eric Walkingshaw3

1 Dept. of Information Systems, Vienna University of Economics, Austria
2 Dept. of Computer Science, Swansea University, Swansea, UK

3 School of EECS, Oregon State University, Corvallis, USA

Abstract. Although there have been major achievements in verified
software, work on verifying graphical user interfaces (GUI) applications
is underdeveloped relative to their ubiquity and societal importance. In
this paper, we present a library for the development of verified, state-
dependent GUI applications in the dependently typed programming lan-
guage Agda. The library uses Agda’s expressive type system to ensure
that the GUI, its controller, and the underlying model are all consistent,
significantly reducing the scope for GUI-related bugs. We provide a way
to specify and prove correctness properties of GUI applications in terms
of user interactions and state transitions. Critically, GUI applications and
correctness properties are not restricted to finite state machines and may
involve the execution of arbitrary interactive programs. Additionally, the
library connects to a standard, imperative GUI framework, enabling the
development of native GUI applications with expected features, such as
concurrency. We present applications of our library to building GUI ap-
plications to manage healthcare processes. The correctness properties
we consider are the following: (1) That a state can only be reached by
passing through a particular intermediate state, for example, that a par-
ticular treatment can only be reached after having conducted an X-Ray.
(2) That one eventually reaches a particular state, for example, that one
eventually decides on a treatment. The specification of such properties
is defined in terms of a GUI application simulator, which simulates all
possible sequences of interactions carried out by the user.

Keywords: Agda · interactive theorem proving · GUI verification.

1 Introduction

Graphical user interfaces (GUIs) are widely used in real-world software systems.
They are also a major source of bugs. For example, a study of the Mozilla
project found that the web browser’s GUI is the source of 50.1% of reported
bugs and responsible for 45.6% of crashes [33]. Unfortunately, testing of GUIs
is notoriously difficult [21,23]. The fundamental problem is that “tests must be
automated, but GUIs are designed for humans to use” [30]. Automated tests
must simulate user interactions, but the range of user interactions is huge, and
simulated actions tend to be brittle with respect to minor changes in the GUI
such as swapping the placement of two buttons.

2 Adelsberger et al.

A challenge related to GUIs is the widespread use of code generation. For
example, a GUI builder enables a GUI to be graphically assembled, then gen-
erates code for the GUI which can be integrated into the rest of the applica-
tion [34]. Code generation can have a negative impact on software evolution and
maintenance if the GUI specification and the program logic cannot be evolved
together [36]. In the worst case, handwritten customizations must be manually
integrated each time the GUI code is re-generated [34]. Moreover, the dependence
of handwritten code on the upstream specification is implicit.

Because of their importance and the challenges related to testing them, re-
searchers have studied the formal verification of GUI applications using model
checking [22]. However, such approaches verify only an abstracted model of the
GUI rather than the software itself.

In this paper, we present a library for developing directly verified GUI ap-
plications in Agda [6]. Agda is a dependently typed programming language and
interactive theorem prover. Our library supports verifying properties about GUI
applications in terms of user interactions. We address the challenge of code gen-
eration by observing that such systems are implicitly working with dependent
types (the hand-written parts depend on the types generated by the declarative
specification), and so make this relationship explicit. This combines the benefits
of a declarative specification with the flexibility of post-hoc customization.

Our library builds on our previous work on state-dependent object-based
programming in Agda [1], which is briefly summarized in Section 2. The library
itself is introduced in Section 3, beginning with an example of a GUI applica-
tion written using the library, followed by a description of key aspects of the
implementation. In our library, GUIs are declaratively specified as a value of an
inductive data type. This value is used in the types of the controller functions
that link the GUI to the underlying business logic, guaranteeing via the type
system that the controller code is consistent with the GUI specification. Since
the GUI specification is an inductive value, we can write arbitrary functions to
modify it, improving the flexibility of GUI specifications.

In Section 5.1, we present a case study based on a healthcare process adapted
from the literature [24]. Processes in the healthcare domain are mostly data-
driven (e.g. patient data), include interactions with doctors (e.g. diagnosis), and
are not easily modeled as finite state machines [26,24]. We demonstrate that
by using dependent types, we can model such state-dependent systems with an
infinite number of states.

On this note, in Sections 4 and 5, we develop a framework for specifying
and proving the correctness of GUI applications. More precisely, in Section 4,
we define a simulator that simulates sequences of user inputs to a GUI. Using
this, we define reachability as whether there exists a sequence of user inputs
to get from one state of the GUI to another. We then conduct a small case
study to prove for a simple GUI application which states can be reached from
a given state. In Section 5, we develop an example from the healthcare domain
with interactive handlers (i.e. the observer pattern where an object handles GUI
events) and a data-dependent GUI. We specify an intermediate-state property
that requires passing through a specific state before reaching some other state,

Developing GUI Applications in a Verified Setting 3

and we prove that the example satisfies a given property. Finally, we specify
a final-state property that requires the application to eventually reach a given
state from a start state. We show that the advanced example fulfills such a
property. It turns out that the complexity lies more in the specification of the
properties, while proving the properties is relatively straightforward. We discuss
related work in Section 6 and conclusions in Section 7.

To summarize, the contributions of this paper are:

1. A dependently typed library for programming state-dependent GUI appli-
cations, which allows an infinite number of states and arbitrary interactive
handlers.

2. A technique for specifying properties of GUIs using a simulator which sim-
ulates all possible sequences of interactions carried out by the user.

3. A framework for the verification of GUI applications involving: (1) reach-
ability between states, (2) that one state can only be reached by passing
through another state, and (3) that one eventually reaches a specific state.

Source Code. All displayed Agda code has been extracted automatically from
type checked Agda code. For readability, we have hidden some bureaucratic
details and show only the crucial parts of the code. The code is available at [4].

2 Background

Agda and Sized Types We recommend the short introduction to Agda that we
provided in a previous paper [1]; here, we will just repeat the basics. Agda [6]
is a theorem prover and dependently typed programming language based on
Martin-Löf type theory. Propositions are represented as types, and a value of
a type corresponds to a proof of the preposition. Agda features a type checker,
a termination checker, and a coverage checker. The termination and coverage
checker guarantee that every program in Agda is total. Partiality would make
Agda inconsistent as a proof language.

Agda has a hierarchy of types for describing sets of types themselves, for
example, the set of all types in the usual sense is called Set in Agda. The type
Set1 includes all of Set plus types that refer to Set itself. For example, in our
library, we use Set1 to define structures that have Set as one of its components
(e.g. IOInterface below). Agda has function types, inductive data types, record
types, and dependent function types. A dependent function type (x : A) → B
represents the type of functions mapping an element x : A to an element of B
where B may depend on x. The variant form {x : A} → B of the dependent
function type allows us to omit argument x when applying the function; Agda
will try to infer it from typing information, but we may still apply it explicitly
as {x = a} or {a} if Agda cannot deduce it automatically.

To represent infinite structures we use Agda’s coinductive record types, equipped
with size annotations [16]. The size annotations are used to show productivity
of corecursive programs [2], which we define using copattern matching [3].

4 Adelsberger et al.

State-Dependent IO In previous work [1], we gave a detailed introduction to
interactive programs, objects, and state-dependent versions of interactive pro-
grams and objects in dependent type theory. The theory of objects in dependent
type theory is based on the IO monad in dependent type theory, developed by
Peter Hancock and the second author of this article [14]. The theoretical basis
for the IO monad was developed by Moggi [25] as a paradigm for representing
IO in functional programming. The idea of the IO monad is that an interactive
program has a set of commands to be executed in the real world. It iteratively
issues a command and chooses its continuation depending on the response from
the real world. Formally, our interactive programs are coinductive, i.e. infinitely
deep, Peterson-Synek trees [28], except that they also have the option to ter-
minate and return a value. This allows for monadic composition of programs,
namely sequencing one program with another program, where the latter pro-
gram depends on the return value of the first program. In the state-dependent
version [1], both the set of available commands and the form of responses can
depend on a state, and commands may modify the state.

We introduce now an IO language for GUIs. It will include also console com-
mands and calls to external services, such as database queries. An IO language,
which we call IO interface, is a record consisting of commands a program can
issue, and responses the real world returns in response to these commands.

record IOInterface : Set1 where
Command : Set
Response : (m : Command) → Set

The fields of this record type Command and Response are its projections. They
can be applied also postfix using the dot notation: if p : IOInterface, then
p .Command : Set. To improve readability we omit in records bureaucratic
statements field, coinductive, and open.

3 State-Dependent GUI Applications

Our library separates the structure and appearance of an application’s GUIs (the
view) from the handlers that process the events produced by user interactions
(the controller). This separation of concerns is similar to current practice with
model-view-controller frameworks [20] and graphical GUI-builder tools [34]. A
distinguishing feature of our approach is that handlers are dependently typed
with respect to the GUIs they interface with. This means that GUI specifications
can be programmatically generated and dynamically modified (e.g. a button
may be dynamically added at runtime) without sacrificing the static guarantee
of consistency with the handler objects. As a GUI dynamically changes, the
interfaces of the corresponding handler objects (which methods exist and their
types) dynamically change in response. Such dynamically changing GUIs are not
well supported by the GUI-builder model, and the consistency guarantees are
not provided by programmatic MVC frameworks.

In the rest of this section, we introduce our library. In Section 3.1, we provide
an introductory example that illustrates how to build a simple state-dependent

Developing GUI Applications in a Verified Setting 5

GUI application. In Section 3.2, we turn to the implementation of the library,
introducing the basic command interface provided by the library for creating
and interacting with GUIs. In previous work, we have developed a representa-
tion of state-dependent objects, which we briefly describe in Section 3.3. This
representation is the basis for GUI event handlers in our library. We say that
our library supports state-dependent GUI applications since the GUI can dy-
namically change based on the state of the model and since the GUI is itself
a dynamically changing state of the handler objects. We use state-dependent
objects to define generic handlers in Section 3.4 whose interfaces are generated
from the GUIs they depend on. We also introduce a data type that collects all
of the components of a GUI application together. Finally, in Section 3.5, we
introduce an example of a GUI having infinitely many states, where each state
differs in the GUI elements used.

3.1 Introductory Example

Consider a GUI application with two states. In one state, the GUI has a single
button labelled “OK”, in the other it also has a button labelled “Cancel”. Pressing
the OK button in either state switches to the other state.

Creating a GUI application in our library consists of specifying the GUI,
including defining the GUI elements and their properties (e.g. the color of a
button), then defining the handler objects for events those elements can produce.
For our example, we first specify the GUI for the first state, which consists of a
frame and a single button labelled “OK”. Then, we specify the GUI for the second
state by adding a button labelled “Cancel” to oneBtnGUI. Both oneBtnGUI and
twoBtnGUI are of type Frame.

oneBtnGUI = addButton "OK" create-frame
twoBtnGUI = addButton "Cancel" oneBtnGUI

Finally, we specify the initial properties of GUIs (e.g., properties for twoBtnGUI),
specifically the color of the button labels (black) and the frame layout.

propOneBtn : properties oneBtnGUI
propOneBtn = black , oneColumnLayout

propTwoBtn : properties twoBtnGUI
propTwoBtn = black , black , oneColumnLayout

Observe that the types of the property specifications are dependent on the cor-
responding GUI values, ensuring consistency between the two.

Next we define handlers for our application’s two GUI states. The handler
for oneBtnGUI defines a method that handles the event generated by clicking the
OK button. The handler body is an interactive IO program that prints a string
indicating the button click, then uses the function changeGUI to set the currently
active GUI to twoBtnGUI, updating the properties and handler accordingly.

obj1Btn : ∀ {i} → HandlerObject i oneBtnGUI
obj1Btn .method bt = putStrLn "OK! Redefining GUI." »

changeGUI twoBtnGUI propTwoBtn obj2Btn

6 Adelsberger et al.

This is an example of copattern matching [3]: The type of obj1Btn is a record
which has one field method. We define obj1Btn by determining the value for this
field, which is in postfix notation written as .method. The result is a function
having further argument bt, so we apply it to this argument and define the result.
Although unused in obj1Btn, bt provides access to enclosing GUI elements, such
as the GUI’s frame.

Note that the type of the handler object HandlerObject is parameterized by
the corresponding GUI value, in this case, oneBtnGUI. The type of the handler
object ensures that it has methods available to handle each kind of event that
the given GUI can generate.

The hidden argument {i} is a size parameter required since handler objects
are coinductive data types. It is used to check that the definition of the handler
is productive, which is the copattern matching dual to termination checking.

The handler for twoBtnGUI defines a method that uses pattern matching on
the argument bt to determine which button was clicked; this is an example of
combined pattern/copattern matching.

obj2Btn : ∀ {i} → HandlerObject i twoBtnGUI
obj2Btn .method (firstBtn bt) = putStrLn "OK! Redefining GUI." »

changeGUI oneBtnGUI propOneBtn obj1Btn
obj2Btn .method (secondBtn bt) = putStrLn "Cancel!" » keepGUI obj2Btn

If the click originated from the first button (OK), the active GUI is changed
back to oneBtnGUI. Otherwise, if it originated from the second button (Cancel),
then twoBtnGUI is retained using the library function keepGUI.

Finally, we can compile our GUI application into a NativeIO program in Agda.
NativeIO is a type that represents IO programs in Haskell. This is done by call-
ing compileProg with the arguments twoBtnGUI, propTwoBtn, and obj2Btn. The
compiler of Agda translates the resulting NativeIO program via special Haskell
FFI commands present in Agda into a GUI Haskell program which makes use
of the wxHaskell [37] GUI toolkit.

3.2 GUI Interface

The type GuiInterface defines commands for interacting with the console, the GUI
(e.g., changing a label), and communicating with a database, and the responses
to those commands. Here, we only list the commands used later in this paper
(console commands), see the repository [4] for the full list:

data GuiCommand : Set where
putStrLn : String → GuiCommand
getLine : GuiCommand

GuiResponse : GuiCommand → Set
GuiResponse getLine = String
GuiResponse _ = Unit

GuiInterface : IOInterface
GuiInterface .Command = GuiCommand
GuiInterface .Response = GuiResponse

Developing GUI Applications in a Verified Setting 7

3.3 State-dependent Interfaces

The handling of GUI commands will be implemented with state-dependent ob-
jects where the interface may change according to the state of the object. An
object is similar to an interactive program except that it is a server-side pro-
gram. An object can receive commands, and depending on the responses to those
commands it returns a result and changes its internal state. With Agda being
a purely functional language, we model state changes by returning an updated
object together with the regular return value as a pair. In dependent type the-
ory we also have state-dependent objects, where the methods available depend
on the state of the object. Depending on the response for the method call, the
object switches to a new state. So an interface for a state-dependent interface
Interfaces (s indicating that it is state-dependent) consists of a set of states, a
set of methods depending on the state, a set of responses depending on states
and methods, and a next state function, which depends on states, methods and
responses:

record Interfaces : Set1 where
State : Set
Method : State → Set
Result : (s : State) → (m : Method s) → Set
next : (s : State) → (m : Method s) → (Result s m) → State

We note here that a method in this framework is what corresponds to the union
of all the methods together with all their arguments in normal object-oriented
languages. The reason why we can bundle them together is because the result
type can depend on the method, therefore there is no need for separate methods
with separate result types. An Object for this interface is a program that accepts
calls to objects methods (method). In response to an object method, it returns
a result and an updated Object. Since this interaction might go on forever, the
definition of an Object is coinductive.

3.4 Implementation of Generic GUIs

In the previous subsection, we saw that the type of a handler object depends on
the value of the GUI it supports. To help understand how handler objects work,
we start by taking a closer look at the type of generic handler objects.

HandlerObject : ∀ i → Frame → Set
HandlerObject i g = IOObjects GuiInterface handlerInterface i g

This library function defines the type of a handler object, given a size index i and
a frame that represents the GUI the handler processes events for. As described in
Section 3.1, i is used to ensure that the handler is productive, a well-formedness
property of co-inductive definitions.

The type of a handler is a state-dependent object that supports GuiInterface
commands (see Section 3.2). The state of the object is the GUI specification;
it is parameterized by a Frame, which determines the interface of the object as
defined below.

8 Adelsberger et al.

handlerInterface : Interfaces

handlerInterface .State = Frame
handlerInterface .Method f = methodsG f
handlerInterface .Result f m = returnType f
handlerInterface .next f m r = nextStateFrame f r

We need a type for the methods, which depend on the frame. As mentioned before
all individual methods of an object are bundled together into one single one. For
each individual GUI component such as a button, and each event corresponding
to this component, we require one method for handling it. The method for a
component is the sum of all the methods for its events, and themethodsG function
creates the sum of all the methods of each component of the frame. When an
individual event is called, it obtains as arguments the parameters of this call.
Since the parameters are part of the method, an event method is the product of
the parameters of this method call together with an element representing all the
components of the frame. It is the task of the user to implement these methods,
when he creates a handler object for a frame definition.

Since a handler object’s interface (i.e. what methods it provides to handle
GUI events) is determined by its state, the interface dynamically updates with
corresponding changes to the GUI specification.

An event handler method is an interactive program that has three possible
return options:

data returnType (f : Frame) : Set where
noChange : returnType f
changedAttributes : properties f → returnType f
changedGUI : (fNew : Frame) → (properties fNew) → returnType f

In the first case, the GUI remains unchanged. In the second case, we simply
return the changed properties. In the third case we transform the given Frame
into a newly created GUI.

The function nextStateFrame carries out the calculation of the new successor
state after a method is finished. The state is updated only in case of the return
option changedGUI.

nextStateFrame : (f : Frame)(r : returnType f) → Frame
nextStateFrame f noChange = f
nextStateFrame f (changedAttributes x) = f
nextStateFrame f (changedGUI fNew x) = fNew

3.5 A GUI with an Unbounded Number of States

In this subsection, we present an introductory example that both illustrates the
use of the GUI data type and demonstrates that we can develop GUIs with
infinitely many states where each state differs in the GUI elements used. The
example is a GUI application with n buttons, where clicking any button expands
the GUI into one with n+ 1 buttons.4 The helper function nFrame constructs a
4 The library contains a more interesting example [4] where clicking button bi extends
the GUI with i additional buttons.

Developing GUI Applications in a Verified Setting 9

GUI with n buttons, while nProp defines its corresponding properties (a black
label for each button organized in a one-column layout). The nGUI function
constructs a GUI application with n buttons combining the GUI, its properties,
and a handler that for any button press replaces the GUI application with a new
one containing n+ 1 buttons.

nFrame : (n : N) → Frame
nFrame 0 = create-frame
nFrame (suc n) = addButton (show n) (nFrame n)

nProp : (n : N) → properties (nFrame n)
nProp 0 = oneColumnLayout
nProp (suc n) = (black , nProp n)

nGUI : ∀{i} → (n : N) → GUI {i}
nGUI n .defFrame = nFrame n
nGUI n .property = nProp n
nGUI n .obj .method m = changeGUI (nGUI (suc n))

The type GUI represents a GUI application. It is a record with three fields:
.defFrame defines the GUI, .property specifies its properties, and .obj contains the
GUI’s handler object, whose field .method is invoked when a button is clicked.
The argument m to the handler method indicates which button was clicked,
but in this case, we ignore it since clicking any button updates the GUI to add
one more button. Note that the GUI application defined above is dynamically
expanding, which is difficult to design using standard GUI builders since they
allow constructing only finitely many GUIs for a particular application.

4 Proof of Correctness Properties of GUIs

We reason about GUI applications by reasoning about the GUI’s states. The
state of a GUI is given by a frame, its properties, and its handler object. When
an event is triggered, an IO program is executed, and the return value determines
which state to transition to. Thus, we can reason about the transition graph for
a GUI application by reasoning about the exit points of the handler. However,
a complication is that IO programs are coinductive, meaning they may have an
unbounded number of interactions and never terminate. Ideally, IO programs
for event handlers would be inductive since we typically want event handlers
to always terminate so that the GUI is responsive. However, this is much more
difficult to integrate within a general GUI framework since GUI applications are
naturally coinductive.

4.1 A Simulator for GUI Applications

To cope with coinductive IO programs in event handlers, we do not reason
about GUI states directly, but instead introduce an intermediate model of a GUI
application, where the IO programs in handlers are unrolled into potentially

10 Adelsberger et al.

infinitely many states. This model is itself coinductive and we cannot reason
about it directly since an infinite sequence of IO commands will induce an infinite
number of states. Therefore, we instead reason about finite simulations of the
GUI model.

To define the model, we first introduce a data type to indicate whether an
event handler has been invoked or not. The notStarted constructor indicates that
the handler has not yet been invoked, while started indicates the handler has been
invoked. The constructor started has as an additional argument pr corresponding
to the IO program still to be executed.

data MethodStarted (f : Frame) (prop : properties f)
(obj : HandlerObject ∞ f) : Set where

notStarted : MethodStarted f prop obj
started : (m : methodsG f) (pr : IO’ GuiInterface ∞ StateAndGuiObj)

→ MethodStarted f prop obj

The handler is parameterized by the size value∞. Sizes are ordinals that limit the
number of times a coinductive definition can be unfolded. There is an additional
size ∞ for coinductive definitions that can be unfolded arbitrarily many times.
A more detailed explanation of sizes and ∞ can be found in Section 3 of [17].

Now, a state in the GUI model can be represented by the GUI, its properties,
the handler, and the invocation state.

data ModelGuiState : Set where
state : (f : Frame) (prop : properties f) (obj : HandlerObject ∞ f)

(m : MethodStarted f prop obj) → ModelGuiState

Using this model, we can simulate the execution of GUI applications. To do this,
we define a simulator for state-dependent IO programs. Depending on the state
of the GUI model, the simulator must trigger GUI events or provide responses to
IO commands, then move to the next state in the model. The following function
defines the available actions at each state in the model.

modelGuiCommand : (s : ModelGuiState) → Set
modelGuiCommand (state g prop obj notStarted) = methodsG g
modelGuiCommand (state g prop obj (started m (exec’ c f))) = GuiResponse c
modelGuiCommand (state g prop obj (started m (return’ a))) = >

If the model is in a notStarted state, the event simulator can trigger an event
drawn from the methods supported by the GUI interface. If the model is in a
started state, then there are two sub-cases: If the IO program has not finished,
the program has the form (exec’ c f). This means that the next real-world
command to be executed is c and once the world has provided an answer r to
it, the interactive program continues as (f r). (Previously we used do instead of
exec, but do has now become a keyword in Agda.) In this case the GUI is waiting
on a response to the IO command c, which the event simulator must provide.
The second subcase is, if the remaining IO program has already returned. Then
the simulator can take the trivial action (>) to return to the notStarted state.

Developing GUI Applications in a Verified Setting 11

Using this definition, we can define a transition function for the simulator
with the following type:

modelGuiNext : (s : ModelGuiState) (c : modelGuiCommand s) → ModelGuiState

That is, given a model state and an action of the appropriate type, we can
transition to the next model state.

To simplify proofs over the model, the transition function makes a few opti-
mizations. First, in the case where the new state corresponds to a completed IO
program, we can skip to the next notStarted state directly rather than requiring
this unit step be made explicitly. Second, we reduce sequences (shorter than a
given finite length) of consecutive trivial IO actions, such as print commands,
into single transition steps.

We can define a state-dependent IO interface (an element of IOInterfaces) for
the simulator (see Section 2)), which incorporates the previous definitions in a
straightforward way.

modelGuiInterface : IOInterfaces

modelGuiInterface .State = ModelGuiState
modelGuiInterface .Command = modelGuiCommand
modelGuiInterface .Response s m = >
modelGuiInterface .next s m r = modelGuiNext s m

Using this, we define a relation between states s and s′ of the GUI, which states
that s′ is reachable from s if running the simulator from s can produce s′.

-gui-> : (s s’ : ModelGuiState) → Set
s -gui-> s’ = IOsindp0 modelGuiInterface s s’

Here, s -gui-> s′ expresses that we can get from s to s′ in a finite number of steps.
It is therefore defined inductively which allows to reason about it inductively.
Finally, we introduce a one-step relation that states that s is reachable from s′

by executing one step of the simulator.
data _-gui->1_ (s : ModelGuiState) : (s’ : ModelGuiState)→ Set where
step : (c : modelGuiCommand s) → s -gui->1 modelGuiNext s c

The correctness proofs using the simulator are included in the code repository [4].

5 State Transition Properties

In this section, we demonstrate the definition and proof of properties relating to
state transitions using an example from the healthcare domain. In Section 5.1,
we consider the property that any path from one state to another in a GUI
application must pass through a given intermediate state. In Section 5.2, we
consider the property that all paths through a GUI application end up in the
same final state. In both cases, the main challenge is to express the property to
be proved, while the proof is relatively straightforward.

Such properties are well covered by existing approaches based on model
checking [22]. However, the advantage of our approach is that we prove such
properties for the implementation of the GUI application directly, rather than
for an abstracted model of it.

12 Adelsberger et al.

5.1 Intermediate-State Properties

Examination

Prescribe
painkillers

Check X-ray
pregnancy risk

X-Ray Treatment

Decide on
check ups

Patient
in pain?

Which
sex?

yes

no

female

male

Fig. 1: Process model of a fracture treatment process.

Consider the healthcare process illustrated in Figure 1, which is adapted
from [24]. The relevant part of the process is highlighted. Specifically, it consists
of four states corresponding to steps in the process: an initial examination, per-
forming an X-ray, assigning treatment, and a risk check for pregnancy in which
the patient is asked about a potential pregnancy. The last state is only performed
for female patients. In this subsection, we will build a GUI application abstract-
ing this part of the process and prove that all paths from the initial examination
to treatment pass through the intermediate X-ray state. We define a generic
mechanism for expressing such intermediate-state properties, which illustrates
how other properties on GUI applications can be defined.

Below is the straightforward specification of the GUI for the initial examina-
tion state. The GUIs for other states are defined similarly.

frmExam : Frame
frmExam = addBtn "Examination" create-frame

The controller for the initial examination state is shown below. After pressing
the button, the system interactively asks whether the patient is female or male. If
the answer is female, the controller invokes changeGUI to change the application
to the pregnancy-test state. (A version which includes a check of the correctness
of the user input is discussed in [5].) Otherwise, the controller changes to the
X-ray state. This is an example of a data-dependent GUI with interaction.

hdlExam : ∀ i → HandlerObject i frmExam
hdlExam i .method {j} (btn , frm) =
exec (putStrLn "Female or Male?") ń _ →
exec getLine ń s →
hdlExamProgEnd i (string2Sex s)

hdlExamProgEnd : (i : Size)(g : Sex) → HandlerIOType i frmExam
hdlExamProgEnd i female = changeGUI frmPreg propOneBtn (hdlPreg i)
hdlExamProgEnd i male = changeGUI frmXRay propOneBtn (hdlXRay i)

The GUI and controller for the X-ray state is not shown, but it provides a single
button that when pressed transitions to the treatment state.

To reason about our GUI application, we define the corresponding coinduc-
tive model as described in Section 4.1. We first model the initial examination

Developing GUI Applications in a Verified Setting 13

state as stateExam along with two intermediate states corresponding to interac-
tions with the user: stateExam1 is the state reached after querying the sex of the
patient, while stateExam2 is the state reached after the user provides a response.

stateExam : ModelGuiState
stateExam = state frmExam propOneBtn (hdlExam ∞) notStarted

stateExam1 : (c : methodsG frmExam) → ModelGuiState
stateExam1 = modelGuiNext stateExam

stateExam2 : (c : methodsG frmExam) (str : String) → ModelGuiState
stateExam2 c str = modelGuiNext (stateExam1 c) str

Similarly, we model the perform-X-ray state as stateXRay and the assign-treatment
state as stateTreatm.

We expect that our GUI application implements the healthcare process in
Figure 1. As mentioned, we want to ensure that we never assign a treatment
without first performing an X-ray. To support stating such a property, we define
a predicate (path goesThru s′), which expresses that a path from states s to s′

passes through a state t. The path from s to s′ is a member of the type -gui->.
The predicate is defined inductively, where the constructors execi and returni
are the inductive forms of the usual exec and return constructors for coinductive
programs.

goesThru : {s s’ : ModelGuiState}(q : s -gui-> s’)(t : ModelGuiState) → Set
goesThru {s} (execi c f) t = s ≡ t] f _ goesThru t
goesThru {s} (returni a) t = s ≡ t

In the execi case, the current state is either equal to t or all subsequent states
must pass through the t. In the returni case, the path is the trivial path, and
therefore the current state must be equal to t.

Now we can show that any path through the GUI application from the initial-
examination state to the treatment state passes through the X-ray state. We need
to prove this property not only for the initial state but also for all intermediate
states. The proof for the initial state is shown below by matching on execi and
showing that all subsequent states have this property. We match the case returni
with the empty case distinction (indicated by ()), which is always false.

examGoesThruXRay : (p : stateExam -gui-> stateTreatm) → p goesThru stateXRay
examGoesThruXRay (execi c f) = inj2 (exam1GoesThruXRay c (f _))
examGoesThruXRay (returni ())

Cases for most of the other states are similarly straightforward. However, we
show in detail the interesting case of stateExam2 in which we need to make a
case distinction on the value of (string2Sex str). For this, we use the magic with
construct, which allows extending a pattern by matching on an additional expres-
sion. The symbol ...| expresses that the previous pattern is repeated, extended
by a pattern matching on the with-expression.

exam2GoesThruXRay : (c : methodsG frmExam) (str : String)
(path : stateExam2 c str -gui-> stateTreatm) → path goesThru stateXRay

14 Adelsberger et al.

exam2GoesThruXRay c str path with (string2Sex str)
... | male = XRayGoesThruXRay path
... | female = checkPregGoesThruXRay path

The main difficulty in this proof is to recognize the need for the intermediate
states stateExam1 and stateExam2. Once these intermediate states are made ex-
plicit and the property is defined, the proof itself is straightforward.

5.2 Final-State Properties

Another property we might want to prove about our healthcare process applica-
tion is that all paths eventually lead to a treatment. To support the definition
and proof of such properties, we define the following inductive data type, which
states that all paths from an initial state start eventually reach a state final .

data _-eventually->_ : (start final : ModelGuiState) → Set where
hasReached : {s : ModelGuiState} → s -eventually-> s
later : {start final : ModelGuiState} (fornext : (m : modelGuiCommand start)

→ modelGuiNext start m -eventually-> final) → start -eventually-> final

The constructors for this type state that the property holds if either the current
state is the state to be reached (hasReached) or all subsequent states have this
property (later). Since the data type is inductive, this expresses that eventually
the final state is reached.

We now show that in the GUI application defined in Section 5.1, the treat-
ment state is always reached. Again we prove this property for all states be-
tween the initial state and the treatment state. Once again, the interesting case
is stateExam2, where we need to make a case distinction on Sex as before.

exam2EventuallyTreatm : (c : methodsG frmExam) (str : String)
→ (stateExam2 c str) -eventually-> stateTreatm

exam2EventuallyTreatm c str with (string2Sex str)
... | female = checkPregEventuallyTreatm
... | male = xRayEventuallyTreatm

Here we see the benefits of defining GUIs in a generic way—proving properties
about them is straightforward since one can follow the states of the GUI as given
by our data type.

6 Related Work

In our previous article [1], we introduced an Agda library for object-based pro-
grams. We demonstrated the development of basic, static GUIs. In this paper,
we have extended this work by adding a declarative specification of GUIs and
the GUI-creation process is now automatic. We also demonstrate the verification
of GUI applications in Sections 4–5.

We have developed an alternative version of this library to use a simpler,
custom-built backend [5], rather than the wxHaskell backend used in this pa-
per. The newer backend supports a much simpler version of the GUI interface

Developing GUI Applications in a Verified Setting 15

types described in Section 3.2 and the handler objects described in Section 3.4
(in fact, much of the complexity of these types is not exposed in this paper for
presentation reasons; for full details, see the library [4]), which simplifies proofs
and improves the scalability of our approach. However, the more complex ap-
proach described in this paper is more generic and has the advantage of being
built on an existing and widely used GUI toolkit (wxWidgets). In particular,
this version supports GUIs with nested frames, separates properties from the
GUIs they apply to, allows modifying properties without redrawing the entire
GUI, and supports adding new components from wxWidgets relatively easily.
Additionally, the wxHaskell backend supports concurrency and integrates bet-
ter with the host operating system than our custom backend. The downside is
that wxHaskell is an inherently imperative and concurrent toolkit, which makes
interfacing with Agda non-trival and leads to the increased complexity of this
version (for the technical details, again see the library [4]). In addition, in [5], we
add a representation of business processes in Agda and automatically compile
such processes into executable GUIs. Taking advantage of the simpler design,
in [5] we also implement a larger, realistic case study but proved only reachabil-
ity statements, whereas in this paper we perform a simpler case study but also
cover intermediate state properties.

Functional Reactive Programming (FRP) is another approach for writing
GUIs in functional languages [35], where a behaviour is a function from time
to values, and an event is a value with occurrence time. In connection with
dependent types, FRP has been studied from the foundational perspective [31]
and for verified programming [18].

Formlets [12] are abstract user interface that define static, HTML based
forms that combine several inputs into one output. However, they do not support
sequencing multiple intermediate requests.

Formalizations in Isabelle of end-user-facing applications have been studied
for distributed applications [8] and conference management systems [19]. How-
ever, only the respective core of the server is verified.

Process Models in the Healthcare Domain were specified using Declare [24],
also with extensions to model patient data [26]. In the current paper, in contrast
to [24,26,11] and other approaches, we apply formal verification using a theorem
prover (Agda) and provide machine-checked proofs. We found only two papers
using formal specifications: Debois [13] proves in Isabelle a general result of
orthogonality of events. Montali et al. [27] developed models via choreographies.
But the latter is limited to finite systems and doesn’t deal with interactive events.

Furthermore, healthcare processes are safety critical and testing GUI appli-
cations is a major challenge [21]. Sinnig et al. [32] argued that it is important to
formalize business processes together with the design information/requirements
of the user interface (e.g. GUI) in a single framework. This is directly supported
by our library and a benefit of our use of dependently typed GUI programming.

Verification of user interfaces for medical devices. An approach to the verifi-
cation of user interfaces based on a combination of theorem proving and model
checking is presented in [15]. In particular, [15] focuses on the problem of how to
demonstrate that a software design is compliant with safety requirements (e.g.,

16 Adelsberger et al.

certain FDA guidelines). Their solution is elegant in their combined use of model
checking, theorem proving, and simulation within one framework. A difference
to our work is that [15] verifies models of devices while we verify the software
(e.g., handlers of GUI events) directly. Furthermore, we allow the verification of
GUI software with an infinite number of states which is not the focus of [15].

Idris and Algebraic Effects. Bauer and Pretnar [7] introduced algebraic ef-
fects. Brady [9] adapted this approach to represent interactive programs in Idris
[10]. In [1], Sect. 11 we gave a detailed comparison of the IO monad in Agda and
algebraic effects in Idris and a translation between the two approaches. Regard-
ing GUIs, we only found a forum post [29], which shows that GUI programming
should be possible using the FFI interface of Idris but has yet to be performed.

7 Conclusion and Future Work

Verification of GUI-based programs is important because they are widely used,
difficult to test, and many programs are safety critical. We demonstrate a new
approach to generically representing and verifying GUI applications in Agda. Our
approach makes essential use of dependent types to ensure consistency between
the declarative GUI specification and the rest of the system. We demonstrated
a generic mechanism for expressing intermediate-state properties. For example,
we proved that between the initial examination and the treatment, the GUI
application must pass through the intermediate X-ray state. We also considered
the property that all paths through a GUI application arrive at a particular
final state. Finally, we presented the generation of working GUI applications,
including GUI programs with an unbounded number of states.

A limitation of our current approach is that, although the underlying GUI
framework supports concurrency, we do not have a way to represent or reason
about this explicitly in our library. Concurrency is important for defining GUI
applications that remain responsive while a long-running event handler executes.
We are working on an extension to our library that allows introducing and
reasoning about concurrency, such as defining multiple threads and proving that
they are fairly executed.

Acknowledgments The first and second author were supported by the project
CA COST Action CA15123 European research network on types for program-
ming and verification (EUTYPES). The second author was additionally sup-
ported by CORCON (Correctness by Construction, FP7 Marie Curie Interna-
tional Research Project, PIRSES-GA-2013-612638), COMPUTAL (Computable
Analysis, FP7 Marie Curie International Research Project, PIRSES-GA-2011-
294962), CID (Computing with Infinite Data, Marie Curie RISE project, H2020-
MSCA-RISE-2016-731143). The third author was supported by AFRL Contract
FA8750-16-C-0044 under the DARPA BRASS program.

Developing GUI Applications in a Verified Setting 17

References

1. Abel, A., Adelsberger, S., Setzer, A.: Interactive programming in Agda – objects
and graphical user interfaces. Journal of Functional Programming 27, 38 (Jan
2017), https://doi.org/10.1017/S0956796816000319

2. Abel, A., Pientka, B.: Well-founded recursion with copatterns and sized types. JFP
26, e2 (2016), iCFP 2013 special issue

3. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: Programming infinite
structures by observations. In: POPL’13. pp. 27–38. ACM, New York (2013)

4. Adelsberger, S., Setzer, A., Walkingshaw, E.: Deveoping GUI applications in a ver-
ified setting (2017), https://github.com/stephanpaper/SETTA18, git respository

5. Adelsberger, S., Setzer, A., Walkingshaw, E.: Declarative GUIs: Simple, consistent,
and verified. In: Int. Conf. on Principles and Practice of Declarative Programming
(PPDP). ACM (2018)

6. Agda Community: Agda Wiki (2017), http://wiki.portal.chalmers.se/agda
7. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers (2012),

http://arxiv.org/abs/1203.1539, arXiv
8. Bauereiß, T., Gritti, A.P., Popescu, A., Raimondi, F.: CoSMeDis: A distributed

social media platform with formally verified confidentiality guarantees. In: 2017
Symposium on Security and Privacy. pp. 729–748. IEEE, US (2017)

9. Brady, E.: Resource-dependent algebraic effects. In: Hage, J., McCarthy, J. (eds.)
TFP’14, Netherlands, 2014. pp. 18–33. Springer, Cham (2015)

10. Brady, E.: Type-driven Development with Idris. Manning Publications, Greenwich,
Connecticut, 1 edn. (2017)

11. Chiao, C.M., Künzle, V., Reichert, M.: Towards object-aware process support in
healthcare information systems. In: eTELEMED’12. IARIA, Delaware, US (2012)

12. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: The essence of form abstraction. In:
APLAS’08. pp. 205–220. Springer, Berlin (2008)

13. Debois, S., Hildebrandt, T., Slaats, T.: Concurrency and asynchrony in declarative
workflows. In: BPM’15. pp. 72–89. Springer, Cham (2015)

14. Hancock, P., Setzer, A.: Interactive programs in dependent type theory. In: CSL’00.
pp. 317–331. Springer, Berlin/Heidelberg (2000)

15. Harrison, M.D., Masci, P., Campos, J.C., Curzon, P.: Verification of user inter-
face software: the example of use-related safety requirements and programmable
medical devices. IEEE Trans. Hum.-Mach. Syst. 47(6), 834–846 (2017)

16. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using
sized types. In: POPL’96. pp. 410–423. ACM, New York, NY, USA (1996)

17. Igried, B., Setzer, A.: Defining trace semantics for CSP-Agda (30 Jan 2018),
http://www.cs.swan.ac.uk/~csetzer/articles/types2016PostProceedings/
igriedSetzerTypes2016Postproceedings.pdf, accepted for publica-
tion in Postproceedings TYPES 2016, 23 pp, avilable from http:
//www.cs.swan.ac.uk/~csetzer/articles/types2016PostProceedings/
igriedSetzerTypes2016Postproceedings.pdf

18. Jeffrey, A.: LTL types FRP: Linear-time temporal logic propositions as types,
proofs as functional reactive programs. In: PLPV ’12. ACM, New York (2012)

19. Kanav, S., Lammich, P., Popescu, A.: A conference management system with ver-
ified document confidentiality. In: CAV’14. pp. 167–183. Springer (2014)

20. Krasner, G.E., Pope, S.T.: A cookbook for using the model-view-controller user
interface paradigm in smalltalk-80. JOOP 1(3), 26–49 (1988)

21. Memon, A.M.: GUI testing: Pitfalls and process. Computer 35(8), 87–88 (2002)
22. Memon, A.M.: An event-flow model of GUI-based applications for testing. Software

Testing, Verification and Reliability 17(3), 137–157 (2007)
23. Memon, A.M., Xie, Q.: Studying the fault-detection effectiveness of GUI test cases

for rapidly evolving software. IEEE T SOFTWARE ENG 31(10), 884–896 (2005)

18 Adelsberger et al.

24. Mertens, S., Gailly, F., Poels, G.: Enhancing declarative process models with dmn
decision logic. In: BPMDS’15. pp. 151–165. Springer, Cham (2015)

25. Moggi, E.: Notions of computation and monads. Information and Computation
93(1), 55 – 92 (1991)

26. Montali, M., Chesani, F., Mello, P., Maggi, F.M.: Towards data-aware constraints
in Declare. In: SAC’13. pp. 1391–1396. ACM (2013)

27. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographies. ACM Trans.
Web 4(1), 3:1–3:62 (Jan 2010)

28. Petersson, K., Synek, D.: A set constructor for inductive sets in Martin-Löf’s type
theory. In: CTCS’89. vol. 389, pp. 128–140. Springer-Verlag, London, UK (1989)

29. Pinson, K.: GUI programming in Idris? (19/12 2015), https://groups.google.
com/forum/#!topic/idris-lang/R_7oixHofUo, google groups posting

30. Ruiz, A., Price, Y.W.: Test-driven GUI development with TestNG and Abbot.
IEEE Software 24(3), 51–57 (2007)

31. Sculthorpe, N., Nilsson, H.: Safe functional reactive programming through depen-
dent types. In: ICFP’09. pp. 23–34. ACM (2009)

32. Sinnig, D., Khendek, F., Chalin, P.: Partial order semantics for use case and task
models. Formal Aspects of Computing 23(3), 307–332 (2011)

33. Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., Zhai, C.: Bug characteristics in open
source software. Empirical Software Engineering 19(6), 1665–1705 (2014)

34. Valaer, L.A., Babb, R.G.: Choosing a user interface development tool. IEEE Soft-
ware 14(4), 29–39 (1997)

35. Wan, Z., Hudak, P.: Functional reactive programming from first principles. In:
PLDI’00. pp. 242–252. ACM, New York (2000)

36. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE Software 31(3), 79–85 (2014)

37. wiki: WxHaskell (Retrieved 9 Feb 2017), https://wiki.haskell.org/WxHaskell

