

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in: *Diabetes Care*

Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa40954

Paper:

Dhatariya, K., Bain, S., Buse, J., Simpson, R., Tarnow, L., Kaltoft, M., Stellfeld, M., Tornøe, K. & Pratley, R. (2018). The Impact of Liraglutide on Diabetes-Related Foot Ulceration and Associated Complications in Patients With Type 2 Diabetes at High Risk for Cardiovascular Events: Results From the LEADER Trial. *Diabetes Care*, dc181094 http://dx.doi.org/10.2337/dc18-1094

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

The impact of liraglutide on diabetes-related foot ulceration and associated complications in patients with type 2 diabetes at high risk for cardiovascular events: results from the LEADER trial

Ketan Dhatariya FRCP¹*, Stephen C Bain FRCP², John B Buse MD³, Richard Simpson DM⁴, Lise Tarnow DMSc⁵, Margit Staum Kaltoft MD⁶, Michael Stellfeld MD⁶, Karen Tornøe MD⁶, Richard E Pratley MD⁷, the LEADER Publication Committee on behalf of the LEADER Trial Investigators

¹Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK and Norwich Medical School, University of East Anglia, Norwich, UK;
²Institute of Life Science, Swansea University Medical School, Swansea, UK;
³University of North Carolina School of Medicine, Chapel Hill, NC, USA;
⁴Monash University and Eastern Health, Victoria, Australia;
⁵Nordsjællands Hospital, Hillerød, Denmark;
⁶Novo Nordisk A/S, Søborg, Denmark;
⁷Florida Hospital Translational Research Institute for Metabolism and Diabetes, Orlando, FL,

USA.

*Corresponding author: Ketan Dhatariya,

Consultant in diabetes, endocrinology and general medicine

Hon Reader in Medicine, University of East Anglia

Elsie Bertram Diabetes Centre

Norfolk and Norwich University Hospitals NHS Foundation Trust

Colney Lane, Norwich, NR4 7UY

Tel: 44 1603 288170. Fax: 44 1603 288438

Email: ketan.dhatariya@nnuh.nhs.uk

Running title: Liraglutide and diabetes-related foot ulcers

Article type: Original research article

Word count: 3260 (max 4000; main text only/excluding acknowledgments)

Tables and figures: 2 tables and 2 figures (plus suppl material)

References: 30 (max 40)

Abstract

Objective:

Diabetes-related foot ulcers (DFUs) and their sequelae result in large patient and societal burdens. Long-term data determining the efficacy of individual glucose-lowering agents on DFUs are lacking. Utilizing existing data from the LEADER trial, we conducted *post hoc* analyses assessing the impact of liraglutide versus placebo in people with type 2 diabetes and at high risk of cardiovascular (CV) events on the incidence of DFUs and their sequelae.

Research Design and Methods:

LEADER (NCT01179048) was a randomized, double-blind, multicenter, CV outcomes trial assessing liraglutide (1.8 mg/day) versus placebo, in addition to standard of care, for up to 5 years. Information on DFU was collected systematically during the trial and DFU complications were assessed *post hoc* through reviewing case narratives.

Results:

During a median of 3.8 years' follow-up, similar proportions of patients reported at least one episode of DFU in the liraglutide and placebo groups (3.8% [176/4668] versus 4.1% [191/4672] respectively, hazard ratio [HR]: 0.92, 95% CI: 0.75, 1.13; p=0.41). Analysis of DFU-related complications demonstrated a significant reduction in amputations with liraglutide versus placebo (HR: 0.65; 95% CI: 0.45, 0.95; p=0.03). However, no differences were found for foot infections, involvement of underlying structures, or peripheral revascularization in the main analysis.

Conclusions:

Treatment with liraglutide in patients with type 2 diabetes and at high risk of CV events in LEADER did not increase the risk of DFU events, and was associated with a significantly lower risk of DFU-related amputations compared with placebo. This association, possibly due to chance, needs further investigation. Diabetes-related foot ulcers (DFUs) are a common complication in people with diabetes, estimated to affect between 9.1 million and 26.1 million people worldwide (1). This equates to a lifetime incidence of 19% to 34% in patients with diabetes (1). Long-term outcomes for patients with DFU are poor (1), particularly reflected in 5-year mortality rates. For example, in patients with DFUs, the 5-year mortality rate is 44% (2), and may be as high as 70% when patients have a related amputation (3), a rate similar to that for patients with colorectal cancer (4). Alongside these high mortality rates, the economic impact of DFU is large (5), with the National Health Service in England spending an estimated £972 million–£1.13 billion in 2014–2015 on treating people with DFU (6,7), and in the US \$9.1–\$13.2 billion being spent annually (8).

Currently, the standard of care for DFU consists of wound care, pressure offloading, and when necessary, antibiotics, vascular reconstruction or surgical debridement (1). These interventions have some success in healing DFUs in the short term (1,9). In the longer term, however, there is a high risk that DFUs will recur (1). To date, there are few data to suggest that choice of glucose-lowering therapies impacts on the management of DFUs or their sequelae.

It is generally agreed that good glycemic control reduces the risk of complications in people with diabetes (10,11), but its precise role in decreasing the risk of foot complications remains unclear due to multiple confounding factors in most DFU trials (12). Randomized controlled clinical trials are particularly difficult in this field (9) due to the complexity of foot ulcer pathogenesis and the size of the study population needed to test treatment efficacy (13). These difficulties contribute to the lack of a robust evidence base for adjunctive drug therapies (14), and any benefits they may have for patients. Indeed, a recent cardiovascular outcomes trial (CVOT) program of over 10,000 patients with diabetes at high risk of cardiovascular (CV) events

suggested that one glucose-lowering agent, canagliflozin, increases the risk of lower extremity amputations (15). Little work has been published on the effect of other classes of glucose-lowering drugs, including glucagon-like peptide-1 receptor agonists (GLP-1RAs), on DFU and its outcomes.

The Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcomes Results (LEADER) trial was a CVOT that investigated the effect of liraglutide versus placebo, both in addition to standard of care, on CV events and long-term safety in patients with type 2 diabetes and at high CV risk. In the trial, DFU was a prespecified secondary endpoint (16). Utilising this existing, extensive data set, we conducted a *post hoc* analysis to assess the impact of liraglutide, a GLP-1RA, on the incidence of DFUs and their sequelae in people with type 2 diabetes.

Research design and methods

In this *post hoc* analysis of the LEADER data, DFU was defined as an open wound on the foot. Although DFU was a prespecified secondary endpoint, this was not a primary foot ulcer trial and as such did not include all 21 points recommended for such trials by Jeffcoate et al. (13). For transparency and as good practice, we have included the 21-point checklist as supplementary methods, comparing our methodology against that recommended for good quality DFU publications (Table S1).

Study design and oversight

The trial design (NCT01179048) and methods have been published previously (16). The trial protocol, available with the full article text (16), was approved by an institutional review board or ethics committee as required by each participating center, and all patients provided written

informed consent. Briefly, the LEADER trial was of double-blind, placebo-controlled design, during which patients with type 2 diabetes and at high risk of CV events were randomly assigned in a 1:1 ratio to liraglutide or placebo, both in addition to standard of care. The disposition and baseline characteristics of trial participants have been published previously (16). Information on diabetes complications and risk factors for DFU was collected at baseline.

A total of 9340 patients were randomized (full analysis set), 4668 to receive liraglutide and 4672 to placebo, with a median follow-up of 3.8 years (16). The mean percentage of time that patients took their assigned trial treatment was 84% in the liraglutide group and 83% in the placebo group (16).

Collection of DFU data

A selective and targeted approach to safety data collection was applied (17), and reporting was required only for events meeting the definition of a serious adverse event (SAE) or prespecified Medical Event of Special Interest (MESI). In the trial, DFU was prespecified as a MESI. As with other prespecified MESIs, information related to DFU events (including complications of such events) was collected on a designated form.

Patients were classified as 'with DFU event' if they reported an incident DFU or worsening of an existing DFU (i.e. one that was present at study entry) during the trial. Patients 'without DFU events' did not experience a DFU as an adverse event during the trial; however, they may have had a DFU at baseline that continued throughout the trial without worsening. Such pre-existing, non-worsening DFUs were not included in this analysis.

The development of a DFU and worsening of an existing DFU were captured as adverse events and identified post-trial based on a prespecified search using terms from the Medical Dictionary for Regulatory Activities (MedDRA) on all adverse events reported in the trial (see supplementary materials for full details; Table S2). In addition, a blinded review conducted before database lock of the case narratives of the events identified by this search was used to establish the nature of the DFU event and any associated complications (i.e. amputations, infections, involvement of underlying structures, or peripheral revascularizations). Any events judged by medical evaluation not to be DFUs, or that were reported as a complication of a DFU event previously captured (i.e. reported as two separate events, but during case narrative review realised to be an event plus its complication), were excluded from the analyses.

Unless otherwise specified, the term 'amputation' refers to all amputations identified in this analysis. Amputations were also further categorized (post database lock and per International Working Group on the Diabetic Foot guidelines¹⁸) as: minor, which included mid-tarsal or distal amputations; major, which included any resection proximal to mid-tarsal level; or unknown, which were those that could not be classified as major or minor based on the case narratives.

Statistical methods

Summary statistics were calculated for baseline data. The hazard ratio (HR) for time to first DFU event and each of the four complications (i.e. amputation [overall, major and minor], infection, involvement of underlying structures, or peripheral revascularization) was estimated using a Cox regression model with treatment as a fixed factor. The cumulative incidence was estimated using the Aalen-Johansen method with death as a competing risk factor. The HR for time to all DFU

events was estimated using the Andersen-Gill method for the Cox regression model on recurrent events with treatment as a fixed factor.

In a separate analysis, DFU events that occurred within 1 year of enrollment into the study were excluded. This was to allow for a 'latency effect' because it was considered that any potential protective effect of liraglutide would not be present within the first year of treatment. Thus, time to first DFU event and DFU-related complications that occurred 1 year or more after randomization were investigated. The HR for the time to these events was also estimated using the Cox regression model.

No corrections for multiple testing were performed because all these analyses were *post hoc* and exploratory in nature.

Data sharing

The data and details of analytic methods that support the findings of this study are available from the corresponding author upon request.

Role of the funding source

The study sponsor completed the analyses, and contributed to data interpretation with the authors (three of the authors are employees of the sponsor). The corresponding author had full access to the data and the final responsibility for the decision to submit for publication.

Results

For this *post hoc* analysis of the published LEADER trial (16), 260 DFU events in 176 patients treated with liraglutide and 291 DFU events in 191 patients treated with placebo were identified (Figure S1 and supplementary materials).

Baseline characteristics, including risk factors for DFU

Of the patients experiencing DFU events, proportionally more were male, had longer diabetes duration, poorer glycemic control, and were administering insulin at baseline versus those without DFU events (Table S3). Although patients who experienced DFU events during the trial appeared to have a higher mean body weight than those without DFU events, the mean body mass index of both groups was similar (Table S3). In addition, other risk factors for DFU (history of DFU, neuropathy, nephropathy, retinopathy, peripheral arterial disease and smoking) were present at greater proportions in patients who experienced a DFU event during the trial, compared with those who did not (Table S3). For patients who reported DFU events during the trial, 40.3% in the liraglutide group and 36.1% in the placebo group had a history of DFU at baseline, consistent with previous data on the recurrent nature of DFU. This compared with 3.0% and 2.8%, in the liraglutide and placebo groups, respectively, for those who did not develop a DFU event during the trial. The corresponding numbers for patients with ongoing DFU at baseline were 16.5% and 13.6%, respectively, for patients who reported a DFU event during the trial, compared with 0.9% and 0.7%, respectively, for patients without DFU events (Table S3).

DFU events over time

A slight separation of the curves for time to first DFU event in favor of liraglutide appeared from Month 18 and onwards; however, the HR for time to first DFU event was 0.92 (95% CI: 0.75, 1.13; p=0.41; Figure 1; Table 1), showing no significant difference, which was the same for time to first DFU event reported from 1 year after randomization (i.e. excluding events occurring within the first year of trial participation; Table 1).

The mean number of DFU events per 100 patients was also numerically less with liraglutide compared with placebo from Month 18 onwards (Figure S2). However, a HR of 0.97 (95% CI: 0.82, 1.16, p=0.76; Table 1) for analysis of all DFU events, including recurrent events, indicated no significant difference between treatment arms.

In patients with or without a history of DFU, and in patients at high risk of DFU (i.e. no active foot ulcer at baseline, but with peripheral neuropathy or presence of peripheral artery disease or history of DFU), similar results were seen for the time to first DFU event (Table 1).

DFU-related amputations

Treatment with liraglutide resulted in a lower proportion (25.0%; 44/176) of patients with DFU events leading to amputations compared with placebo (35.1%; 67/191; Table 2). The Cox regression analysis of time to first amputation with a HR of 0.65 (95% CI: 0.45, 0.95; p=0.028; Figure 2A) demonstrated a risk reduction in amputations with liraglutide.

The treatment difference seen in amputations seemed driven mostly by major amputations (liraglutide: 6.3% [11/176]; placebo: 11.5% [22/191]; p=0.06) rather than minor amputations (liraglutide: 19.3% [34/176]; placebo: 24.1% [46/191]; p=0.17) (Table 2). However, analysis of time to first (overall) amputations that occurred after 1 year from randomization (i.e. excluding amputations within the first year of trial participation) decreased the risk further in favor of liraglutide (HR: 0.55; 95% CI: 0.36, 0.84; p=0.006; Table 2).

Other DFU-related complications

For DFU-related infection and DFU involving underlying structures, the cumulative incidence plots appeared to separate over time (at Month 18 and 24, respectively) in favor of liraglutide, but the HRs of time to these events were not significant (Figure 2B+C). In addition, there was no difference between treatments in DFU requiring peripheral revascularization (Figure 2D).

The HR for time to first DFU-related infection that occurred after 1 year from randomization was 0.74 (95% CI: 0.55, 0.99; p=0.044) in favor of liraglutide (Table 2).

Conclusions

This *post hoc* analysis of data from the LEADER trial showed that the use of liraglutide in patients with type 2 diabetes at high risk of CV events did not increase the risk of a DFU event compared with placebo. Although there were numerically fewer DFU events with liraglutide compared with placebo, the difference was not significantly different. However, the HRs for time to DFUs requiring lower extremity amputation were significantly lower in the liraglutide arm than for those given placebo. Treatment with liraglutide also resulted in a risk reduction in DFU-related amputations compared with placebo when excluding amputations that occurred within the first year of enrollment into the trial.

With the large disease burden, social, personal and economic impact of DFUs (1,5,6), current limited treatment options available (1,19), and the high risk of DFU recurrence (1), there is a need for therapies with proven benefit. To date, very limited data have been published on the effect of glucose-lowering drugs on DFU and associated complications. Intensive glucose control

had no impact on the risk of amputation or development of peripheral vascular disease compared with conventional therapy in the UKPDS and ADVANCE studies; but DFU was not a specified endpoint in these trials (11,20,21). While in the VADT study amputation due to ischemic gangrene was included within the composite primary endpoint, data related to amputation or foot ulcers only do not appear to have been published (22,23). For ACCORD, data relating to some types of microvascular foot complications have been published but not amputation or foot ulcers (24). More recently, results from CANVAS and CANVAS-R (studies in which amputation data were systematically collected and reported) have indicated that the risk for both leg and foot amputations in canagliflozin-treated patients is approximately double that for placebo-treated patients (15). At this point in time, this does not seem to be a class effect of the sodium glucosetransporter 2 (SGLT2) inhibitors since a post hoc analysis of the EMPA-REG trial did not show an increase in major or minor amputation risk in those with pre-existing peripheral arterial disease, a group known to be at high risk of DFU events (25). More data regarding amputation on another SGLT2-inhibitor (dapagliflozin) will be available when the DECLARE-TIMI 58 CVOT is published later this year. To date, other than antibiotics used to treat infected wounds, only one other drug, fenofibrate, has been suggested to reduce the risk of amputation in patients with type 2 diabetes (26).

Examining the DFU data from the LEADER trial in detail, it was apparent that these were similar to other DFU studies. Within the LEADER trial population, the proportion of patients who had a medical history of DFU but did not report another (i.e. recurrent) DFU during the trial was very low (placebo: 2.8%, liraglutide: 3.0%). When compared with those who reported a DFU event during the trial, the proportion with a medical history of DFU was much higher (placebo: 36.1%, liraglutide: 40.3%), indicating the recurrent nature of DFU. These numbers

agree with those published by Armstrong et al., which showed that the recurrence rate within 1 year of healing was 40%, increasing to 65% within 5 years (1).

The important findings for DFU-related amputations lead to the question as to the possible mechanisms. Well-known risk factors for DFU include poor glycemic control, history of DFU, smoking, and long diabetes duration (19,27). Analysis of the baseline characteristics of patients who experienced a DFU event during the trial reflected these risk factors. Any differences reported here are likely to be directly a result of the assigned study treatment because the risk factors for DFU were balanced at baseline between the two treatment groups. Within the trial, there was modest improvement in some of these risk factors, such as glycemic control and weight loss, in the liraglutide group compared with placebo (16). It is unknown if the improvements in these effects contributed to the reduced incidence of DFU-related amputations in the liraglutide group.

Other possible links between DFU pathology and glucagon-like peptide-1 receptor agonism could be reduced inflammation and increased angiogenesis. These have been demonstrated in rodents with diabetes treated intraperitoneally with exendin-4 (28). Also, liraglutide increased atherosclerotic plaque stability in rodents, which could reduce vascular disease (29). It is possible that similar mechanisms could be induced by liraglutide in humans and are relevant here, as inflammation is linked to DFU pathology (27). This effect may not be unique to the GLP-1RA class, because other incretin-based therapies may also impact DFU healing, as shown recently by a pre-clinical and clinical study with saxagliptin, a dipeptidyl peptidase 4 inhibitor (30).

Limitations

Although we evaluated a previously unexplored question, this was a *post hoc* analysis of the LEADER trial, which was designed to assess CV safety and not the risk of DFU in great detail. This analysis was exploratory in nature and did not correct for multiple testing; therefore, caution is needed when interpreting the data. Also, the inclusion/exclusion criteria did not mention DFU; however, the target population was those at high risk for CV events, which would inherently have included patients at risk for DFU events. DFU was a prespecified MESI, which resulted in the systematic collection of events and associated complications. However, information on the location of the DFU and management of DFU (e.g. care afforded to individual patients and duration of event) was not systematically collected, which would have allowed events to be investigated in greater detail.

Due to the protocol and method of safety data collection, it was not possible to analyse all amputations that occurred during the trial, but only those related to DFU events. This is because the underlying cause for any procedure or surgery was reported as the adverse event, and not the procedure itself (unless the underlying cause was unknown). However, as 85% of lower extremity amputations are preceded by a DFU (18), it is likely that the number of amputations not included in this analysis was relatively small.

The checklist to assess the quality of study reports about DFU (13) was completed for this *post hoc* analysis (Table S1). Although the trial prespecified DFU as secondary endpoint, it was not powered for the analyses applied here. The low number of events and the relatively short follow-up (median follow-up: 3.8 years) may have affected the potential to find further differences between the liraglutide and placebo arms. For example, the cumulative plots for DFU events overall, DFU events with infection, and DFU events with involvement of underlying structures

separated in favor of liraglutide after 18 and 24 months, respectively, but did not reach statistical significance. However, given that this trial recruited those at high CV risk with baseline glycated hemoglobin concentrations >7.0% (53 mmol/mol) – and thus at high risk of DFU – and the large sample size, it is unlikely that a similar trial will be done to examine foot outcomes specifically.

Although the overall risk of DFU events was similar between liraglutide and placebo, the reduced risk for DFU-associated amputations suggests the value from such a *post hoc* analysis. Furthermore, the prespecified data collection increased the robustness of these analyses; other strengths include that DFU incidence was monitored in a large population at risk of DFU within a randomized clinical trial population.

In summary, this *post hoc* analysis of data from the LEADER trial suggests that treatment with liraglutide in patients with type 2 diabetes and at high risk of CV events did not increase the risk of DFU events, and was associated with a significantly lower risk of DFU-related amputations compared with placebo. The association between the use of liraglutide and reduction in amputation in those at high CV risk could be due to chance, but merits further investigation.

Acknowledgments

Author contributions

KD, SCB, JBB, RS, LT, MSK, MS, KT, and REP conceived this analysis of the LEADER data. KD, SCB, JBB, RS, LT, MSK, MS, KT, and REP advised on analysis and interpretation of the data. KD as lead author was responsible for the development of the first draft. KD, SCB, JBB, RS, LT, MSK, MS, KT, and REP drafted and revised the manuscript. The trial and this analysis were sponsored by Novo Nordisk. Ketan Dhatariya is the guarantor for the contents of this article. Medical writing and editorial support were provided by Gillian Groeger, PhD, and Izabel James, MBBS, both from Watermeadow Medical, an Ashfield company, part of UDG Healthcare plc, funded by Novo Nordisk. Helen Vanya Biering Kjær Stegmann completed the statistical analyses and together with Bernt Johan von Scholten reviewed the manuscript, contributing to its development (both from Novo Nordisk).

Parts of this analysis were presented at the European Association for the Study of Diabetes (EASD), 53rd Annual Meeting, 11–15 September 2017, Lisbon, Portugal, at the International Diabetes Federation (IDF) Congress 2017, 4–8 December 2017, Abu Dhabi, United Arab Emirates and encored at some local congresses.

Declaration of interests

KD: honoraria and/or and travel support from Novo Nordisk, Sanofi Diabetes, Lilly, Lexicon Pharmaceuticals, Genentech, Urgo Laboratories.

SCB: research grants (includes principal investigator, collaborator/consultant and pending grants) from Healthcare and Research Wales (Welsh Government) and Novo Nordisk; other research support from Healthcare and Research Wales (Welsh Government) infrastructure support; honoraria from Novo Nordisk, Sanofi, Lilly, Boehringer Ingelheim, and Merck; ownership interest: Gycosmedia (diabetes online news service).

JBB: consulting fees paid to his institution and travel support from Adocia, AstraZeneca, Dexcom, Elcelyx Therapeutics, Eli Lilly, Intarcia Therapeutics, Lexicon, MannKind, Metavention, NovaTarg, Novo Nordisk, Sanofi, Senseonics, and vTv Therapeutics; grant support from AstraZeneca, Boehringer Ingelheim, Johnson & Johnson, Lexicon, Novo Nordisk, Sanofi, Theracos, and vTv Therapeutics; stock options: Mellitus Health, PhaseBio, and Stability Health. Consultant to Neurimmune AG, and supported by a grant from the National Institutes of Health (UL1TR002489).

RS: research grants from Novo Nordisk and Merck; travel support and /or honoraria from Merck, Eli Lilly, Novo Nordisk, GSK, AstraZeneca, Sanofi-Aventis; consulting fees from Novo Nordisk and Sanofi-Aventis.

LT: research grants, travel and honoraria from Novo Nordisk; holds shares in Novo Nordisk. MSK, MS, and KT: employees of Novo Nordisk and all hold stocks/shares in Novo Nordisk. REP: research grants (to his institution) from Novo Nordisk; speaker and consultancy fees (paid to his institution) from AstraZeneca and Takeda; consultancy fees (paid to his institution) from Boehringer Ingelheim, GlaxoSmithKline, Hanmi Pharmaceutical Co., Ltd., Janssen Scientific Affairs, LLC, Ligand Pharmaceuticals, Inc., Lilly, Merck, Novo Nordisk, Pfizer and Eisai, Inc.; research grants from Gilead Sciences, Lexicon Pharmaceuticals, Ligand Pharmaceuticals, Inc., Lilly, Merck, Novo Nordisk, Sanofi-Aventis US, LLC, and Takeda.

References

1. Armstrong DG, Boulton AJM, Bus SA. Diabetic Foot Ulcers and Their Recurrence. *N Engl J Med* 2017;**376**:2367–2375.

2. Moulik PK, Mtonga R, Gill GV. Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology. *Diabetes Care* 2003;**26**:491–494.

3. Lavery LA, Hunt NA, Ndip A, Lavery DC, Van Houtum W, Boulton AJ. Impact of chronic kidney disease on survival after amputation in individuals with diabetes. *Diabetes Care* 2010;**33**:2365–2369.

4. Office for National Statistics UK. Cancer survival in England: Patients diagnosed
between 2010 and 2014 and followed up to 2015. 2016. Available from
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddisea
ses/bulletins/cancersurvivalinenglandadultsdiagnosed/2010and2014andfollowedupto2015.

Accessed 20 November 2017.

5. Petrakis I, Kyriopoulos IJ, Ginis A, Athanasakis K. Losing a foot versus losing a dollar; a systematic review of cost studies in diabetic foot complications. *Expert Rev Pharmacoecon Outcomes Res* 2017;**17**:165–180.

 Kerr M. Diabetic foot care in England: an economic study. 2017. Available from https://diabetes-resources-production.s3-eu-west-1.amazonaws.com/diabetesstorage/migration/pdf/Diabetic%2520footcare%2520in%2520England%2C%2520An%2520econ omic%2520case%2520study%2520(January%25202017).pdf. Accessed 2 October 2017.

NHS Digital. National Diabetes Foot Care Audit, Hospital Admissions Report 2014 2016. Available from http://www.digital.nhs.uk/catalogue/PUB30107. Accessed 25 July 2017.

8. Rice JB, Desai U, Cummings AK, Birnbaum HG, Skornicki M, Parsons NB. Burden of diabetic foot ulcers for medicare and private insurers. *Diabetes Care* 2014;**37**:651–658.

9. Jeffcoate WJ, Price PE, Phillips CJ, Game FL, Mudge E, Davies S, Amery CM, Edmonds ME, Gibby OM, Johnson AB, Jones GR, Masson E, Patmore JE, Price D, Rayman G, Harding KG. Randomised controlled trial of the use of three dressing preparations in the management of chronic ulceration of the foot in diabetes. *Health Technol Assess* 2009;**13**:1–86, iii-iv.

10. Hingorani A, LaMuraglia GM, Henke P, Henke P, Meissner MH, Loretz L, Zinszer KM, Driver VR, Frykberg R, Carman TL, Marston W, Mills JL Sr, Murad MH. The management of diabetic foot: A clinical practice guideline by the Society for Vascular Surgery in collaboration with the American Podiatric Medical Association and the Society for Vascular Medicine. *J Vasc Surg* 2016;**63**(2 Suppl):3s–21s.

11. UKPDS. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. *Lancet* 1998;**352**:837–853.

Hasan R, Firwana B, Elraiyah T, Domecq JP, Prutsky G, Nabhan M, Prokop LJ, Henke
P, Tsapas A, Montori VM, Murad MH. A systematic review and meta-analysis of glycemic
control for the prevention of diabetic foot syndrome. *J Vasc Surg* 2016;63(2 Suppl):22S–28S.e12.

 Jeffcoate WJ, Bus SA, Game FL, Hinchliffe RJ, Price PE, Schaper NC; International Working Group on the Diabetic Foot and the European Wound Management Association.
 Reporting standards of studies and papers on the prevention and management of foot ulcers in diabetes: required details and markers of good quality. *Lancet Diabetes Endocrinol* 2016;4:781– 788. 14. Elraiyah T, Tsapas A, Prutsky G, Domecq JP, Hasan R, Firwana B, Nabhan M, Prokop L, Hingorani A, Claus PL, Steinkraus LW, Murad MH. A systematic review and meta-analysis of adjunctive therapies in diabetic foot ulcers. *J Vasc Surg* 2016;**63**(2 Suppl):46S–58S.e1-2.

Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G,
 Desai M, Matthews DR; CANVAS Program Collaborative Group. Canagliflozin and
 Cardiovascular and Renal Events in Type 2 Diabetes. *N Engl J Med* 2017;**377**:644–657.

Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB; LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. *N Engl J Med* 2016;**375**:311–322.

17. Food and Drug Administration. Guidance for Industry: Determining the Extent of Safety
Data Collection Needed in Late-Stage Premarket and Postapproval Clinical Investigations. 2016.
Available from https://www.fda.gov/downloads/drugs/guidances/ucm291158.pdf. Accessed 5
September 2017.

International Working Group on the Diabetic Foot. Amputations in people with diabetes.
 2007. Available from http://iwgdf.org/consensus/amputations-in-people-with-diabetes. Accessed
 June 2017.

American Diabetes Association. 10. Microvascular Complications and Foot Care.
 Diabetes Care 2017;40(Suppl 1):S88–S98.

20. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. *N Engl J Med* 2008;**359**:1577–1589.

21. ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L,

Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. *N Engl J Med* 2008;**358**:2560–2572.

22. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, Huang GD; VADT Investigators. Glucose control and vascular complications in veterans with type 2 diabetes. *N Engl J Med* 2009;**360**:129–139.

23. Hayward RA, Reaven PD, Wiitala WL, Bahn GD, Reda DJ, Ge L, McCarren M, Duckworth WC, Emanuele NV; VADT Investigators. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. *N Engl J Med* 2015;**372**:2197–2206.

Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, Cuddihy R,
Cushman WC, Genuth S, Grimm RH Jr, Hamilton BP, Hoogwerf B, Karl D, Katz L, Krikorian
A, O'Connor P, Pop-Busui R, Schubart U, Simmons D, Taylor H, Thomas A, Weiss D, Hramiak
I; ACCORD trial group. Effect of intensive treatment of hyperglycaemia on microvascular
outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. *Lancet*2010;**376**:419–430.

25. Verma S, Mazer CD, Al-Omran M, Inzucchi SE, Fitchett D, Hehnke U, George JT, Zinman B. Cardiovascular Outcomes and Safety of Empagliflozin in Patients With Type 2 Diabetes Mellitus and Peripheral Artery Disease: A Subanalysis of EMPA-REG OUTCOME. *Circulation* 2018;**137**:405–407.

26. Rajamani K, Colman PG, Li LP, Best JD, Voysey M, D'Emden MC, Laakso M, Baker JR, Keech AC; FIELD study investigators. Effect of fenofibrate on amputation events in people

with type 2 diabetes mellitus (FIELD study): a prespecified analysis of a randomised controlled trial. *Lancet* 2009;**373**:1780–1788.

27. Volmer-Thole M, Lobmann R. Neuropathy and Diabetic Foot Syndrome. *Int J Mol Sci* 2016;**17**:917.

Roan JN, Cheng HN, Young CC, Lee CJ, Yeh ML, Luo CY, Tsai YS, Lam CF.
 Exendin-4, a glucagon-like peptide-1 analogue, accelerates diabetic wound healing. *J Surg Res* 2017;**208**:93–103.

29. Gaspari T, Welungoda I, Widdop RE, Simpson RW, Dear AE. The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on atherogenesis, plaque stability and endothelial function in an ApoE(-/-) mouse model. *Diab Vasc Dis Res* 2013;**10**:353–360.

30. Long M, Cai L, Li W, Zhang L, Guo S, Zhang R, Zheng Y, Liu X, Wang M, Zhou X, Wang H, Li X, Li L, Zhu Z, Yang G, Zheng H. DPP-4 Inhibitors Improve Diabetic Wound Healing via Direct and Indirect Promotion of Epithelial-Mesenchymal Transition and Reduction of Scarring. *Diabetes* 2018;**67**:518–531.

Tables

Table 1. Hazard ratios associated with DFU events in the LEADER trial

	Liraglutide	Placebo	H
Time to first DFU event*, n (%)	176 (3.8) [FAS=4668]	191 (4.1) [FAS=4672]	0.92
Time to first DFU event after 1 year ^{\dagger} , n (%)	127 (2.8) [FAS=4599]	149 (3.2) [FAS=4601]	0.85
Time to all DFU events (including recurrent events), E	260	291	0.9′
By background characteristics			
Time to first DFU event in patients with history of DFU	71 (34.1) [FAS=208]	69 (35.2) [FAS=196]	0.9′
Time to first DFU event in patients with no history of DFU	105 (2.4) [FAS=4460]	122 (2.7) [FAS=4476]	0.80
Time to first DFU event in patients at high risk of DFU	101 (5.8) [FAS=1747]	110 (6.2) [FAS=1787]	0.93

DFU event: defined as reporting of an incident DFU or worsening of an existing DFU. Cox regression model with treatment as a fixed defined as a patient with type 2 diabetes who at baseline did not have an active foot ulcer but had peripheral neuropathy or presence of history of DFU. *n, number of patients with a first DFU between randomization and follow-up dates. [†]n, number of patients with first f randomization date and before follow-up date (i.e. excludes event occurring within the first year of trial participation). DFU, diabetes-r events; FAS, full analysis set; HR, hazard ratio; n, number of patients; %, proportion of patients in the full analysis set

	L	Liraglutide (N=4668) (PYO=17,822)			Placebo (N=4672) (PYO=17,741)					
	n	% of N	% of patients with DFU	Е	R	n	% of N	% of patients with DFU	Е	R
Patients with DFU event(s)	176	3.8	100.0	260	1.46	191	4.1	100.0	291	1.64
Patients with DFU event(s)										
+ complication of:										
-Amputation	44	0.9	25.0	60	0.34	67	1.4	35.1	78	0.44
Minor	34	0.7	19.3	45	0.25	46	1.0	24.1	50	0.28
Major	11	0.2	6.3	13	0.07	22	0.5	11.5	24	0.14
Unknown	1	0.0	0.6	2	0.01	4	0.1	2.1	4	0.02
-Infection	107	2.3	60.8	146	0.82	131	2.8	68.6	162	0.91
-Involvement of	64	1.4	36.4	86	0.48	80	1.7	41.9	98	0.55
underlying structures										
-Peripheral revascularization	20	0.4	11.4	24	0.13	23	0.5	12.0	26	0.15

Table 2. Complications associated with DFU events

n 32	% of N	n	% of N
32	0.70		
	0.70	58	1.26
75	1.63	101	2.20
47	1.02	(7	1.40
47	1.02	67	1.40
11	0.24	20	0.42
11	0.24	20	0.45
	75 47 11	75 1.63 47 1.02 11 0.24	75 1.63 101 47 1.02 67 11 0.24 20

Analysis of first DFU-related complications that occurred after 1 year from randomization*

Analyses based on review of case narratives. *p*-values were based on an analysis of time to first event using a Cox regression model wi factor. 'Infection': presence of clinical signs of infection, including redness, warmth, pain, purulence or discharge. 'Involvement of under joint capsule or bone. 'Minor amputations': mid-tarsal or distal amputation (18). 'Major amputations': any resection proximal to mid-ta amputations': those that could not be classified as major or minor based on the case narratives. *Percentages of patients are of the full a N=4599; placebo, N=4601). This analysis excluded complications occurring within the first year of trial participation. DFU, diabetes-r number of events; HR, hazard ratio; N, number of patients in the treatment group; n, number of patients with an event or complication; observation; R, event rate per 100 PYO; %, proportion of patients with events or complications

Figure legends

Figure 1. Cumulative incidence plot of time to first DFU event among all patients in the LEADER trial

Aalen-Johansen plot, with death as a competing risk factor. This figure includes data from the first DFU events in 176 liraglutide-treated and 191 placebo-treated patients. DFU, diabetes-related foot ulcer; HR, hazard ratio

Figure 2. Cumulative incidence plot of time to first DFU-related complication among

patients treated with liraglutide versus placebo. A) amputation, B) infection, C)

involvement of underlying structures, D) peripheral revascularization

This figure includes data from the LEADER trial, specifically: A) 44 first DFU events in the liraglutide group and 67 first DFU events in the placebo group; B) 107 and 131 first DFU events, respectively; C) 64 and 80 first DFU events, respectively; D) 20 and 23 first DFU events, respectively. DFU, diabetes-related foot ulcer; HR, hazard ratio