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 13 

Abstract 14 

This work investigated fungal co‒culture as inducer of ligninolytic enzymes and 15 

decolourising activity in the Colombian strain Leptosphaerulina sp., an ascomycete 16 

white-rot fungus isolated from lignocellulosic material. Aspergillus niger, Aspergillus 17 

fumigatus, Aspergillus terreus, Trichoderma viride, Fusarium sp. and Penicillium 18 

chrysogenum were tested as Leptosphaerulina sp. inducers. The best fungal 19 

combinations in terms of enzyme production, fungal growth and decolourising 20 

activity were selected from solid media experiments. Response surface 21 

methodology (RSM) was utilised to optimise enzyme production and decolourising 22 
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activity in liquid media. Solid media assays evidenced T. viride and A. terreus as the 23 

best Leptosphaerulina sp. inducers. The RSM identified a triple co‒culture 24 

inoculated with T. viride (1000 µL) and A. terreus (1000 µL) into a 7‒day culture of 25 

Leptosphaerulina sp. as the best treatment. This triple combination significantly 26 

improved ligninolytic enzymes production and Reactive Black 5 dye removal when 27 

compared to the Leptosphaerulina sp. monoculture and previously used chemical 28 

inducers. These results demonstrated the potential of fungal co‒culture as an 29 

environmentally‒friendly method to enhance Leptosphaerulina sp. enzymes 30 

production and decolourising activity. 31 

Keywords: White-rot fungi; Fungal inducers; Fungal co‒culture; Bioremediation; 32 

Response surface methodology. 33 

1. Introduction 34 

Laccases (Lacs: p-diphenol: oxygen oxidoreductase, EC 1.10.3.2) are phenol 35 

oxidases belonging to the group of multicopper oxidase proteins. In nature, Lacs are 36 

involved in lignin degradation, morphogenesis, sporulation, pigments production, 37 

formation of fruiting bodies and plant pathogenesis (Rivera-Hoyos et al., 2013; 38 

Giardina et al., 2015). Lacs are also effective in various biotechnological processes 39 

such as biofuel production, textiles finishing (Abd El Monssef et al., 2016; Plácido & 40 

Capareda, 2015), and the biodegradation of environmental pollutants (Tortella et al., 41 

2013). The environmental applications include the transformation and degradation 42 

of compounds such as synthetic dyes, pharmaceuticals and pesticides (Bagewadi, 43 

et al., 2017; Copete-Pertuz et al., 2018; Zeng et al., 2017). 44 
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Fungal Lacs are the most studied type of Lacs and produced principally by 45 

basidiomycetes (Kuhar et al., 2015). In recent years, the number of reported Lacs 46 

from ascomycetes has increased. One of these ascomycetes is Leptosphaerulina 47 

sp., a native fungus from Colombia. Leptosphaerulina sp. produces high amounts of 48 

laccase (Lac) and manganese peroxidase (MnP). The ability of these enzymes to 49 

fully decolourise several synthetic dyes has been proved by different previous 50 

articles (Chanagá Vera et al., 2012; Copete et al., 2015; Plácido et al., 2016). 51 

The use of Leptosphaerulina sp. for industrial applications (pollutant removal, 52 

delignification or bioethanol production) requires large quantities of enzymes (Liu et 53 

al., 2016); making their inducers a necessity to reach the desired enzyme production 54 

levels. Copper sulphate and ethanol have favoured the production of Lac in 55 

Leptosphaerulina sp. (Copete et al., 2015). Other chemical inducers such as ferulic 56 

acid, veratryl alcohol and 2,5‒xylidine enhanced the Lac activity production (Piscitelli 57 

et al., 2011). However, some of them are expensive and in some cases, depending 58 

on the concentration used, have a negative impact on the environment (Kuhar & 59 

Papinutti, 2014; Pan et al., 2014). Therefore, to improve the production of ligninolytic 60 

enzymes by Leptosphaerulina sp., it is necessary to find more appropriate inducers, 61 

both economically and environmentally. 62 

An alternative enhancing method is microbial co‒culture. The combination of 63 

microorganisms has favoured Lac production and the degradation of recalcitrant 64 

contaminants in soil and water sources (Mikesková et al., 2012; Pan et al., 2014). 65 

The three most common co‒culture strategies are: the co‒culture of two ligninolytic 66 
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fungi, the addition of Gongronella sp. and the co‒culture with members of the 67 

Trichoderma genus. First, the co‒culture of two ligninolytic fungi, Ceriporiopsis 68 

subvermispora and Pleurotus ostreatus improved Lac production between 1 and 3‒69 

times compared with the individual cultures (Chi et al., 2007). Similarly, Qi-He et al. 70 

(2011) found that co‒cultivation of the white-rot fungi Phlebia radiata and Dichomitus 71 

squalens significantly stimulated the Lac expression after the fourth day of culture. 72 

Second, the co‒culture with Gongronella sp. W5 increased the Lac activity in Panus 73 

rudis 25‒times more than cultures using copper / o-toluidine as Lac activity inducers 74 

(Pan et al., 2014; Wei et al., 2010). Finally, one of the most studied fungal co‒75 

cultures includes the use of Trichoderma genus. Trichoderma species such as T. 76 

atroviride, T. harzianum and T. longibrachiatum increased the production of Lacs  in 77 

mixed cultures (Baldrian, 2004; Flores et al., 2009; Wei et al., 2010; Zhang et al., 78 

2006). Flores et al. (2009) demonstrated that co-cultures of P. ostreatus and 79 

Trichoderma spp. produced 6‒times more Lac activity than the respective 80 

monocultures. Additionally, Trichoderma species increased Lac activity in Lentinula 81 

edodes (20‒fold) and Coprinus comatus (2,6‒fold) (Ma & Ruan, 2015; Savoie et al., 82 

1998). 83 

Fungal co‒culture offers a novel, environmental and economic option for enhancing 84 

enzymatic and decolourising activities for other white rot fungi; however, this 85 

induction method has not been tested in ascomycetes fungi such as 86 

Leptosphaerulina sp. Additionally, the effect of Colombian native fungal isolates 87 

have not been tested in co-culture and as ligninolytic enzymes inducers. Therefore, 88 

the aim of this article was to enhance the production of ligninolytic enzymes and the 89 
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biodegradation of the Reactive Black 5 (RB5) dye by using co‒cultures of 90 

Leptosphaerulina sp. with other fungi of biotechnological interest. First, the 91 

Leptosphaerulina sp. biocompatibility with other fungi in solid media was evaluated 92 

on potato dextrose agar (PDA) with ABTS and/or RB5. The most compatible fungi 93 

were later evaluated using a response surface methodology (RSM) in a central 94 

composite 22 + star design to obtain the best co‒culture conditions for enhancing 95 

Leptosphaerulina sp. enzymatic and decolourising activities. 96 

 97 

2. MATERIALS AND METHODS 98 

2.1. Chemicals 99 

Reactive Black 5 (RB5) (azoic dye, λmax= 598 nm, from DyStar) was kindly donated 100 

by Fabricato‒Tejicondor S.A. from Medellín, Colombia. Glucose, yeast extract, 101 

peptone, zinc sulphate heptahydrate, monobasic potassium phosphate, tetraborate 102 

sodium decahydrate, ammonium molybdate and sodium acetate were obtained from 103 

Carlo Erba. 2,6-dimethoxyphenol 99% (DMP) and ammonium L-(+)-tartrate 98% 104 

were products of Alfa Aesar. Manganese sulphate heptahydrate, potassium chloride, 105 

tartaric acid, acetic acid, iron sulphate heptahydrate and hydrogen peroxide were 106 

obtained from Merck. 2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) 107 

diammonium salt 98% (ABTS) and veratryl alcohol 96% were products of Sigma - 108 

Aldrich. 109 

2.2. Microorganisms 110 
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Leptosphaerulina sp. (CECT 20913), Aspergillus niger, Aspergillus fumigatus, 111 

Aspergillus terreus, Trichoderma viride, Fusarium sp. and Penicillium chrysogenum 112 

were obtained from PROBIOM research group’s microorganisms collection 113 

(Chanagá Vera et al., 2012; Plácido et al., 2016). The fungi were maintained in 114 

potato dextrose agar (PDA) at 4 °C until use. This work was authorised by the 115 

Autoridad Nacional de Licencias Ambientales (ANLA) under the research permit No. 116 

8 de 2010 (Resolución 324 de 2014) and the Ministerio de Ambiente y Desarrollo 117 

Sostenible with the agreement No. 96 of 2014 to genetic resources access. 118 

2.3. Solid media studies 119 

2.3.1. Co‒culture biocompatibility and enzymatic production  120 

Leptosphaerulina sp. was co‒cultivated in six combinations (Table 1): 1 121 

(Leptosphaerulina sp.‒A. niger), 2 (Leptosphaerulina sp.‒A. fumigatus), 3 122 

(Leptosphaerulina sp.‒A. terreus), 4 (Leptosphaerulina sp.‒T. viride), 5 123 

(Leptosphaerulina sp.‒Fusarium sp.) and 6 (Leptosphaerulina sp.‒P. 124 

chrysogenum). Petri dishes with PDA were supplemented with 0.5 mM ABTS, as a 125 

ligninolytic enzyme indicator (Plácido et al., 2016). The Petri dish was divided in two 126 

halves: on one side, Leptosphaerulina sp., and 4 cm in front of it, the other fungal 127 

strain. After inoculation, the Petri dishes were incubated at 28 °C for 15 days. The 128 

response variables were the growth area and the ligninolytic activity area percentage 129 

(LAAP) (green and/or violet halo) (Crowe & Olsson, 2001; Plácido et al., 2016). 130 

Fungal and halos growth were followed by photographic records collected every 24 131 

h. The results were reported at days 0, 3, 7, 12 and 15. Green or violet halos 132 
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indicated a reaction between the ligninolytic enzymes and the ABTS (Crowe & 133 

Olsson, 2001; Hiscox et al., 2010; Plácido et al., 2016). All procedures were 134 

performed in triplicate with their monocultures as controls (Wei et al., 2010; Zhang 135 

et al., 2006). The images were analysed with the image J software (National 136 

Institutes of Health, version 1.51j8, 2017) (Ferreira & Rasband, 2012). The fungal 137 

growth was determined measuring the growth area (cm2) in image J and the LAAP 138 

was calculated using Equation 1: 139 

 𝐿𝑖𝑔𝑛𝑖𝑛𝑜𝑙𝑦𝑡𝑖𝑐 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑎𝑟𝑒𝑎 % =
  ℎ𝑎𝑙𝑜 𝑎𝑟𝑒𝑎 (𝑔𝑟𝑒𝑒𝑛 𝑜𝑟 𝑣𝑖𝑜𝑙𝑒𝑡)

 𝑃𝑒𝑡𝑟𝑖 𝑑𝑖𝑠ℎ 𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎
× 100   Equation 1 140 

Where the Petri dish total area was 68.26 cm2, and the halo area was determined 141 

by the image J software (National Institutes of Health, version 1.51j8, 2017). 142 

2.3.2. Co‒culture biocompatibility and decolourising activity 143 

The co‒cultures (Table 1) and monocultures’ decolourising activities were evaluated 144 

in Petri dishes with PDA media supplemented with the RB5 dye (50 μM). The fungi 145 

were inoculated and incubated similarly as explained in Section 2.3.1. The response 146 

variable was the percentage change of colour intensity (PCI) (Abd El-Rahim et al., 147 

2003) which was calculated with Equation 2.  148 

∆𝑪𝑰

𝑪𝑰𝟎
% =

|𝑪𝑰𝒌−𝑪𝑰𝟎|

𝑪𝑰𝟎
 × 100       Equation 2 149 

Where 𝑪𝑰𝒌 is the colour intensity of the medium at day k and 𝑪𝑰𝟎 is the medium 150 

colour intensity at day 0. 151 
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The colour reduction was followed by photographic records collected every 24 h. 152 

Based in our previous work, the results were reported on days 0, 3, 7, 12 and 15, as 153 

these days are associated with significant moments for enzymes production and/or 154 

decolourising activities using Leptosphaerulina sp. (Copete et al., 2015; Plácido et 155 

al. 2016). All procedures were performed in triplicate and the images were analysed 156 

with the image J software (National Institutes of Health, version 1.51j8, 2017) 157 

(Ferreira & Rasband, 2012). The two co‒cultures with the highest enzymatic 158 

activities and/or colour reduction on solid medium were selected for the liquid 159 

medium experiment. The area under the curve (AUC) method was used as part of 160 

the solid media results’ statistical analysis. The AUC was obtained by summing the 161 

area of the trapezoids under the curve of LAAP vs time and the PCI vs time, 162 

respectively (Becker et al., 2016). AUCs were analysed using the software R version 163 

3.4.3 employing an one‒way analysis of variance (ANOVA) and the Dunnett’s test. 164 

Statistical significance was defined with an alpha of 0.05. 165 

2.4. Response surface methodology (RSM)  166 

A response surface based on a face‒centred central composite 22 + star design was 167 

applied to determine the best conditions to enhance Leptosphaerulina sp. enzymes 168 

production and RB5 degradation in co‒culture with T. viride and A. terreus in liquid 169 

media. The design evaluated the effect of three factors: T. viride inoculum size (X1), 170 

A. terreus inoculum size (X2) and the addition time of T. viride and/or A. terreus (X3). 171 

The RSM used 20 assays with six central points and 10 degrees of freedom for the 172 

experimental error. All the factors had three levels, T. viride inoculum size (X1: 0, 500 173 
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and 1000 μL), A. terreus inoculum size (X2: 0, 500 and 1000 μL) and addition time 174 

(X3: 0, 3 and 7 days). The factors and levels combination utilized in the experiment 175 

is described in Table 2. 176 

The experimental design assays were performed in 250 mL Erlenmeyer flasks with 177 

100 mL of culture medium (pH 5.6) containing 10 g L-1 glucose, 2 g L-1 ammonium 178 

L-(+)-tartrate, 5 g L-1 peptone, 1 g L-1 KH2PO4, 1 g L-1 yeast extract, 0.5 g L-1 MgSO4. 179 

7H2O and 0.5 g L-1 KCl, 1 mL mineral solution [100 mg L-1 B4O7Na2. 10H2O, 70 mg 180 

L-1, ZnSO4. 7H2O, 50 mg L-1 FeSO4. 7H2O, 10 mg L-1 MnSO4. 7H2O and 10 mg L-1 181 

(NH4)6Mo7O24. 4H2O] (Guillén et al, 1992) and supplemented with RB5 (200 mg L-182 

1). Flasks were inoculated with 5 mL of Leptosphaerulina sp. from 10-day-old culture, 183 

previously homogenised (Copete et al., 2015). T. viride and A. terreus were 184 

inoculated according to the experimental design described in Table 2. After 185 

inoculation, the cultures were incubated at 28 °C and 160 rpm for 15 days. 186 

Monocultures of the fungi with and without dye were used as controls. Non-187 

inoculated controls (dye without fungus) were also utilised. As sampling volume, 4 188 

mL were withdrawn from the conical flasks at each time point. The response 189 

variables (ligninolytic enzyme activities, protein concentration and the decolourising 190 

activity of RB5) were measured at days 3, 7, 12 and 15. The results were analysed 191 

with the statistical program Statgraphics Centurion XVI®. A second order model was 192 

fitted to each response variable mean. 193 

2.5. Enzymatic activities and protein quantification 194 
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The MnP activity was obtained spectrophotometrically by measuring the oxidation of 195 

DMP (1 mM) at 469 nm (ε469= 27500 M−1 cm−1) in sodium acetate buffer (0.1 mM, 196 

pH 4.5). Lac and versatile peroxidase (VP) activities were measured by following the 197 

enzymatic oxidation of ABTS (3 mM) at 420 nm (ε420= 36000 M−1 cm−1) in sodium 198 

tartrate buffer (0.1 M, pH 3) with and without H2O2 (0.1 mM), respectively. The lignin 199 

peroxidase (LiP) activity was measured using the veratryl alcohol oxidation (2 mM) 200 

at 310 nm (ε310= 9300 M−1 cm−1) in sodium tartrate buffer (0.1 M, pH 3). The protein 201 

concentration was measured following the Bradford method (Bradford, 1976). 202 

Enzymatic activities were expressed as units (U) per milligram (mg) of protein, where 203 

one unit was defined as the amount of enzyme that oxidises one µmol of substrate 204 

per minute. 205 

2.6. Decolourisation of RB5 206 

The RB5 decolourisation was followed spectrophotometrically at 598 nm and was 207 

expressed in terms of decolourisation percentage (D%) (Equation 3) (Forootanfar 208 

et al., 2016; Shedbalkar et al., 2008): 209 

𝐷% =
𝐴0−𝐴𝑡

𝐴0
 ×  100        Equation 3 210 

Where A0 is the initial dye absorbance and At is the absorbance at the t sampling 211 

time. 212 

3. RESULTS AND DISCUSSION 213 

3.1. Solid medium experiments 214 
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3.1.1. Growth of fungi on solid medium with ABTS 215 

The biocompatibility of Leptosphaerulina sp. with other fungi was determined by the 216 

changes in the fungal growth areas during 15 days (Figure 1). Figure 1A illustrates 217 

monocultures growth areas at day 15. At that time, T. viride and Fusarium sp. 218 

monocultures displayed a growth area 20% higher than Leptosphaerulina sp. 219 

monoculture. A. niger monoculture grew similar as Leptosphaerulina sp. 220 

monoculture; whereas, A. fumigatus, A. terreus, and P. chrysogenum monocultures 221 

grew 17, 25 and 40% less than Leptosphaerulina sp. monoculture. Figure 1B 222 

depicts the fungal co‒cultures (Table 1) growth areas at day 15. In co‒culture 1, A. 223 

niger grew 1.6‒times lower than Leptosphaerulina sp. In contrast, all the other co‒224 

cultures reached greater growth areas than Leptosphaerulina sp., A. fumigatus 13%, 225 

T. viride 14.6% and Fusarium sp. 19%, A. terreus 100% and P. chrysogenum 100%. 226 

The low growth of Leptosphaerulina sp. could be associated with mutual inhibition 227 

or hyphal interference. Whereas, Leptosphaerulina sp. high growth may be related 228 

to fungal cooperation (Boddy & Heilmann-Clausen, 2008; Fukami et al., 2010). A. 229 

terreus was the only fungus with similar growth in both monoculture and co‒culture 230 

(growth area= 0.5) (Figure 1A, 1B). 231 

3.1.2. Ligninolytic activity on solid medium with ABTS 232 

The Petri dish area with a violet and/or a green colour, produced from the oxidation 233 

of ABTS, determined the ligninolytic activity. The areas were measured on days 0, 234 

3, 7, 12 and 15 (Figure 2). Most of the fungi (A. niger, A. fumigatus, A. terreus, 235 

Fusarium sp. and P. chrysogenum) did not express ligninolytic activity in 236 
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monoculture (Figures 2A, 2B, 2C, 2E, 2F), whereas, T. viride and Leptosphaerulina 237 

sp. monocultures showed ligninolytic activity (Figure 2D, Figure 1, 2 238 

supplementary material ). In Leptosphaerulina sp. a violet halo was observed after 239 

the production of a small green halo (Plácido et al., 2016), whereas T. viride 240 

exhibited a green halo. Co‒cultures with Leptosphaerulina sp. and other fungi 241 

without ligninolytic activity in monoculture (co‒cultures 1, 2, 3, 5 and 6) reached a 242 

ligninolytic activity area percentage (LAAP) up to 70% (Figures 2A, 2B, 2C, 2E, 2F). 243 

The LAAP difference between Leptosphaerulina sp. monoculture and co‒culture 244 

may be related to the reduction of Leptosphaerulina sp growth area. This reduction 245 

was associated to the presence of another fungus in the Petri dish. In nature, 246 

interactions between soil fungi are mainly combative (Morón-Ríos et al., 2017). At 247 

day 15, the LAAP for co‒cultures 1, 2, 3 and 5 was 60, 63, 60 and 68% lower than 248 

Leptosphaerulina sp. monoculture (Figures 2A, 2B, 2C, 2E). Co‒culture 6 LAAP 249 

was different from Leptosphaerulina sp. monoculture during the first seven days, 250 

with a six‒fold increase from day 3 to 7. In contrast, from day 12 to 15, the LAAP 251 

was constant (70%) (Figure 2F). Leptosphaerulina sp. co‒culture with T. viride, 252 

another ligninolytic fungus (co‒culture 4), produced a higher LAAP than 253 

Leptosphaerulina sp. monoculture, this evidenced a possible synergistic effect 254 

between both fungal strains. Similarly, Wei et al. (2010) described a synergistic effect 255 

in Panus rudis and Gongronella sp co‒culture, this synergy was evidenced by a 256 

colour change (reddish-brown) in solid medium with guaiacol, a chemical used for 257 

laccase detection.  258 
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Figure 3A illustrates the area under the curve (AUC) obtained from the ligninolytic 259 

activity of every co‒culture and Leptosphaerulina sp. monoculture. The ANOVA of 260 

the AUCs from the ligninolytic activity tests indicated significant differences (p‒value 261 

˂ 0.05) between at least two of the evaluated cultures (Table 1 supplementary 262 

material). Dunnett’s multiple comparisons test for the AUC of the co‒cultures and 263 

the Leptosphaerulina sp. monoculture indicated that ligninolytic activity of co‒264 

cultures 1, 5 and 6 did not differ significantly (p‒value ˃ 0.05) from the ligninolytic 265 

activity of Leptosphaerulina sp. monoculture (Figure 3, Table 2 supplementary 266 

material). Co‒cultures 2 and 3 had lower ligninolytic activity compared with 267 

Leptosphaerulina sp. monoculture (p‒value ˂ 0.05) (Figure 3, Table 2 268 

supplementary material). In contrast, co‒culture 4 (Leptosphaerulina sp.‒T. viride) 269 

exhibited higher ligninolytic activity than the Leptosphaerulina sp. monoculture (p‒270 

value < 0.05) (Figure 3, Table 2 supplementary material). Therefore, T. viride 271 

produced a significant effect on Leptosphaerulina sp. ligninolytic activity production. 272 

The co‒cultures enzymatic activity increment was associated with interactions such 273 

as cooperation and synergism; whereas, the reduction with antagonism and 274 

competition. These differences can also be related with mycelial morphology 275 

changes, enzymes secretion and metabolites modification as a result of a reciprocal 276 

exchange of chemical signals in the culture medium (Pan et al., 2014). Although, in 277 

co‒culture the growth of Leptosphaerulina sp. was limited by the growth of the other 278 

fungus, it was compensated by the high production of ligninolytic enzymes by T. 279 

viride (Lakshmanan & Sadasivan, 2016).  280 
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3.1.3. Decolourising activity of Leptosphaerulina sp. in co‒culture  281 

The images’ colour intensity was measured over a 15-day period to determine the 282 

decolourising activity. The results for days 0, 3, 7, 12 and 15 were used to calculate 283 

the percentage change of colour intensity (PCI) (Equation 2). A. niger, A. fumigatus, 284 

T. viride, Fusarium sp. and P. chrysogenum monocultures did not show significant 285 

decolourising activity (Figures 4A, 4B, 4D, 4E, 4F). Whereas, Leptosphaerulina sp. 286 

and A. terreus monocultures had decolourising activity reaching a maximum PCI of 287 

100% and 95.46% at day 15, respectively (Figure 4C, Figure 3, 4 supplementary 288 

material). All co‒cultures exhibited decolourisation and it increased through time. At 289 

day 15, co-cultures 1, 2, and 6 had lower decolourising activity than 290 

Leptosphaerulina sp. monoculture (100%) (Figures 4A, 4B and 4F). Co‒cultures 3, 291 

4 and 5 showed similar or slightly higher decolourising activity than Leptosphaerulina 292 

sp. monoculture (Figure 4C, 4D and 4E).  293 

Similar to Section 3.1.2., the RB5 removal in solid media (Figure 3B) was analysed 294 

with the AUC methodology. The AUC analysis’ ANOVA for the RB5 removal 295 

indicated significant differences (p‒value ˂ 0.05) between at least two treatments 296 

(Table 3 supplementary material). Therefore, Dunnett’s multiple comparison tests 297 

were performed. The RB5 removal between co‒culture 5 and Leptosphaerulina sp. 298 

monoculture did not exhibit significant differences (Figure 3B, Table 4 299 

supplementary material). The RB5 removal by co‒culture 1, 2, 3, 4, and 6 were 300 

statistically different (p‒value ˂ 0.05) than the Leptosphaerulina sp. monoculture 301 

(Figure 3B, Table 4 supplementary material). Leptosphaerulina sp.‒A. terreus 302 
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and Leptosphaerulina sp.‒T. viride co‒cultures achieved greater decolourisation 303 

than the Leptosphaerulina sp. monoculture. Leptosphaerulina sp.‒A. terreus co‒304 

culture showed the highest decolourising activity indicating A. terreus as a candidate 305 

to facilitate the degradation of RB5 by Leptosphaerulina sp. (Figure 4C). 306 

In this study, A. terreus monoculture did not exhibit ligninolytic activities, but it 307 

displayed a high decolourising activity. A. terreus strain sorbed the RB5 dye (Figure 308 

5 supplementary material) from the medium, which explains the high decolourising 309 

activity by Leptosphaerulina sp.‒A. terreus co‒culture. These findings concur with 310 

previous studies where members of the genus Aspergillus have sorbed textile dyes 311 

(Assadi & Jahangiri, 2001; Sumathi & Manju, 2000). Similarly, Fusarium sp. 312 

monoculture did not express ligninolytic activities but exhibited a modest RB5 313 

decolourisation. However, such sorption did not generate a significant synergistic 314 

effect in co‒cultured with Leptosphaerulina sp. T. viride monoculture did not show 315 

decolourising activity despite having ligninolytic activity, this lack of decolourising 316 

activities in ligninolytic enzymes produced by T. viride have been reported in 317 

previous researches (Murugesan et al., 2007). This may explain why the co‒culture 318 

of Leptosphaerulina sp. and T. viride did not exhibit better decolourisation than 319 

Leptosphaerulina sp. monoculture. Although, Saeed et al. (2009) reported 320 

methylene blue removal through sorption by T. viride; this behaviour was not 321 

observed with the T. viride strain used in this article. Additionally, P. chrysogenum 322 

strain did not exhibit ligninolytic or RB5 decolourising activities and did not have a 323 

synergistic relationship in co‒culture with Leptosphaerulina sp. This behaviour 324 

indicated a lack of stress in P. chrysogenum strain produced by Leptosphaerulina 325 



16 

 

sp. or its compounds. In contrast to the results obtained in this work, Nayanashree 326 

et al. (2015) and Vaidyanathan et al. (2011) reported that P. chrysogenum had 327 

ligninolytic and/or dye decolourisation activity. 328 

Based on the statistical analyses, T. viride, A. terreus were selected as the most 329 

suitable fungal inducers for the enzymatic and decolourising activities of 330 

Leptosphaerulina sp. in solid medium; therefore, these two fungal strains were used 331 

in the liquid co‒culture studies. 332 

 333 

3.2. Response surface methodology (RSM)  334 

Table 3 describes the Lac, VP and MnP activities and decolourisation percentage 335 

(D%) at days 3, 7, 12 and 15 for the treatments evaluated in the RSM (Table 2). 336 

Assay 4 (T. viride 1000 µL, A. terreus 1000 µL, added at day 7) expressed the 337 

highest Lac activity (2.06 U mg-1) at the twelfth day. This activity was 8‒times higher 338 

that Leptosphaerulina sp. monoculture. Similarly, assay 4 reached the highest VP 339 

activity at days 12 (7.32 U mg-1) and 15 (3.60 U mg-1). At day 12, the highest VP 340 

activity was almost 36‒times higher than Leptosphaerulina sp. monoculture. The 341 

time of addition was an important factor, when T. viride and/or A. terreus were added 342 

to the culture at day zero the enzymatic activity was low; in contrast, additions at 343 

days 3 and 7 resulted in high expression of VP. Similar to the other enzymatic 344 

activities, assay 4 achieved the largest MnP production at day 12 and 15. MnP 345 
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activity (1.75 U mg-1) was 88‒times higher than Leptosphaerulina sp. monoculture 346 

(Table 3). LiP activity was not detected in the experiments. 347 

Table 3 also summarises the RB5 D% achieved by Leptosphaerulina sp. in co‒348 

culture with T. viride and A. terreus. A gradual increase in RB5 D% was noticed with 349 

increase in bio-treatment time. As expected assay 4 had the highest D% of all the 350 

treatments. At day 12, assay 4 reached 92%, which was 16% better than the 351 

Leptosphaerulina sp. monoculture (76%).  352 

In general, the RSM results demonstrated that on the twelfth day Leptosphaerulina 353 

sp.’ ligninolytic and decolourising activities were enhanced by co‒culture with T. 354 

viride (1000 µL) and A. terreus (1000 µL) added at day 7 (assay 4). The RSM results 355 

shown that addition time and inoculum size were significant factors in the response 356 

variables increment. The kinetics studies correlated the increment in the production 357 

of Lac, VP and MnP with RB5 decolourisation (Table 3). The enhancement of the 358 

ligninolytic enzymes production in Leptosphaerulina sp. via co‒culture with T. viride 359 

and A. terreus (Lac, VP and MnP) was a determining factor in the increment in RB5 360 

decolourisation. Similar synergic effect has been reported by Lade et al. (2012), the 361 

authors reported an improvement in the removal of azo dye Rubine GFL by co‒362 

cultures of Aspergillus ochraceus and Pseudomonas sp. SUK1. Response surfaces 363 

for Lac, VP, MnP and D% at day 12 were illustrated in Figure 5. 364 

The Lac production model’s ANOVA evidenced that the most important variables 365 

were the linear effect of T. viride inoculum size, the linear and quadratic effect of 366 

addition time, and the interaction between T. viride inoculum size and addition time 367 
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(Table 5 supplementary material). The VP production model’s ANOVA identified 368 

as significant the linear effect of T. viride inoculum size, the linear effect of A. terreus 369 

inoculum size, the linear and quadratic effect of addition time and the interaction 370 

between T. viride inoculum size and addition time (Table 6 supplementary 371 

material). The MnP production model’s ANOVA identified as significant variables 372 

the linear effects of T. viride and A. terreus inoculum sizes (Table 7 supplementary 373 

material). The D% model’s ANOVA determined as significant variables the linear 374 

and quadratic effect of A. terreus inoculum size, and the interaction between T. viride 375 

and A. terreus inoculum sizes (Table 8 supplementary material). The R2 of the 376 

models indicated that they could explain 75.5%, 89%, 72%, and 76% of the variation 377 

of the Lac, VP, MnP and D%, respectively. The regression equations that fitted to 378 

the models for Lac, VP, MnP and D% at day 12 are shown below (Equations 5, 6, 379 

7, 8): 380 

𝐿𝑎𝑐 = 0.646774 + 0.000425072𝑋1 + 0.000600754𝑋2 − 0.307581𝑋3 + 4.25071 ×381 

10−7𝑋1𝑋2 + 0.000129406𝑋1𝑋3 + 0.000110956𝑋2𝑋3 − 6.92675 × 10−7𝑋1
2 − 8,78224 ×382 

10−7𝑋2
2 +  0.0349727𝑋3

2       Equation 5 383 

𝑉𝑃 =  0.96518 +  0.000258485𝑋1–  0.000520679𝑋2 –  0.759508𝑋3 +384 

0.00000178952𝑋1𝑋2 +  0.00071413𝑋1𝑋3 + 0.000242988 𝑋2𝑋3 − 0.0000015854 𝑋1
2 −385 

1.00251 × 10−8𝑋2
2 +  0.0872629𝑋3

2    Equation 6 386 
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log (𝑀𝑛𝑃) = − 3.19889 − 0.000247804𝑋1  +  0.0015558𝑋2 − 0.46444𝑋3 +387 

0.00000215874𝑋1𝑋2  +  0.000304643𝑋1𝑋3 +  0.0000600017𝑋2𝑋3 − 7.26598𝑋1
2 −388 

0.00000130196𝑋2
2  + 0.0551799𝑋3

2    Equation 7 389 

𝐷% =  76.6866 − 0.0338426𝑋1 +  0.0347534𝑋2 − 3.70321𝑋3 + 0.0000077794 𝑋1
2 +390 

 0.0000296666𝑋1𝑋2  + 0.00102074𝑋1𝑋3–  0.000039327𝑋2
2 + 0.00174𝑋2𝑋3 +391 

0.379897𝑋3
2        Equation 8 392 

A. terreus monoculture (control) removed 27, 49, 62 and 68% of the dye at days 3, 393 

7, 12 and 15, respectively. However, enzymatic activities were not detected. T. viride 394 

monoculture (control) exhibited the lowest removal with values between 31% and 395 

36%. In contrast, Leptosphaerulina sp. monoculture removed 54, 72, 79 and 81% of 396 

RB5 at days 3, 7, 12 and 15, respectively. In fact, the co‒culture treatment was 397 

significant better than Leptosphaerulina sp., T. viride and A. terreus monocultures. 398 

T. viride and Leptosphaerulina sp. monocultures exhibited a decrease in the 399 

enzymatic activities when the culture media was supplemented with RB5.  400 

Our results described for the first time the application of fungal co‒culture using three 401 

strains (Leptosphaerulina sp., T. viride and A. terreus) for enhancing ligninolytic 402 

enzymes production and RB5 removal in liquid medium. The triple fungal 403 

combination achieved better D%, Lac and MnP activities (8, 88 and 1.2‒times, 404 

respectively) than the co‒cultures of Pleurotus florida and Rhizoctonia solani 405 

reported by Kumari & Naraian (2016). The highest RB5 D% was reached by co‒406 

culturing the three fungi, but the combination of A. terreus and Leptosphaerulina sp. 407 

also reached high decolourisation. This suggested that A. terreus did not contribute 408 
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on the enzyme production, but it made a significant contribution on the RB5 removal, 409 

this decolourising activity was also observed in the solid media experiments (Figure 410 

5 supplementary material).  411 

The Lac activity decreased when 1000 µL of T. viride and/or A. terreus were added 412 

at day 0 (assay 7, 11 and 15). In this case, the fungal inducers inhibited 413 

Leptosphaerulina sp. growth and its enzymatic production. These fungi grew faster 414 

than Leptosphaerulina sp. and took the nutrients from the culture medium (e.g. assay 415 

7 and 15). In contrast, the addition of these fungi at day 7 remarkably increased the 416 

ligninolytic enzymes production (assay 4, at day 12). Regardless of the inoculum 417 

size, at day 7 the response variables increased as Leptosphaerulina sp. has grown 418 

considerably in the culture medium. The presence of significant biomass from the 419 

induced fungus had an advantage when fungal inducers with fast growth are used 420 

in mixed culture (Baldrian, 2004).  421 

Fungal co‒culture showed an evident increment in RB5 decolourising activity due to 422 

the increment in the production of laccase and peroxidases. The increment of 423 

enzymatic production in co‒cultured microorganisms is a result of cross-species 424 

and/or cross-genera interactions (Hamza et al.,2018). Fungal co‒cultures adapt 425 

more efficiently to complex and variable environmental conditions than monocultures 426 

since co-cultures produce a greater enzymatic diversity, can utilise intermediate 427 

metabolites for further mineralisation and facilitate the transformation of pollutants 428 

into non-toxic compounds (Hamza et al., 2018). In the future, fungal co-cultures can 429 

be identified for specific types of fungi and for specific enzymatic activities, therefore, 430 
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the inoculum for an specific biotechnological process will be a mixed fungal culture 431 

instead of a monoculture. A service for the identification of these novel inoculums 432 

and selling them to the enzymes industry can be a future route to commercialising 433 

this research. 434 

Leptosphaerulina sp. cultured with copper sulphate (500 µM) and ethanol (9 g L-1) 435 

as inducers produced 3‒times more Lac than Leptosphaerulina sp. without inducer 436 

(Copete et al., 2015). Whereas, in the present study, the use of T. viride and A. 437 

terreus as fungal inducers increased 8‒times the Lac activity produced by 438 

Leptosphaerulina sp. Therefore, the co‒culture of Leptosphaerulina sp. with T. viride 439 

and A. terreus is a superior method to enhance ligninolytic activities production than 440 

chemical inducers previously tested. The positive effects of fungal inducers include 441 

the increment of pollutants removal, costs reduction by the absence of additional 442 

chemicals and the lack of toxic intermediary compounds. These results pave the way 443 

for future applications of fungal co‒culture in textile wastewater treatments, enzyme 444 

production and the transformation of other pollutants. Future works will focus on 445 

understanding the synergic effect of fungal co‒culture in the production of isozymes, 446 

the treatment of novel pollutants and the metabolic interactions among fungi.  447 

 448 

4. CONCLUSIONS 449 

Co‒culture was proved as an effective method for enhancing Leptosphaerulina sp. 450 

enzymatic and decolourising activities. Solid culture experiments demonstrated T. 451 
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viride and A. terreus as the most compatible strains with Leptosphaerulina sp. and 452 

RSM experiments revealed the importance of fungal inducer, inoculum size, and 453 

addition time. The best Leptosphaerulina sp. co‒culture combination was T. viride 454 

(1000 µL) and A. terreus (1000 µL) added at day 7. This combination increased 455 

enzymes production (Lac 8‒times, VP 36‒times, MnP 88‒times) and RB5 removal 456 

(1.2‒times) vs monoculture. The use of fungal co‒culture as inducers obtained 457 

superior results than previously used chemical inducers. These results revealed the 458 

potential of co‒cultivation as an alternative for enzymatic induction and pollutants 459 

bioremediation. 460 
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Table 1. Fungal co‒cultures. 662 

Co‒culture Fungi 

1 Leptosphaerulina sp.‒A. niger 

2 Leptosphaerulina sp.‒A. fumigatus 

3 Leptosphaerulina sp.‒A. terreus 

4 Leptosphaerulina sp.‒T. viride 

5 Leptosphaerulina sp.‒Fusarium sp. 

6 Leptosphaerulina sp.‒P. chrysogenum 

  663 
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Table 2. Experimental design to evaluate RB5 removal and enzyme activities by 664 

Leptosphaerulina sp. in co‒culture with T. viride and A. terreus. 665 

Assay T. viride (µL) A. terreus (µL) Time of addition (day) 

1 500 500 3 

2 0 1000 7 

3 500 500 7 

4 1000 1000 7 

5 500 500 3 

6 500 500 3 

7 1000 1000 0 

8 0 0 0 

9 500 500 0 

10 1000 500 3 

11 0 1000 0 

12 500 500 3 

13 500 500 3 

14 500 0 3 

15 1000 0 0 

16 0 500 3 

17 500 500 3 

18 1000 0 7 

19 500 1000 3 

20 0 0 7 

 666 
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Table 3. Lac, VP, MnP activities and D% during RB5 removal by Leptosphaerulina sp. in co‒culture with T. viride and A. 667 

terreus. 668 

Assay Lac (U mg-1) VP (U mg-1) MnP (U mg-1) D% 

Day Day Day Day 

3 7 12 15 3 7 12 15 3 7 12 15 3 7 12 15 

1 1.58 1.15 0.77 1.75 4.91 5.36 1.10 1.01 0.28 0.05 0.13 0.10 67.92 71.49 76.94 78.62 

2 1.73 1.40 0.74 1.67 5.22 3.03 0.87 0.72 0.08 0.06 0.07 0.04 74.36 76.50 78.63 78.63 

3 1.82 1.07 0.90 0.41 5.20 3.48 2.39 0.77 0.36 0.07 0.12 0.09 64.67 67.11 68.22 68.22 

4 1.78 1.13 2.06 0.88 5.21 4.65 7.32 3.60 0.29 0.15 1.75 0.72 55.97 72.99 91.78 91.78 

5 1.50 1.21 0.61 1.68 4.79 5.15 1.12 1.18 0.03 0.04 0.05 0.21 71.72 72.83 75.60 75.60 

6 1.47 1.23 0.59 1.42 4.84 5.55 1.25 1.48 0.04 0.17 0.04 0.13 66.20 78.27 78.27 78.27 

7 0.00 0.67 0.53 0.90 0.00 0.98 0.88 0.62 0.00 0.02 0.24 0.04 44.12 67.63 71.75 81.86 

8 1.57 1.30 0.34 0.08 5.00 3.58 0.20 0.19 0.03 0.01 0.03 0.04 51.34 57.66 75.67 78.10 

9 0.70 1.39 1.16 1.16 0.81 1.55 1.30 0.10 0.06 0.02 0.08 0.01 56.63 75.84 76.83 78.22 

10 0.83 0.49 0.34 0.49 1.50 0.89 0.10 0.11 0.03 0.04 0.08 0.10 24.64 49.76 71.50 76.33 

11 0.17 0.41 0.40 1.08 0.12 0.36 0.42 1.01 0.00 0.02 0.08 0.03 73.01 75.90 76.39 77.11 

12 1.41 1.24 0.59 1.52 4.93 6.36 1.02 1.10 0.32 0.18 0.10 0.14 50.40 57.78 71.77 73.35 

13 1.48 1.20 0.74 1.54 5.00 5.65 0.06 0.19 0.02 0.04 0.09 0.08 49.09 78.77 79.22 79.22 

14 0.98 0.44 0.55 0.88 3.85 0.51 0.40 0.11 0.02 0.03 0.06 0.06 33.94 35.56 50.91 50.91 

15 0.00 0.06 0.36 0.00 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.03 27.73 38.28 51.17 54.30 

16 1.22 0.26 0.48 0.35 4.32 2.33 0.38 0.52 0.01 0.00 0.02 0.01 65.41 65.81 67.99 67.99 

17 1.62 1.22 0.63 1.79 4.59 5.11 1.17 0.92 0.00 0.04 0.03 0.07 60.62 78.04 78.22 78.58 

18 1.08 0.63 0.84 0.36 3.83 3.58 3.66 1.22 0.02 0.03 0.06 0.03 45.66 48.86 49.32 49.32 

19 1.26 0.43 0.18 0.20 4.10 2.77 0.86 0.89 0.13 0.00 0.02 0.02 52.46 65.03 65.03 67.21 

20 1.63 1.45 0.26 0.09 4.35 3.77 0.13 0.33 0.00 0.02 0.02 0.03 47.88 62.50 75.64 78.81 

669 
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Figure 1. Growth areas of Leptosphaerulina sp., A. niger, A. fumigatus, A. terreus, 671 

T. viride, Fusarium sp. and P. chrysogenum presented as a fraction of the total area 672 

of the plate. A) monocultures at day 15, B) co‒cultures at day 15. Cultures on PDA 673 

with ABTS, 28 °C.  674 
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Figure 2. Ligninolytic activity of Leptosphaerulina sp. paired against A) A. niger, B) 676 

A. fumigatus, C) A. terreus, D) T. viride, E) Fusarium sp., and F) P. chrysogenum 677 
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presented as percentages of the total area of the plate. Cultures on PDA with ABTS, 678 

at 28 °C.  679 
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Figure 3. Area under the curve (AUC), after 15 days of A) ligninolytic activity B) RB5 681 

removal. Culture: 1 (Leptosphaerulina sp.‒A. niger), 2 (Leptosphaerulina sp.‒A. 682 

fumigatus), 3 (Leptosphaerulina sp.‒A. terreus), 4 (Leptosphaerulina sp.‒T. viride), 683 

5 (Leptosphaerulina sp.‒Fusarium sp.), 6 (Leptosphaerulina sp.‒P. chrysogenum); 684 

7 (Leptosphaerulina sp. monoculture).  685 
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Figure 4. Decolourising activity of Leptosphaerulina sp. paired against A) A. niger, 687 

B) A. fumigatus, C) A. terreus, D) T. viride, E) Fusarium sp., F) P. chrysogenum. 688 

Cultures on PDA with RB5. 28 °C, after 15 days. PCI: percentage change of the 689 

colour intensity.690 
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Figure 5. Response surface for enzyme activities (U mg-1) and RB5 removal (%) by Leptosphaerulina sp. in co‒culture with 691 

T. viride and A. terreus A) Lac, B) VP, C) MnP, D) D% of RB5. Experimental conditions: 28 °C, 160 rpm, pH= 5.6, 12 days. 692 

 

 

 

 


