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Abstract. The recent observations of neutron star mergers have changed our perspective
on scalar-tensor theories of gravity, favouring models where gravitational waves travel at
the speed of light. In this work we consider a scalar-tensor set-up with such a property,
belonging to a beyond Horndeski system, and we numerically investigate the physics of
locally asymptotically flat black holes and relativistic stars. We first determine regular black
hole solutions equipped with horizons: they are characterized by a deficit angle at infinity,
and by large contributions of the scalar to the geometry in the near horizon region. We then
study configurations of incompressible relativistic stars. We show that their compactness can
be much higher than stars with the same energy density in General Relativity, and the scalar
field profile imposes stringent constraints on the star properties. These results can suggest
new ways to probe the efficiency of screening mechanisms in strong gravity regimes, and can
help to build specific observational tests for scalar-tensor gravity models with unit speed for
gravitational waves.
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1 Introduction

Scalar-tensor theories with non-minimal couplings between scalar fields and gravity find in-
teresting applications to cosmology (dark energy and dark matter problems, see e.g. the
review [1]) and quantum gravity (including Lorentz violating systems as Horava-Lisfshitz
gravity, see [2] for a recent review). Moreover, they are able to screen fifth forces by means of
the Vainshtein mechanism (see for example [3–6]). Over the years, many advances have been
made in developing consistent scalar-tensor theories, going from Brans-Dicke systems [7], to
Galileons and Horndeski theories [8, 9], to beyond Horndenski and DHOST/EST scenar-
ios [10–15]. The study of black holes and compact relativistic stars in these richer scalar-
tensor theories is relevant for phenomenological investigations of screening mechanisms inside
compact sources [16–20], and for our theoretical understanding of no-hair and singularity the-
orems in Einstein General Relativity (GR) non-minimally coupled with scalar fields (see e.g.
the discussion in [21]). The purpose of this work is to investigate asymptotically flat black
holes and relativistic stars in a class of scalar-tensor theories compatible with the stringent
constrains recently obtained from the observation of neutron star mergers.

Asymptotically flat black hole solutions with non-trivial scalar profiles have been found
in Horndeski gravity (see [22] for a review), and some are known for beyond Horndeski
theories [23]. A non-vanishing scalar field profile may or may not affect the properties of
the geometry. Even if black hole solutions in these theories exhibit only small deviations
from their GR counterparts, it is possible that scalar field effects become more relevant
in presence of matter, thus leading to sizeable consequences that can be constrained with
observational data. This phenomenon was first pointed out in a theory of Brans-Dicke gravity
applied to neutron star objects in [24–26] and dubbed spontaneous scalarisation; it has
also been analysed recently in more general scalar-tensor theories [27–32]. Investigations
of explicit solutions for compact relativistic objects are necessary for acquiring a better
understanding of how these systems can be distinguished from GR. Studies along these lines
typically focus on neutron stars, since the strong gravitational field around these objects
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provides a good laboratory to test modified gravity theories. These investigations have
shown that configurations compatible — within the error bars — with the measured masses
and radii of neutron stars are common in scalar-tensor gravity [33–35]. The analysis of these
systems in modified gravity is at an early stage in comparison with the theoretical advances
made in GR over the past decades, although new developments concerning equation-of-state
independent relations between properties of relativistic compact objects indicate promising
tools to constrain modified gravity theories [36–38].

Recently, gravitational and electromagnetic radiation emitted by NS mergers was de-
tected almost simultaneously by LIGO, VIRGO, and an array of observatories on earth and
in space [39], placing a strong constraint on the difference between the propagation speed of
gravitational waves (cGW) and the speed of light, −3 × 10−15 ≤ cGW − 1 ≤ 7 × 10−16 [40],
where the speed of light is normalized to unity. Besides the quadratic and cubic Horndeski
Lagrangians, scalar-tensor theories of gravity generically predict gravitational waves that do
not travel at the speed of light. There are, on the other hand, particular combinations of
Horndeski and beyond Horndeski Lagrangians which predict cGW = 1: see [41, 42] and [43–
46]. Observational consequences of these Lagrangians have been recently analysed [47], and
it has been shown that — in absence of a canonical kinetic term for a scalar field — the
screening mechanism allows to recover exact GR solutions in vacuum, although screening
effects are broken in presence of matter [31, 32].

On the other hand, on general physical grounds we expect that the standard scalar
kinetic term should be present in the scalar action, being the leading dimension four operator
that governs the scalar dynamics, at least around nearly flat backgrounds. In this paper we
focus on a specific scalar-tensor theory that includes, besides the kinetic term of the scalar
field, a combination of quartic Horndeski and beyond Horndeski contributions satisfying
the condition cGW = 1. The presence of the standard kinetic terms affects considerably
the geometry, and we find several new phenomena associated with the non-linearity of our
system of equations. In section 2 we present the theory under consideration. In section 3
we determine the conditions to satisfy for obtaining (locally) asymptotically flat black hole
solutions supporting a non-trivial scalar field profile. We numerically analyse how the scalar
affects the size of the horizons, and we find conditions to avoid naked singularities. The
corresponding solutions are characterized by a deficit angle induced by the scalar field kinetic
terms. In section 4 we proceed to study relativistic compact objects in this theory and we
find that, in contrast to other scenarios of beyond Horndeski systems, the angular deficit does
not produce a singularity at the centre of these objects. The non-linearities of the equations
lead to new phenomenological consequences, as for example specific relations between radius
and energy content of the objects we investigate. By matching interior and exterior solutions
we find situations where the scalar field contributions to the geometry are dominant inside
a compact object, but negligible in the exterior, pointing towards a sizeable breaking of a
Vainshtein screening mechanism. Finally, we discuss how the compactness of this scalar-
tensor configurations, and the deficit angle itself, can be used to constrain this theory.

2 Theories of Horndeski and beyond after GW170817

The most general scalar-tensor theory leading to second order equations of motion is a combi-
nation of the Horndenski Lagrangians [9]. Calling φ the scalar field, such Lagrangian densities
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are [48, 49]

L2 = G2,

L3 = G3 [Φ] ,

L4 = G4R+G4,X

{
[Φ]2 − [Φ2]

}
,

L5 = G5GµνΦµν − 1

6
G5,X

{
[Φ]3 − 3[Φ][Φ2] + 2[Φ3]

}
, (2.1)

where Φ is a matrix with components ∇µ∇νφ , and

X = −1

2
∂µφ∂

µφ ,

[Φn] = tr (Φn) ,

〈Φ〉 = ∂µφ∂µ∂νφ∂
νφ . (2.2)

Gi are arbitrary functions of φ and X, or only of X if we impose a shift symmetry φ →
φ+const. The equations of motion associated with Lagrangians (2.1) are second order en-
suring that the system is free of Ostrogradsky instabilities. On the other hand, it is possible
to have healthy scalar-tensor theories also with higher order equations of motion, provided
that constraint conditions forbid the propagation of would-be Ostrogradsky ghosts. Ex-
plicit examples are the theories of beyond Horndeski [10], and their generalizations dubbed
DHOST/EST theories [11, 12]. The theory of beyond Horndeski is constructed with the
Lagrangian densities

LbH4 = −1

2
F4 ε

µνρ
σε
µ′ν′ρ′σ∂µφ∂µ′φΦµµ′Φνν′Φρρ′ ,

LbH5 = F5 ε
µνρσεµ

′ν′ρ′σ′
∂µφ∂

′
µφΦνν′Φρρ′Φσσ′ , (2.3)

with F4, 5 arbitrary functions of φ, X. Theories described by a combination of the previ-
ous Lagrangians — apart from systems only containing L2 and L3 — generally lead to a
modification of the speed of propagation of gravity waves, hence they are disfavoured by
the recent observation of gravitational waves from a neutron star merger GW170817 and its
associated electromagnetic counterpart GRB 170817A. On the other hand, there are specific
combinations of the Horndeski and beyond Horndeski Lagrangians which do not change the
speed of gravitational waves [50]. A particular example is the combination

Lc = X + L4 + LbH4 , with F4 = G4,X/X ,

= X +G4R+
G4,X

X

(
〈Φ2〉 − 〈Φ〉[Φ]

)
, (2.4)

which we consider in this work. This Lagrangian density includes the standard scalar kinetic
term, accompanied by derivative self-interactions and non-minimal couplings with the metric
which become important in strong gravity regimes such as in proximity of black holes or in
dense objects. For simplicity, and definiteness, we study this theory with the function G4

chosen as

G4 = M2
Pl +

β

M2
Pl

X , (2.5)

where β is a dimensionless constant. Black hole configurations for similar systems have
been studied in the past both in beyond Horndeski and vector-tensor theories [51–53]. In
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particular, a stealth Schwarzschild solution was first discovered for vector-tensor systems
with the same choice of G4 and a special value of β [54]. When the time component A0 of
the vector is constant, this solution is equivalent to a scalar-tensor stealth configuration for a
scalar field of the form φ = q t+φ1(r), with a constant q [55]. Further generalisations based
on this solution can be found in [56, 57], where neutron stars and asymptotically flat black
holes are constructed for arbitrary values of β and vector-tensor generalisations of (2.5).

In this work we focus on the scalar-tensor theory (2.4), studying new black hole solutions
in vacuum with novel features (section 3), and the physics of gravitationally bound compact
objects made of incompressible matter (section 4).

3 Black holes

The study of black hole solutions in vacuum for scalar-tensor theories with non-minimal cou-
plings to gravity is interesting at least for two reasons. First, it allows to probe a strong
gravity regime for the theory one considers, where non-perturbative contributions to screen-
ing mechanisms can make manifest sizeable deviations from GR results (see, e.g. [58, 59]).
Second, it allows to test no-hair and singularity theorems in new settings, possibly revealing
new geometries or topologies characterized by additional scalar charges (see, e.g. [21, 60]). In
this section we aim to investigate whether there exist asymptotically flat black hole configu-
rations for the beyond Horndeski theory of Lagrangian (2.4), answering almost affirmatively
— in the sense that we find locally asymptotically flat black hole solutions, for which the cur-
vature invariants vanish for large r, but that are characterized by a constant angular deficit at
infinity. The existence of an angular deficit in beyond Horndeski theories was first identified
in [61] as a potential source of singularities at the centre of configurations of matter. As we
show below, both in vacuum and inside compact objects the angular deficit of the model we
are considering does not affect the regularity of the solutions, provided that some conditions
are satisfied.

The covariant form of the equations of motion (EOMs) for the scalar φ and the metric
gµν is given in appendix A. Since we are interested in static, spherically symmetric space-
times, we start imposing the following Ansatz for the metric

ds2 = −f(r)dr2 + h(r)−1dr2 + r2dθ2 + r2 sin2 θdϕ2 , (3.1)

while we allow for a linear time dependence in the scalar configuration

φ = M2
Plφ0 t+ φ1(r) , (3.2)

where φ0 is a dimensionless constant.1 This Ansatz for the scalar field is compatible with a
static spacetime [62] (recall that the equations of motion always contain derivatives of the
scalar) and have been extensively studied in the recent literature on scalar-tensor black hole
solutions, since the time dependence explicitly breaks the assumptions of no-hair theorems
in Horndeski theory [22, 63], thus opening up the possibility of finding asymptotically flat
black holes dressed with a scalar field (see, e.g. [22, 23, 55], and the review [16]).

Using these Ansatz for metric and scalar, we find that the (t, r) component of the metric
EOMs (the ξtr component in eq (A.3)) reduces to an algebraic condition for the derivative

1From now on we set MPl = 1. The correct dimensions of all expressions are recovered after reinstating
the appropriate factors of MPl.
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of the radial scalar field profile φ1, which reads

βφ′1
[
f2h(h+ 1)φ′1

2 + f
(
h2rφ′1

2f ′ + φ20 (rh′ − 1) + hφ20
)
− 2hrφ20f

′]
fr2

(
fhφ′1

2 − φ20
) +

1

2
φ′1 = 0 . (3.3)

If one chooses β = 0 — corresponding to GR plus a standard kinetic term for the scalar
field — the only solution of the previous equation is φ′1 = 0. On the other hand, if β 6= 0,
we have a cubic equation for φ′1, which additionally admits the following two branches of
solutions:

φ′1 = ±φ0

√
4βhrf ′ + fr2 + 2βf − 2βfrh′ − 2βfh

2βf2h+ f2hr2 + 2βf2h2 + 2βfh2rf ′
. (3.4)

Notice that such branches are well defined also in the limit β → 0, giving φ′1 = ±φ0:
hence these branches are disconnected from the β = 0 branch, even when φ0 is turned on. The
presence of different branches is common in Horndeski and beyond Horndeski theories where
the scalar field derivative satisfies a non-linear algebraic equation, and the non-trivial scalar
field profile is responsible for providing a screening mechanism that recovers GR solutions in
the strong gravity regime [6, 31, 32, 34]. In what follows, we will concentrate on the upper
branch of the algebraic solution (3.4). The remaining independent equations, that we take
as the (t, t) and (r, r) components of the metric equations, are hard to solve exactly for f, h,
but we can study the system numerically, or analytically in certain regimes.

Flat space, corresponding to the choice f = h = 1 using Ansatz (3.1), is not a
solution of the EOMs. A branch of solutions that are not asymptotically flat can be easily
determined: they correspond to Schwarzschild-de Sitter configurations in static coordinates,
and their structure is very similar to the solutions found in [64]. But in this work we intend
to focus on black hole solutions that are at least locally asymptotically flat. This branch of
solutions has been less studied in the literature, and it is important to investigate in detail the
corresponding phenomenology. In order to take into account local instead of global flatness,
it is compulsory to slightly generalize the metric Ansatz (3.1) by including a deficit angle,

ds2 = −f(r)dt2 + h(r)−1dr2 + s−10 r2dΩ2 , (3.5)

with s0 not necessarily equal to one. This modification does not change the branch structure
of the solutions of the scalar field equation. With such Ansatz, it is possible to analytically
determine asymptotic solutions for the functions f, h expanded in inverse powers of the radial
distance r, imposing the condition that f = h = 1 at asymptotic infinity. The corresponding
equations of motion with this Ansatz are given in (A.4)–(A.6). We find, up to second order
in an 1/r expansion,

s0 = 1− 3βφ20 , (3.6)

f(r) = 1− 2M

r
− 4β2φ20

(
βφ20 − 2

)
r2

+O
(

1

r3

)
, (3.7)

h(r) = 1− 2M

r
+

4β2φ20
(
1− βφ20

)
r2

+O
(

1

r3

)
, (3.8)

φ′1(r) = φ0 +
2Mφ0
r

+
2φ0

[
2β3φ40 +

(
2M2 − β

)
− 3β2φ20

]
r2

+O
(

1

r3

)
, (3.9)

with M an integration constant. We notice that, since s0 6= 1, the geometry has a deficit
angle: this is a consequence of including the kinetic terms of the scalar in our action. On the
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other hand, the radial dependence of the functions f , h gives us hope that a would-be solid
angle singularity at the origin r = 0 can be absent, or covered by horizons. In what follows,
we discuss conditions for ensuring that this is the case for the system under consideration.
Notice that, besides the deficit angle, the standard ‘1 − 2M/r’ behaviour (plus sub-leading
corrections) of the metric components indicates that the metric is asymptotically flat and
approaches GR results at large distances.

Conical deficits covered by horizons have a long history in black hole physics, starting
from [65], and physical realizations and interpretations — related with strings piercing the
black hole horizons in Abelian-Higgs models [60] — can be subtle [21]. It is interesting that
solid deficits appear also in the context of a single scalar field coupled with gravity, and we
will later attempt to connect them with no hair theorems for this system. Geometries with
similar deficit angles arise when considering gravitational monopoles [66–68].

The presence of solid deficits that cause singularities in solutions of beyond Horndeski
theories has been first pointed out in [61, 69]: they focus on systems that are not shift
symmetric, finding harmful singularities at the origin unless the parameters of the theory
are appropriately tuned. A set-up more similar to ours has been analysed in a vector-tensor
system [70], showing that solid angle singularities can then be avoided. We will make more
detailed comparisons with these works in later sections.

3.1 Numerical evidence for regular black holes

We now provide numerical evidence that spherically symmetric, locally asymptotically flat
solutions of the EOMs (A.4)–(A.6) are free of naked singularities associated to the solid
deficit at the origin, when appropriate conditions are satisfied. As we shall see, despite the
fact that the solution for the metric components has the standard 1/r behaviour at large
distances from the origin, there arise large deviations from GR configurations near the black
hole horizon.

We numerically solve equations (A.4)–(A.6), using the asymptotic fields given in
eqs. (3.7) and (3.8) as boundary conditions, and proceed integrating inwards towards small
r until we encounter the position rh of a horizon, defined by the condition grr = h(rh) = 0.
The system of equations (A.4)–(A.6) is reduced to two equations for f and h, since we im-
pose s0 = 1 − 3βφ20 and we algebraically solve the equation ξtr = 0 for φ′1. We fix β = 1,
so that the size of the angular deficit is controlled only by the scalar parameter φ0. The
boundary conditions are then specified in terms of two quantities: the black hole mass M ,
and φ0. For definiteness we fix M = 0.5 (recall that we work in units where MPl = 1) and
construct black hole solutions characterised by different values of φ0. In order to ensure that
the solid angle deficit is positive (s0 > 0 in eq (3.5)), we limit our investigation to the interval
0 ≤ φ0 < 1/

√
3β ∼ 0.57. Our numerical results are shown in figure 1.

The left panel of figure 1 shows h(r) — the inverse of the radial metric component.
The black line shows the quantity h(r) for the Schwarzschild metric, and the blue lines
correspond to different values of φ0 between 0.02 and 0.32. For each of the blue lines the
function h(r) crosses zero, indicating the position of an horizon, whose size shrinks as φ0
increases. Solutions for 0.32 < φ0 . 0.40 can be found as well, but they require a higher
numerical precision near the horizon. For φ0 & 0.40 we do not find regular solutions equipped
with an horizon: an interpretation for this fact will be provided below.

The right panel shows the compactness of such black holes,

CBH =
M

rh
, (3.10)
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Figure 1. Numerical BH solutions for 2M = β = 1. The left panel shows the metric component grr
in GR (black line) and in the theory we consider, with φ0 spanning between 0.02 and 0.32 (blue lines).
The size of the black hole horizon decreases as φ0 increases. For φ0 & 0.40 we do not find solutions
that form an event horizon. The dashed line shows a solution for φ0 = 0.41. The compactness of
these black holes is shown in the right panel.

where rh is the radius of the event horizon, and M = 0.5 is fixed by means of the asymptotic
conditions (3.7) and (3.8). The point in black is the compactness of the Schwarzschild black
hole, CSchw = 0.5. The compactness increases non-linearly with φ0, showing that — thanks
to the O(1/r2) corrections to the metric — our solutions are different from the Schwarzschild
configuration when approaching the horizon.

Let us return to specifically discuss the behaviour of the system for φ0 & 0.40. For
our values of M = 0.5 and β = 1, we could not find solutions with an event horizon for
φ0 & 0.40. Indeed, when changing from φ0 = 0.40 to φ0 = 0.41 the solution for the radial
metric component changes drastically from profiles like those shown in the blue lines of
figure 1 to a profile like the one shown in red in the same figure. This limiting value of φ0
is well below the bound one would infer from requiring the angular part of the metric to
have a positive signature, φ0 < 0.57. The reason for this behaviour is the following: for any
given φ0, there exists a corresponding minimum mass Mmin that the black hole must have,
in order for ensuring that φ(r) is real everywhere. For φ0 & 0.40 the minimum mass is larger
than M = 0.5 (the mass value we assumed in our numerical analysis). If the value of the
black hole mass is less than Mmin, the scalar field becomes imaginary at a finite radius rc > 0
(depending on Mmin). In this regime, since the action and equations of motion remain real
after the replacement φ → iφ, one might accept the possibility that the scalar field can be
imaginary, and a solution with real metric can be found for r < rc. The metric components gtt
and grr match continuously to the solution for r > rc: but they and the Ricci scalar diverge
at r = 0. In order to avoid such singular geometries, associated with imaginary scalar fields,
we must require that the mass parameter M characterizing the metric components f(r), h(r)
is larger than Mmin. It would be interesting to find a dynamical method to generate such
minimum mass for the system.

We can numerically plot the behaviour of the solutions for the set-up we are considering.
The left panel of figure 2 shows the behaviour of the scalar field solution near the minimum
mass Mmin corresponding to φ0 = 0.30. For M > Mmin, the spacetime has an event horizon,
and φ′ diverges there, but the geometry and the trace of the energy-momentum tensor are
regular at the horizon. For M = Mmin the spacetime is regular everywhere and does not
have horizons, as shown in the right panel of figure 2. This is the only solution for which
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Figure 2. Vacuum geometries. The left panel shows φ′1 for a black hole geometry (dashed line)
with horizon represented by the dashed vertical line, a regular geometry (solid line), and a singular
geometry. The radius rc where the scalar field becomes imaginary in the singular case is indicated by
the dotted vertical line, and the region r < rc shows the opposite of the norm of φ′1. The right panel
shows the metric fields of the regular geometry, which exists only for M = Mmin.

φ′1 is always real and vanishes precisely at r = 0. For M < Mmin, φ′1 vanishes at rc. This
solution can be extended to r < rc if the scalar field is allowed to be imaginary, at the price
of introducing a naked singularity in the geometry.

In summary, for M > Mmin we have black hole geometries with an event horizon,
for M = Mmin we have a regular geometry without horizons, and for M < Mmin we have
geometries that do not have a horizon, but they become singular in a region where the scalar
field is imaginary: in order to have a regular geometry, we need to impose M ≥ Mmin. A
similar situation exists in quartic Horndeski models with a scalar field that depends only on r,
where a minimum mass that separates black holes from naked singularities is given in terms of
the coupling constants of the model, which also determine the (secondary) asymptotic scalar
hair [23]. Another analogy is the Reissner-Nordstrom black hole: given a electric charge Q, a
minimum black hole mass is required to keep the singularity at r = 0 protected by an event
horizon.

By repeating the analysis described above for different values of φ0, we numerically
found that the minimum mass depends quadratically on φ0.

Despite the fact that the geometry does not correspond to flat space at spatial infinity,
the curvature invariants go to zero, so the space-time is locally asymptotically flat, and the
black hole is isolated and not affected by far away contributions to the energy momentum
tensor. The asymptotic properties of the black hole geometry seem to depend on the scalar
field properties, through the deficit angle s0, which at first sight enters in the computation
of asymptotic charges. On the other hand, some care is needed to compute the gravitational
mass through an ADM integral in theories with deficit angles. This topic has been clarified
in [66] for a geometry with the same asympotics as ours. Their work explains that the
ADM energy should be properly normalized by the total angular volume of the asymptotic
geometry, which includes the deficit angle. Following their procedure, we find that the ADM
mass for our system is

MADM = M (3.11)

with M the coefficient of the 1/r terms in the metric components f , h. Since the gravitational
ADM mass is the only asymptotic charge for these black hole configurations, and it does not
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depend on the scalar parameter φ0, we conclude that our black holes do not have scalar
hairs.2 This conclusion is in agreement with the recent paper [71].

4 Relativistic compact objects

In this section we analyse non-singular, gravitationally bound star-like objects with spherical
symmetry, studying how the non-minimally coupled scalar field we consider modifies their
properties with respect to GR configurations. Notice that our configurations can evade the
no-hair theorem for stars in Horndeski and beyond theories discussed [72], since the scalar
field is explicitly time dependent. We find numerical solutions that represent sizeable devia-
tions from GR solutions when the scalar parameter φ0 is large (see our scalar Ansatz (3.2)),
and that are nevertheless connected to GR in the limit φ0 → 0. Using the results of the
previous section, we match the interior configurations for these compact objects to the ex-
terior solutions we previously determined, in order to investigate the efficiency of Vainshtein
screening right outside our configurations describing compact objects.

We wish to study static, spherically symmetric configurations of matter minimally cou-
pled to gravity,

S =

∫
d4x
√−gLc + Sm , (4.1)

where Lc is defined in eq. (2.4), and the matter action defines the corresponding matter
energy-momentum tensor as

Tµν = − 2√−g
δSm
δgµν

. (4.2)

The equations of motion for the metric result in

ξµν = Tµν , (4.3)

where ξµν is the tensor defined in eq (A.3), including metric and scalar contributions. We
consider a perfect fluid, so that the only non-vanishing components of the energy-momentum
tensor are

T tt = −ρ(r) , T ij = p(r)δij , (4.4)

where the Latin indices denote the spatial components of the energy-momentum tensor, and
ρ and p characterise the density and pressure of the perfect fluid.

We take the metric Ansatz (3.5), with

s0 ≡ 1− 3βφ20 . (4.5)

In this way we guarantee that these solutions are in the same coordinate frame as the exterior
solutions determined in the previous section. The fluid energy density and pressure can then
be expressed in terms of the metric components and scalar field through the relations

ρ(r) = −ξ 0
0 (r) , p(r) = ξ rr (r) , (4.6)

with ξ rr the (r, r) component of the tensor ξµ
ν obtained by raising one index in equation (A.3).

In order to describe the fluid we also need to consider an equation of state. We will consider
configurations of constant density,

ρ(r) = ρ0 . (4.7)

2We consider ‘scalar hair’ as any conserved quantity which can be measured asymptotically far from the
black hole, and that depends on the scalar parameter φ0.

– 9 –



J
C
A
P
0
8
(
2
0
1
8
)
0
0
6

Although it is not fully realistic, this set-up allows us to obtain some analytic results, as
well as exact numerical solutions. We are interested in configurations that are everywhere
regular: we impose that f ′(0) = h′(0) = p′(0) = 0 to ensure regularity at the origin of the
configuration. The radial size Rs of the compact object is defined as the point where the
pressure profile for matter vanishes, p(Rs) = 0.

Since the energy-momentum tensor is diagonal and matter is not directly coupled to
the scalar field, the component ξtr of the metric equations of motion and the scalar field
equation remain unchanged with respect to the vacuum case, and can be solved algebraically
for φ′1. In addition to the Einstein and scalar field equations, we impose the condition that
the matter energy-momentum tensor is covariantly conserved,3

∇µTµν = 0. (4.8)

For an incompressible star with constant density, the previous condition gives a first order
differential equation for f(r) with solution (f0 is a constant)

f(r) = f0 (p(r) + ρ0)
−2 . (4.9)

Plugging the algebraic solution for φ′1 and (4.9) into the equations of motion we reduce the
system to two equations for h(r) and p(r). Before entering into this topic, it is interesting to
consider the small r limit of our system, and compute the Ricci scalar. We find

R(r � 1) =
2(1− 3βφ20 − h0)

r2
− 4

r

ρ0h
′(0) + h′(0)p(0)− h0p′(0)

ρ0 + p(0)
+ regular terms . (4.10)

The coefficient of 1/r2 vanishes since in the limit r → 0 the solution for the radial metric
component is h0 = s0 = 1 − 3βφ20, and the coefficient of 1/r vanishes due to the regularity
conditions at the origin h′(0) = 0, p′(0) = 0. This fact distinguishes our system from the
beyond Horndeski set-up studied in [61, 69], where it was shown that the angular deficit
induces a singularity at r = 0 when the scalar field depends only on r, due to an 1/r2

divergence in the Ricci scalar. In [70], it was shown that this singularity can be removed in
beyond Generalised Proca theories thanks to the presence of a time component of the vector
field. This is heuristically related to our results, since the linear dependence in t of our scalar
field can be seen as the time component of a vector field Aµ in the scalar limit Aµ = ∇µφ.

Let us now return to discuss the solutions to our equations. We fix the constant density
ρ0 in the star interior, and the radius Rs of the object: we would like then to determine
solutions of our equations with the appropriate boundary conditions discussed above. In the
limit of small β, we recover the standard GR solutions: expanding h(r) = h0(r)+βh1(r)+. . . ,
and similarly for p(r), we find that the leading terms are the GR ones corresponding to a
TOV incompressible solution [73]:

h0(r) = 1− ρ0r
2

6
, (4.11)

p0(r) = ρ0

√
3− ρ0R2

s/2−
√

3− ρ0r2/2√
3− ρ0r2/2− 3

√
3− ρ0R2

s/2
. (4.12)

3This is indeed implied by the Einstein equations through the Bianchi Identities, given that we do not
directly couple the scalar with matter.
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It is interesting that the GR results are recovered for small β, although we are working in a
branch of solutions that is formally disconnected from GR, and includes a non-trivial profile
for the scalar field,

φ′1(r) =

√
6

f0

2ρ0φ0
√

6−R2
sρ0

3
√

(6− r2ρ0) (6−R2
sρ0)− 6 + r2ρ0

. (4.13)

which survives in the small β limit (analogously to the vacuum configurations, as discussed
around eq (3.4)).

Outside the regime of β small we cannot find analytical solutions, but we can attempt
an approximation for low density, or investigate the system numerically. We consider the two
possibilities in what follows.

4.1 Analytic solutions for low density

We assume that h and p can be expanded as h(r) = h0 + ρ0 h1(r) + ρ20 h2(r) + . . . and
p(r) = ρ20 p2(r) + ρ30 p3(r) + . . . . These expansions are motivated by the GR solutions for the
same system [73]. Solving the equations of motion for h(r) and p(r) order by order in ρ0
we find

h(r) = s0 −
r2ρ0

6
+
βρ20φ

2
0s0

f0r

(
3r − 4rβs0

r2 + 4βs0
− 4
√
βs0 tan−1

r

2
√
βs0

)
, (4.14)

p(r) =

(
R2
s − r2

)
ρ20

24s0
+
ρ30
36
R2
s

R2
s − r2
4s20

+
ρ30
f0

2β3/2φ20s
1/2
0

(
1

r
tan−1

r

2
√
βs0
− 1

Rs
tan−1

Rs

2
√
βs0

)
. (4.15)

We remind the reader that s0 = 1− 3βφ20. These radial profiles of the interior configurations
are quite different from the GR ones. To obtain the previous solutions we impose appropriate
boundary conditions at the origin, and we demand a fixed radius Rs for the star. We set
to zero an integration constant in h(r) by demanding the metric to be regular at the origin,
and express the integration constant in p(r) in terms of the radius Rs where p(r) vanishes.
Notice that by requiring the star radius Rs to remain always the same as we go to higher
orders in ρ0, we allow the central pressure to change due to the perturbative corrections. Up
to third order, the central pressure changes to

p(0) =
R2
sρ

2
0

24s0
+ ρ30

(
R4
s

144s20
+
β

f0
φ20 −

2β3/2φ20s
1/2
0

Rsf0
tan−1

Rs

2
√
βs0

)
. (4.16)

On the other hand, we have checked that up to third order in ρ0, the central value of h(r)
remains fixed to h0 = s0 due to non-trivial cancellations between the higher order corrections.
(This ensures that the Ricci scalar R remains regular at the origin, see eq (4.10)).

The limit of empty object, ρ0 → 0 in the solutions for h and p shown in eqs. (4.14), (4.15)
has to be taken with some care. These profiles solve the equations of motion obtained after
imposing the covariant conservation of matter, eq. (4.9), and are not necessarily continuously
connected to the vacuum solutions (3.7)–(3.9). When ρ0 = 0 the pressure vanishes as well,
and the continuity equations loses its physical interpretation. However, to be consistent with
the system of equations that we solved, we have to require f0 ∼ ρ20, so that f acquires a finite
value. On the other hand, the vacuum solutions do not admit in general a constant profile
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for f : the only way to make this possible is to impose that M and φ0 vanish. Thus, if we
want that the limit ρ→ 0 is continuously connected to a solution of the vacuum equations of
motion, the continuity equation imposes that φ0 = 0 when ρ0 = 0, and the solution reduces
to Minkowski spacetime with a constant scalar field.

4.2 Numerical solutions

We now investigate interior configurations using numerical methods, in a regime where β,
φ0 and ρ0 are not necessarily small. As we shall learn, we find interesting conditions on
the parameters involved in order to get regular solutions, which can indicate new ways to
constrain the scalar-tensor theories under consideration. Our analysis will focus on studying
the compactness of the stellar object, a physical quantity that will be helpful to point out
differences with GR results.

We compute interior solutions for different values of φ0 and ρ0 by solving numerically the
system of equations derived from (4.1)–(4.4), with the metric Ansatz (3.5) and s0 = 1−3βφ20.
The initial conditions are set at small radius, and are determined by Taylor expanding the
equations of motion around r = 0, imposing that at the origin the fields behave as h(0) =
1− 3φ20β, h′(0) = 0, and p′(0) = 0, and solving for h′′(0) and p′′(0). We work in units where
MPl = 1, and we fix for definiteness β = 1; we work imposing a fixed radius Rs for the star,
Rs = 1.5.

The parameters that need to be provided to the system of equations in order to fully
determine the radial metric component h(r), the pressure p(r), and their derivatives near the
origin are the constant density ρ0, the value of φ0, and the central pressure p(r = 0) = p0 —
which controls the radius Rs of the resulting configuration. To explore this parameter space
we choose arbitrary values of ρ0 and φ0, and we select p0 by requiring that the resulting
configurations have a given radius (that we choose arbitrarily). In GR, the central pressure
that satisfies this requirement can be computed exactly for stars of radius Rs, by evaluating
the TOV incompressible solution for the pressure at the origin [73]:

p0,GR = ρ0

√
3−R2

sρ0/2−
√

3√
3− 3

√
3−R2

sρ0/2
. (4.17)

For our beyond Horndeski system we do not have an analytic method for determining the
central pressure associated with a configuration with a given radius Rs. Thus, we proceed
numerically by fixing ρ0 and φ0 and shooting p0 until we find a solution with the desired
radius. For any ρ0 and small φ0, eq. (4.17) serves as seed for p0: then the resulting p0 serves
respectively as seed for the central pressure of a configuration with a higher φ0, and this
process is repeated until φ0 ∼ 0.5, where we approach the limit imposed by requiring that
the sign of the angular component of the metric is preserved.

We fix the radius of the star at a value Rs = 1.5, hence it is convenient to parametrise
the density ρ0 in terms of the critical density in GR for an object of a given Rs. We do so by
writing ρ0 = Aρcrit, where A is a constant in the range (0, 1) and ρcrit is the critical density
of a compact object of constant density in GR (see, e.g., [74]),

ρcrit =
16

3R2
s

. (4.18)

Solutions with ρ0 ≥ ρcrit do not exist in GR, and we do not find evidence of their existence
in the beyond Horndeski model under consideration.
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Figure 3. Compactness of constant density objects for β = 1 and different values of φ0. The dashed
line shows the GR limit for the compactness, which is obtained only for an object with the critical
density ρcrit. The density of each solution is indicated by the point colour. The gap in the sequence of
solutions with ρ0 = 0.5ρcrit and ρ0 = 0.6ρcrit is an effect of the scalar field contributions, as explained
in the main text.

We apply the results of this numerical method to investigate a physically relevant quan-
tity, the stellar compactness, which allows us to find constraints on the parameters involved,
and also to point out differences with GR configurations. The intrinsic stellar compactness,
which we plot in figure 3, is defined as

Cs =
m(Rs)

Rs
. (4.19)

In the previous expression, the mass of the star m(Rs) corresponds the value at Rs of the
mass function m(r) defined by expressing the metric component h(r) in the stellar interior as

h(r) = 1− 2m(r)

r
, (4.20)

that is, including within m(r) all the radial dependence of corrections to the Schwarzschild
metric due to matter and scalar field. The compactness defined in this way only includes
contributions of the interior of the star — this is why we call it intrinsic — and it is in
principle different from the compactness as measured by an asymptotic observer, which we
shall discuss in the next subsection. Such difference is important for characterizing the
efficiency of the screening mechanism in proximity of the object surface.

Each point in figure 3 represents a configuration of matter with radius Rs = 1.5, density
indicated by the point colour, φ0 by the x-axis, and stellar compactness by the y-axis. We
observe the following properties:

• High stellar compactness is possible for configurations with a low density of matter:
this is due to the large contributions of the scalar profile for characterizing the internal
geometry of the system.
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Figure 4. Difference between the pressure in GR and in the beyond Horndeski model under consid-
eration for configurations with 60% of the critical density in GR for an object of radius Rs = 1.5.
The left panel shows ∆p for solutions before the gap along the sequence of green points in figure 5,
while the right panel corresponds to solutions in the gap (orange curves correspond to orange points
in figure 5) and along the sequence of green points after the gap.

• For ρ0 & 0.4ρc, there exists a range of values of φ0 where we cannot find configurations
with the desired radius Rs. The reasons for this will be explored in some length below.

• The intrinsic stellar compactness does not exceed the GR limit C = 4/9 ≈ 0.44 (see,
e.g., [74]). This is in contrast to what happens in vector-tensor theories [57], but similar
findings have been reported for a subset of Horndeski gravity [33]. In the next section
we show that this is true even when the effects from the exterior solution are taken into
account.

The fact that we find a gap in the range of allowed stellar densities is interesting, and
deserves some more words since it can suggest ways to test and constrain the parameter space
of relativistic compact objects in scalar-tensor theories. We investigate in more detail what
happens in the region where we cannot find solutions with Rs = 1.5. We fix the density to
be 60% of the critical density: the green points in figure 5 correspond to the configurations
shown in red in figure 3. From φ0 ≈ 0.02 to φ0 ≈ 0.10 we do not find solutions with Rs = 1.5.
Indeed, around φ0 ≈ 0.02 there is a drastic change in the maximum radius, which falls to
about Rs = 1.3, as shown by the orange points in figure 5. The blue points in the same figure
show configurations with the same density as the green and orange points, but for different
radius: these are drawn in order to outline the region where solutions do not exist.

The origin of an interval in the parameter space where solutions do not exist, and
in particular of the drastic change of Rs near the lower end of this interval in φ0, can be
understood with the help of figure 4, where we plot a quantity defined as

∆p(r) = p(r)− pGR(r) ,

= ξ rr −G r
r , (4.21)

where ξ rr is the (r, r) component of the left-hand-side of the equations of motion for the metric
(see eqs (4.3) and (4.6)), while G r

r is the (r, r) component of the Einstein tensor calculated
on the configuration we examine, with no contributions from the scalar field (recall we work
in units MPl = 1). The quantity ∆p(r) describes the specific contributions to the total
pressure which can be associated with the scalar field. The left panel shows ∆p for solutions
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Figure 5. Rs-φ0 parameter space for a fixed ρ0, equal to 60% of the critical density of an object of
radius Rs = 1.5. Green points correspond to the solutions shown in red in figure 3. For Rs & 1.3
there is a region of the parameter space where we do not find solutions. The points coloured in orange
are referred to in the next figure.

with φ0 < 0.02 and Rs = 1.5; the solid line corresponds to the last configuration along the
sequence of green points before the gap in figure 5. We see that ∆p has a minimum at some
radius significantly smaller than Rs. Based on this, we speculate that for φ0 & 0.02, ∆p
acquires large negative values, whose size is sufficient to drive the total pressure p(r) to zero
at a radius smaller than the value Rs = 1.5, that we initially fix by means of the initial
conditions. Since the star radius is defined as the point where the pressure vanishes, the
large scalar contribution to the pressure makes the radius smaller than the one we impose.
Hence, we learn that there are regions in the parameter space of the scalar-tensor theory
under consideration where — due to large contributions associated with the scalar field —
there do not exist compact configurations for certain radii and energy densities.

As mentioned above, we can overcome the problem and find solutions by changing some
of the conditions, for example by reducing the stellar size Rs. The physical requirement is
that the total pressure vanishes at Rs. In order to find the correct value of Rs where this
happens maintaining the same energy density ρ0, we thus need to change the central pressure
to a smaller value such that both the GR and scalar field contributions to the pressure vanish
at the same point. The configurations with maximum radius that we find are shown with
orange markers in figure 5, and the profiles of ∆p associated to them are shown with orange
lines in the right panel figure 4. The curves shown in blue in the same plot instead correspond
to configurations along the sequence of green points, to the right of the gap.

These results show that the scalar-tensor theory under consideration imposes more
stringent constraints on the stellar properties with respect to GR, since we identified forbidden
regions on the energy density-radius plane, which depend on the value of φ0, and where
regular star configurations do not exist. In a more refined version of our analysis, considering
a polytropic equation of state, this fact can suggest observable tests for the parameter space
of these scalar-tensor theories, which would be excluded in case compact objects are found
within the forbidden regions.

4.3 Matching of interior and exterior solutions

In section 3 we learned that static, spherically symmetric vacuum solutions to the equations
of motion derived from (2.4) do not correspond exactly to GR configurations in vacuum, since
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Figure 6. Matching of the metric components and the scalar field for ρ0 = 0.3ρcrit and φ0 = 0.1. The
(t, t) component of the metric and its first derivative match continuously, while the first derivative
of grr does not. The discontinuity of g′rr is standard also in GR — only the matching of tangential
derivatives is required by the junction conditions, and it is inherited by the first radial derivative of
φ. On the other hand, φ̇ = φ0 is always continuous.
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Figure 7. Compactness of constant density configurations for β = 1. The case ρ0 = 0.1ρcrit is shown
in blue, and ρ0 = 0.3ρcrit in red. The dashed lines show the stellar compactness, and the points
show the compactness measured asymptotically. The scalar field can have a relevant impact in the
asymptotic compactness, but not enough as to get values of C higher than the GR limit C ≈ 0.44.

they differ from the Schwarzschild solution by an amount controlled by φ0 and β. Therefore,
the extrinsic compactness measured by an observer far away from a compact object can be
different from the intrinsic quantity we studied in section 4.2, — eq (4.19) and below —
due to contributions from the exterior part of the geometry. To investigate how large these
contributions are, we take the very same values of the metric and scalar field at a position Rs
from the solutions shown found in section 4.2, and we use these values as initial conditions to
integrate numerically the vacuum equations from Rs outwards. At large r, we compute the
gravitational mass using the asymptotic solutions (3.7)–(3.8). The matching of the interior
and exterior solutions at Rs is straightforward, and we match φ′, gtt, g

′
tt and grr at that point.

Figure 6 shows an example of the matching between our interior and exterior solutions.

In figure 7 we reproduce the intrinsic stellar compactness of configurations with ρ0 =
0.1ρcrit and ρ0 = 0.3ρcrit (dashed lines), and we show the asymptotic, extrinsic compactness
for some of these configurations (points). Interestingly, even when the effects from the exterior
solution are taken into account, the compactness does not exceed the GR limit C = 4/9.
Also, notice that for low density the screening of the exterior solution is highly efficient:
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even though the scalar field introduces large modifications to the stellar compactness, the
scalar contributions in the exterior are negligible, and extrinsic and intrinsic values of the
compactness almost coincide. On the other hand, for higher values of the stellar energy
density, the values of the extrinsic and intrinsic compactness differ for large values of the
parameter φ0. This implies that the effect of the scalar field in this regime is relevant also
outside the object, and not only on its interior.

5 Discussion

The recent observation of gravitational waves from a neutron star merger GW170817 and its
associated electromagnetic counterpart GRB170817A has changed our perspective on scalar-
tensor theories. One possibility is to focus only on the simplest theories where the graviton
speed cGW is automatically equal to one; the other is to consider richer systems where this
condition is obtained at the price of tuning some parameters. In this work we considered the
second possibility, studying the physics of compact objects in a theory of beyond Horndeski
with cGW = 1 that includes the scalar kinetic term.

We focussed on black hole and relativistic star configurations which are locally asymp-
totically flat, that can be continuously connected to GR configurations, and that have been
less explored in the literature. Depending on a parameter controlling the scalar field, φ0,
our solutions can be very similar to GR when φ0 is small, while they can provide sizeable
corrections to it when φ0 is larger. This shows that a Vainshtein screening mechanism, which
is very effective to reproduce GR predictions in a weak gravity limit, can be less so in strong
gravity regimes.

For what respect black hole configurations, we shown that our geometries are charac-
terized asymptotically by an angular deficit, due to presence of the scalar kinetic term, and
are equipped with regular horizons provided that the black hole mass is larger than a value
depending on the scalar parameter φ0. Our geometries have not scalar hairs, despite the fact
that the scalar has a profile that extends asymptotically far from the black hole. The black
hole solutions can be more compact than the Schwarzschild black hole, thanks to the effect
of the scalar field. The angular deficit could be detected by its effect on geodesics and light
propagation [67, 68].

We also studied regular relativistic compact objects corresponding to incompressible
stars with constant energy density. The scalar field modifies properties of the star as its
compactness, allowing for stars that are twice as compact as neutron stars with the same
matter density. These deviations from GR can be accessed observationally, for example
through quantities that depend on the tidal deformability of a star, which is directly affected
by the compactness [75, 76]. We also found that there are forbidden regions in parameter
space where regular star configurations of given radius and energy density cannot be found,
depending of the scalar field profile. In a more refined version of our analysis, considering a
polytropic equation of state, this fact can suggest observable tests for the parameter space
of these scalar-tensor theories, which would be excluded in case objects are found in the
forbidden regions.

By analysing the difference between our interior and exterior solutions and their GR
counterparts, we numerically investigated the efficiency of the screening of the scalar field
inside and outside the relativistic star. We found that including the standard kinetic term
of the scalar field breaks the perfect screening of vacuum solutions, not only because of
the angular deficit but also because the time and radial components of the metric acquire
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corrections that distinguish them from the Schwarzschild solution in the exterior of the object.
Nevertheless, there are situations where such deviations from a Schwarzschild solution are
small in the exterior, while the corrections to the interior metric are large with respect to GR.
We cannot find the opposite situation — corrections that are large in the exterior but small
in the interior. This indicates that the breaking of screening is more severe in the interior
solutions.

Much work is left for the future. It is interesting to continue to investigate the physics
of compact objects in other scalar-tensor theories with cGW = 1, for realistic equations of
state for the star interior.
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A Equations of motion

The covariant equations of motion derived from action (2.4) with G4 = M2
Pl +M−2Pl β X are

0 = M−2Pl β

[
[Φ]R+∇αR∇αφ+

Rαβ〈Φ〉 − [Φ]2〈Φ〉+ 〈Φ〉[Φ2] + 2[Φ]〈Φ2〉 − 2〈Φ3〉
X2

− [Φ]3−3[Φ]Rαβφ
αφβ−3[Φ][Φ2]−φαφβφσ∇σRαβ+2[Φ3]+2Rασβδφ

αφβΦδσ

X

]
+[Φ], (A.1)

0 =

(
M2

Pl+
βX

M2
Pl

)
Gµν −

gµνX

2
− φµφν

2
− M−2Pl β

4X2

(
2gµν〈Φ〉2− 4φα〈Φ〉Φ(µ|αφ|ν)+2〈Φ2〉φµφν

)
− β

M2
Pl

[
gµν(∇α[Φ]φα+Rαβφ

αφβ+[Φ2])−∇αΦµνφ
α − ΦναΦα

µ −Rµανβφαφβ +
Rφµφν

2

]
− βM−2Pl

2X

[
gµν(3〈Φ2〉+φαφβ∇σΦαβφ

σ)−2φαφβ(ΦµαΦνβ+∇βΦ(µ|αφ|ν))+2[Φ]φαΦ(µ|αφ|ν)

−4Φβαφ
αΦβ

(µφν) + φµφν(2Rαβφ
αφβ +∇α[Φ]φα + 2[Φ2]− [Φ]2)

]
(A.2)

≡ ξµν . (A.3)

Under the spherically symmetric ansatz (3.5), the (r, r), (t, t) and (t, r) components of the
equations of motion become

0 =
(
fhφ′1

2 − φ20
) (
−4fs0 + r2φ20 + f

(
4h+ 4rh′ + hr2φ′1

2
))

+ 2β
{
φ40
(
h− s0 + rh′

)
+2fhφ20φ

′
1

[(
2h+ 3rh′

)
φ′1 + 4hrφ′′1

]
− f2h2φ′13

[(
h− s0 + 3rh′

)
φ′1 + 4hrφ′′1

]}
, (A.4)

0 = f
(
φ20 − fhφ′12

) (
4fs0 + r2φ20 + h

(
−4f − 4rf ′ + fr2φ′1

2
))

+ 2β
{
φ40
(
fs0 − fh+ hrf ′

)
−f2h2

[
fs0 + 3h

(
f + rf ′

)]
φ′1

4 + 2fh2rφ20φ
′
1

(
3f ′φ′1 + 2fφ′′1

)}
, (A.5)

0 = φ0φ
′
1

{
fr2
(
fhφ′1

2 − φ20
)
+2β

[
φ20
(
fh− fs0 − 2hrf ′ + frh′

)
+fh

(
fs0+hf+rhf ′

)
φ′1

2
]}

.
(A.6)

The scalar equation is automatically satisfied by the algebraic solution to eq. (A.6) for φ′.
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