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Abstract 

Piezotronics has been an emerging concept coupling piezoelectric and semiconducting properties 

with potential applications in sensors, flexible electronics and nanoelectromechanical systems 

(NEMS). Piezoelectric field is created under an applied strain, which controls the carrier 

generation, transport, separation or recombination processes at the interface or junction of the 

semiconductor devices. Based on the piezotronic theory, we present a one-dimensional model for 

the metal-insulator-semiconductor (MIS) tunnel diode based on the piezoelectric semiconductor. 

Analytical solutions of piezoelectric modulated tunneling are described to reveal the piezotronic 

effect on the MIS tunnel junction. Numerical simulation of the carrier transport properties is 

provided for demonstrating the piezotronic effect on MIS tunnel devices. 

 

Keyword: piezotronics, piezoelectric semiconductor, metal-insulator-semiconductor structure, 

tunneling current 
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1. Introduction 

Since the first nanogenerator was created using the piezoelectric zinc oxide nanowires, [1] 

piezoelectric semiconductor have attracted much attention for energy harvesting and pieozotronic 

devices. Due to the coupling of piezoelectric and semiconductor properties, previous experiments 

showed that bending the piezoelectric material can change the electric conductance [2] and modify 

the metal-semiconductor contact from Ohmic to Schottky contact [3]. All these high-performance 

devices contributed to a new field named as piezotronics [4-6], which aims at the coupling of 

piezoelectric and semiconducting properties, and applying the piezoelectric field induced by the 

strain to control the charge transport at the interface or junction. The piezotronic effect has been 

employed to achieve various devices, such as high-sensitivity strain sensors [7, 8], high 

output-power nanogenerator [9, 10] and piezotronic transistors [11, 12]. Large-array 

three-dimensional circuits based on piezotronic transistors has been reported in [11], and a 

nanowire light-emitting diode-based sensor array has been presented in [13]. Recently, 

piezoelectricity of the two-dimensional materials MoS2 has been demonstrated in [14].  

Piezoelectric field under an applied strain can control carrier transport. Based on metal 

semiconductor structure, gauge factor of the piezotronic strain sensor can reach up to 1250. [3] 

The gauge factor is higher than Si nanowires ~320 [15] and carbon nanotubes strain 

sensors~1000. [16] For strain controlled piezoelectric semiconductor devices, previous 

reports have provided models for p-n junctions, metal-semiconductor and heterojunctions 

based on semiconductor physics.   

Typical building blocks of semiconductor devices include p-n junction, metal-semiconductor 

(MS) contact, MIS structure, and heterojunction. MIS structure has become very attractive due to 

its superior electronic properties,  which leads to many promising applications, such as MIS solar 

cells [17, 18], photodetectors [19, 20], sensors [21] and memories [22, 23]. Taking the MIS solar 

cells as an example, the dark current can be reduced by increasing the effective 

metal-semiconductor barrier height or reducing the majority carrier concentration at the 

semiconductor surface [24, 25]. Metal-oxide-semiconductor (MOS) is one of MIS structures 

which uses the oxide layer as the gate insulator. It also has the advantage of easy integration with 

conventional semiconductors compared with p-n junctions. 

In this paper, one dimensional metal-insulator-piezoelectric semiconductor contacts with an 
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ultrathin insulating layer are investigated under mechanical strains. Different from the 

conventional external transverse field modulation, this approach utilizes the inner parallel 

piezoelectric field to tune the transport properties at the interface.  

 

2. Device model of piezotronic junction based on metal-insulator-semiconductor   

According to previous theoretical studies [26], Poisson’s equation, current transports equation, 

continuity equation, and the piezoelectric equation are set up to describe the piezotronic devices 

[27-31]. The MIS structure has important applications, the physics of the MIS structure has been 

intensively studied [32-42]. Here in this section we propose a simplified model to demonstrate the 

piezotronic effect for the MIS structure. 

From the band diagram shown in Figure 1, the potential difference for the insulator can be 

given by 

∆=
𝐸𝑔

𝑞
+ 𝜒𝑠 − 𝜙𝑚 − 𝜙𝑝 − 𝜓𝑠 + 𝑉                       (1) 

where Eg is the semiconductor bandgap, s denotes the affinity of the semiconductor, m represents 

the metal work function, p is the potential difference between the majority-carrier Fermi level and 

the valence band, s is the potential across the semiconductor and V denotes the applied voltage.  

For simplicity, surface states, work function differences and other anomalies are neglected. 

The semiconductor is grounded, and a positive voltage is applied to the metal. It is assumed that 

the semiconductor is working in thermal equilibrium and direct tunneling is the dominant 

tunneling mechanism at the interface. Therefore, the difference between the electron and hole 

quasi-Fermi levels is neglected. Thus,  

∆= −𝜓𝑠 + 𝑉                                           (2) 

According to the Gauss’s law, we have 

∆= 𝐸𝑖𝑑𝑖 = 𝑑𝑖
𝑄𝑀

𝜀𝑖
                                        (3) 

where Ei is the electric field inside the insulator, QM is the charge on the metal, di is the insulator 

thickness and i is the permittivity of the insulator. For charge neutrality, it is required that  

𝑄𝑀 + 𝑄𝑆 + 𝑄𝑝𝑖𝑒𝑧𝑜 = 0                                         (4) 

where QS is the charge on the semiconductor surface due to the ionized acceptor and Qpiezo is the 

piezoelectric charge. Thus, equations can be given by 
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Δ = −𝑑𝑖
(𝑄𝑆+𝑄𝑝𝑖𝑒𝑧𝑜)

𝜀𝑖
                                         (5-a) 

𝑄𝑆 = −𝑞𝑁𝐴𝑊𝐷𝑝                                            (5-b) 

𝑄𝑝𝑖𝑒𝑧𝑜 = 𝑞𝜌𝑝𝑖𝑒𝑧𝑜𝑊𝑝𝑖𝑒𝑧𝑜                                      (5-c) 

Assuming the depletion approximation and completed ionization inside the depletion region, we 

proceed to calculate the field and potential distribution. The potential s(x) inside the 

semiconductor as a function of distance can be obtained by solving the one-dimensional Poisson’s 

equation 

𝑑2𝜓𝑠(𝑥)

𝑑𝑥2 = −
𝑑𝐸

𝑑𝑥
= −

𝜌(𝑥)

𝜀
= −

𝑞[𝑝(𝑥)−𝑛(𝑥)−𝑁𝐴(𝑥)+𝜌𝑝𝑖𝑒𝑧𝑜(𝑥)]

𝜀
              (6) 

where (x) is the charge density as shown in Figure 1a, NA(x) is the density of the acceptor, piezo(x) 

is the density of the piezoelectric charges. By integrating the Poisson equation, we can obtain the 

electric field distribution inside the semiconductor. 

𝐸(𝑥) = −
𝑞𝑁𝐴(𝑥−𝑊𝐷𝑝)

𝜀𝑠
+

𝑞𝜌𝑝𝑖𝑒𝑧𝑜(𝑥−𝑊𝑝𝑖𝑒𝑧𝑜)

𝜀𝑠
     (0 ≤ 𝑥 ≤ 𝑊𝑝𝑖𝑒𝑧𝑜)         (7-a)                         

𝐸(𝑥) = −
𝑞𝑁𝐴(𝑥−𝑊𝐷𝑝)

𝜀𝑠
     (𝑊𝑝𝑖𝑒𝑧𝑜 ≤ 𝑥 ≤ 𝑊𝐷𝑝)                      (7-b)                         

By setting s(NA) = 0, we can get the potential distribution across the contact as shown in Figure 

1(c). 

𝜓(𝑥) =
𝑞𝑁𝐴(𝑥−𝑊𝐷𝑝)

2

2𝜀𝑠
−

𝑞𝜌𝑝𝑖𝑒𝑧𝑜(𝑥−𝑊𝑝𝑖𝑒𝑧𝑜)
2

2𝜀𝑠
     (0 ≤ 𝑥 ≤ 𝑊𝑝𝑖𝑒𝑧𝑜)         (8-a)                         

𝜓(𝑥) =
𝑞𝑁𝐴(𝑥−𝑊𝐷𝑝)

2

2𝜀𝑠
     (𝑊𝑝𝑖𝑒𝑧𝑜 ≤ 𝑥 ≤ 𝑊𝐷𝑝)                       (8-b)                         

Thus, the band bending of the semiconductor valence band can be given by 

𝜓𝑠 = 𝜓(0) =
𝑞

2𝜀𝑠
(𝑁𝐴𝑊𝐷𝑝

2 − 𝜌𝑝𝑖𝑒𝑧𝑜𝑊𝑝𝑖𝑒𝑧𝑜
2 )                           (9) 

where s is the permittivity of the semiconductor, NA is the acceptor concentration, piezo is the 

density of the piezoelectric charges, Wpiezo is the width of the piezoelectric charges distribution 

region and WDP is the depletion layer width in the semiconductor. 

According to the depletion assumptions of the analytical model, the majority carriers have 

been removed in the depletion region. Thus, the piezo-charges are not screened by carriers in 

depletion region in this case. For the piezotronic MIS structure, piezoelectric charges change the 

energy band and building-in potential in the MIS structure. The carries redistribution is neglected 

in our simplified analytical model.  
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3. Current-voltage characteristics of simplified piezotronic metal-insulator-semiconductor 

tunnel junction 

According to typical tunneling current model [43], and previous works by Gray [44], Card 

and Rhoderick [33, 34], Doghish [40], the hole and electron tunneling currents can be written as  

𝐽𝑛𝑡 = 𝐴𝑛
∗ 𝑇2 exp (−𝜒𝑛

1

2 𝑑𝑖) [exp (−
𝐸𝑐0−𝐸𝑓𝑚

𝑘𝑇
) − exp (−

𝐸𝑐0−𝐸𝑓𝑠

𝑘𝑇
)] =

𝐴𝑛
∗ 𝑇2 exp (−𝜒𝑛

1

2 𝑑𝑖) exp (−
𝐸𝑔

𝑘𝑇
) exp (

𝑞𝜙𝑝+𝑞𝜓𝑠

𝑘𝑇
) [exp (

𝑞𝑉

𝑘𝑇
) − 1]                     (10-a) 

𝐽𝑝𝑡 = 𝐴𝑝
∗ 𝑇2 exp (−𝜒𝑝

1

2 𝑑𝑖) [exp (−
𝐸𝑓𝑠−𝐸𝑣0

𝑘𝑇
) − exp (−

𝐸𝑓𝑚−𝐸𝑣0

𝑘𝑇
)] =

𝐴𝑝
∗ 𝑇2 exp (−𝜒𝑝

1

2 𝑑𝑖) exp (−
𝑞𝜙𝑝+𝑞𝜓𝑠

𝑘𝑇
) [1 − exp (−

𝑞𝑉

𝑘𝑇
)]                         (10-b) 

where A
* 

n  and A
* 

p  are effective Richardson constants for electrons and holes, n andp are 

effective barrier heights for electrons and holes tunneling into metal. The total current density can 

be given by  

𝐽𝑡 = 𝐽𝑝𝑡 + 𝐽𝑛𝑡                                          (11) 

It indicates that the piezoelectric charges can tune the tunneling current Jt by changing the surface 

potential s of semiconductor. 

Figure 2a shows the current-voltage characteristics of an ideal metal-insulator- GaN contact 

at different strains ranging from -0.08% to 0.08%. The calculated tunneling current density varies 

as the strain changes, demonstrating the modulation of the piezoelectric charges. It is seen that a 

tensile strain leads to a reduced current density, which matches with the theory described in 

previous sections. The current density remains almost unchanged for voltages of less than 0.35V 

and demonstrates a significant difference at 0.45V for various strain values. It is also worth 

mentioning that the relation between the strain and the current density at a certain voltage e.g. 

0.45V is not linear. A large jump of the current density value appears from strain of -0.04% to 

-0.08%. To confirm the depletion approximation, the surface potential range should be between 0 

and Eg/2q-p. Figure 2b shows the variation of the surface potential versus the applied voltage 

under different strains from -0.08% to 0.08%. The surface potential increases as the strain changes 

from tensile strain to compressive strain. This is exactly in consistent with the results shown in 

Figure 2a. It should be emphasized that the current sensitivity upon applied strains is much larger 
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than the voltage sensitivity, particularly when the voltage value is above 0.4 V.  

 

4. Numerical simulation 

The current is continuous throughout the metal-insulator-semiconductor. Tunneling current 

can be described from metal to semiconductor, and drift-diffusion current is inside the 

semiconductor. The model can be solved numerically. Here we use a multi-physical software 

COMSOL to conduct the numerical calculations, which is a widely employed software allowing 

both equation-based customized numerical analysis and finite element modelling. Thus, the DC 

characteristics of the structure are obtained. According to the previous fundamental theoretical 

framework of piezotronics, the Gaussian profile is adopted to describe the dopant concentration 

function N as 

𝑁 = −𝑁𝐴𝑝 − 𝑁𝐴𝑝𝑚𝑎𝑥𝑒−(
𝑧−𝑙

𝑐ℎ
)2

                              (12) 

where NAp is the p-type background doping concentration, NApmax is the maximum acceptor 

concentration, l is the length of semiconductor and ch is the doping fall-off constant.  

The Shockley-Read-Hall recombination is taken as an example of carrier recombination 

mechanisms. The electrical contact of the electrodes with the semiconductor is supposed to be 

Ohmic contact, which means the carrier concentrations and electrical potential will have Dirichlet 

boundary conditions at the boundary with thermal equilibrium values same as in previous works.  

In the simulation, it is assumed that the piezoelectric charges have a uniform distribution 

Wpiezo at piezoelectric semiconductor, as shown in Figure 3a. In our simulation, the parameters are 

set as follows: The length of the semiconductor and insulator are 100 nm and 2.4 nm, respectively. 

The radius of the device is 10 nm. The piezoelectric material is wurtzite structure GaN with p-type 

background doping concentration NAp of 1×1015 cm-3
. The maximum acceptor doping 

concentration is 1×1017 cm-3. The doping fall-off constant ch is 4.66 nm. The temperature is set to 

be 300 K. The relative dielectric constant of GaN is 8.9. The carrier lifetimes are p = 0.s and 

n = 0.s. The electron and hole mobilities are p = 350cm2V-1s-1 and n = 900cm2V-1s-1. 

Taking the above practical parameters of the MIS junction into the numerical model, the 

effect of piezoelectric charges on the I-V characteristic is shown in Figure 3b. Under compressive 

strains, the negative piezoelectric charges are created at the insulator-semiconductor interface, 
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which attract holes and repel electrons. While under tensile strains, the positive piezoelectric 

charges are created at the insulator-semiconductor interface which attract electrons to accumulate 

at the interface and repel holes along the semiconductor.  

The distribution of electrons and holes across the semiconductor are illustrated in Figures 3c 

and 3d at different strains ranging from -0.08% to 0.08% under a fixed applied voltage of 2.2 V. 

Figure 3c shows the tendency of holes diffusing into the interior as the strains changes from +0.08% 

to -0.08%. When a tensile strain is applied, the electrons are attracted by positive piezoelectric 

charges to accumulate at the interface. As a compressive strain is applied, the created negative 

piezoelectric charges push the electrons away.  

Moreover, we have looked into the I-V characteristics of the MIS structure under various 

background doping conditions and maximal doping conditions as Figure 4 shows. The strain was 

fixed at +0.08% and the default doping conditions are NApmax = 1×1017cm-3 and NAp = 1×1015cm-3. 

Figure 4(a) depicts the current density-voltage curves as the maximal doping concentration 

changes from 1×1016cm-3 to 9×1016cm-3, very little change has been demonstrated. However when 

the background doping condition varies, the surface potential can be affected through the carrier 

concentration at the fixed voltage, which effectively tunes the I-V characteristics. Figure 4b shows 

the I-V characteristics of the MIS structure at various background doping concentrations. It is 

clearly observed from the numerical model that the background doping makes bigger impact on 

the I-V performance than the maximal doping concentration. Because piezo-charges induce energy 

band change, the DC characteristics are tuned by the piezo-charges. In our numerical model, not 

only the energy band change is considered, the carrier redistribution effect is also included. 

For further investigation, the hole and electron distribution for different maximal doping 

conditions and background doping conditions are portrayed in Figures 5a-5d. It is seen from the 

results that the background doping plays more critical roles than the maximal doping conditions 

for both the electrons and holes distributions. The numerical analysis with practical parameters has 

revealed several key design specifications for the piezotronically tunable MIS devices, such as the 

strain condition and the background doping, which pave the way to real implementation of the 

structures in electronic systems. This work has filled in the gap of piezotronic effect used in 

semiconductor structures, as the MIS is equally important along with p-n junctions, 

metal-semiconductor contacts, and heterojunctions. 
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5. Conclusion  

We have analyzed a one-dimensional simplified model of metal-insulator-semiconductor 

tunnel diode considering the piezotronic effect. The analytical solutions unveiled that the 

piezoelectric modulation can be realized through changing the band bending, which affects the 

carrier distribution in the semiconductor. The numerical simulation with designated geometrical 

and physical parameters of the proposed device was also conducted to support the analysis. The 

simulation results show that the piezotronic effect can be potentially introduced into the MIS 

tunnel diode to tune the performance and sensibility in the prospective devices. Furthermore, the 

analysis here provides a theoretical guide to the practical design of piezotronic MIS devices. 
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Figure captions: 

 

Figure 1. Ideal metal-insulator-piezoelectric semiconductor contact with the presence of 

piezoelectric charges when applying positive voltage to metal. (a) charge distribution (b) electric 

field (c) potential distribution (d) band diagram of the structure. 

 

Figure 2. (a) Current-voltage characteristics of ideal metal-insulator-piezoelectric semiconductor 

contact at strains ranging from -0.08% to +0.08%; (b) Variation of the surface potential versus the 

applied voltage V under different strains. 

 

Figure 3. (a) Sketch of a metal-insulator-piezoelectric semiconductor contact; (b) Calculated 

current density curves voltage for different applied strains. Concentration distribution of holes (c) 

and electrons (d) at fixed voltage of 2.2V for various strains. 

 

Figure 4. I-V characteristic of metal-insulator-piezoelectric semiconductor for different 

background doping density (a) and different maximum doping concentration (b). 

 

Figure 5. Concentration distribution of holes (a) and electrons (b) at fixed voltage of 2.2V for 

various background doping conditions. Concentration distribution of holes (c) and electrons (d) at 

fixed voltage of 2.2V for different maximum doping conditions 
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Fig.3 
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